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STABILITY OF SUBLEVEL SET ESTIMATES AND SHARP L2

REGULARITY OF RADON TRANSFORMS IN THE PLANE

Michael Greenblatt

1. Introduction

In this paper, we consider operators of the following form, acting on functions
on R2:

(1.1) Tf(x) =
∫
R

f(γ(x, t))φ(x, t) dt

Here φ(x, t) is a smooth function supported on a small neighborhood of the
origin in R2 × R with φ(0, 0) �= 0, and γ(x, t) is a smooth function defined on
the support of φ(x, t) satisfying

(1.2) γ(x, 0) = x,
∂γ

∂t
(x, t) �= 0

Thus Tf(x) is the average of f over a curve ”centered at x”. The condition
∂γ
∂t (x, t) �= 0 ensures that the averaging is smooth; T doesn’t degenerate into
a fractional or singular Radon transform. Our goal will be to prove sharp L2

estimates for T . In the semitranslation-invariant case, this has been done for
real-analytic γ(x, t) by Phong and Stein [PS], and for general γ(x, t) (not just
semi-translation invariant) this was done up to ε derivatives by Seeger [Se]. In
this paper we will relate L2 regularity of T to uniform sublevel set estimates for
a certain determinant function that arises. The estimates will be sharp for a
significant class of T many of which are not semitranslation-invariant; for such
operators the results of this paper are not covered by [Se] or [PS].

There has also been quite a bit of work on sharp L2 estimates for Radon
transforms along curves in higher dimensions, such as that of Greenleaf and
Seeger [GrSe1]-[GrSe5], and Comech and Cuccagna [CoCu1]-[CoCu2]. For Lp

to Lq estimates there have also been a number of papers written; the author
is most familiar with those of Christ [Ch], Oberlin [O1]-[O3], and [G2]. We
refer the reader to [GrSe5] for more details on these and various other papers on
related topics.
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Since we seek L2 estimates, it makes sense to look at the adjoint of T . T ∗ is
of the form

(1.3) T ∗f(x) =
∫
R

f(γ∗(x, t))φ∗(x, t) dt

Here φ∗(x, t) is a cutoff function, and γ∗(x, t) is defined by

(1.4) γ(γ∗(x, t)) = γ∗(γ(x, t)) = x

Another important function for the purposes of this paper is bx(t, u), defined by

(1.5) y = bx(t, u) ⇐⇒ γ(x, t) = γ(y, t + u)

Equivalently,

(1.6) bx(t, u) = γ∗(γ(x, t), t + u)

Denote the Jacobian determinant of bx(t, u) in t and u by Jx(t, u). In [CNSW]
it is shown that a necessary and sufficient condition for the operator T to have
any L2 smoothing is their ”curvature condition”, which can be stated in terms
of Jx(t, u) as follows.

Definition. T is said to satisfy the curvature condition at x if there exists a
multiindex (r, s) such that

(1.7)
∂r+sJx

∂tr∂us
(0, 0) �= 0

We will not prove the equivalence of (1.7) to the conditions of [CNSW] here;
it suffices to say that (1.7) is most similar to the Jacobian condition of [CNSW].
Notice that (1.7) is equivalent to there existing M , ε > 0 such that for any
sufficiently small ball B containing x we have the following for each a > 0:

(1.8) |{(t, u) ∈ B : Jx(t, u) < a}| < Maε

One can also reverse the roles of γ and γ∗, defining (b∗)x(t, u) = γ(γ∗(x, t), t+u)
and (J∗)x(t, u) to be the determinant of (b∗)x(t, u) in t and u. The curvature
condition at x can be reexpressed as the existence of a multiindex (r.s) such that

(1.7′)
∂r+s(J∗)x

∂tr∂us
(0, 0) �= 0

Similarly, (1.8) is equivalent to the existence of M ′, ε′ > 0 such that for a small
enough ball B′ containing x we have

(1.8′) |{(t, u) ∈ B′ : (J∗)x(t, u) < a}| < M ′aε′

Our main theorem is a way of expressing L2 regularity of T in terms of the
largest ε or ε′ for which (1.8) or (1.8′) holds uniformly (i.e with a fixed M or
M ′) for x in a neighborhood of the origin. These estimates will be sharp for a
significant class of T . The theorem is as follows.
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Theorem 1.1. Suppose T satisfies the curvature condition at the origin. Sup-
pose there exist neighborhoods B1 and B2 of the origin in R2 and constants
M, ε > 0 such that (1.8) holds with B = B2 for all x in B1. Then if the support
of φ(x, t) is sufficiently small, T is bounded from Hs to Hs+ ε

2(1+ε) . If the line
y = x intersects the Newton polygon of J0(t, u) in the interior of its vertical
edge x = p and this ε can be taken to be 1

p , then the estimate is sharp; T is not
bounded from Hs to Hs+δ for δ > ε

2(1+ε) . The analogous statements hold if (1.8)
is replaced by (1.8′).

Observe that if the line y = x intersects the Newton polygon of J0(t, u) in the
interior of its vertical edge x = p, then it is well-known (see [PSSt] or [G1] for
example) that the ε in (1.8) at the origin can be taken to be 1

p . Hence Theorem
1.1 says that if the level set estimate at the origin holds uniformly in x in a
neighborhood of the origin, then we automatically have sharp estimates. By
Theorem 2.3 in Karpushkin [K], this always holds in the real-analytic case, so
as a consequence we have:

Theorem 1.2. If γ(x, t) is real-analytic, and the line y = x intersects the
Newton polygon of J0(t, u) in the interior of its vertical edge x = p, then we
have the sharp estimate that T is bounded from Hs to Hs+ 1

2(p+1) for each s. The
corresponding statement holds when J0(t, u) is replaced by (J∗)0(t, u).

To help understand what the condition on J0(t, u) means, reparameterizing (1.1)
if necessary we can assume that γ(x, t) is of the form

(1.9) γ(x, t) = (x1 + t, γ2(x, t))

As a result, the definition (1.5) becomes

y = bx(t, u) ⇐⇒ (x1 + t, γ2(x, t)) = (y1 + t + u, γ2(y, t + u))

In particular the first component of bx(t, u) is y1 = x1 − u and we have

(1.10) Jx(t, u) =
∂bx

2

∂t
(t, u)

(Here bx
2 denotes the second component of bx). Similarly, we have

(1.10′) (J∗)x(t, u) = −∂(b∗)x
2

∂t
(t, u)

We now give a explicit description of when the hypotheses of Theorem 1.2
hold; this will also show how to construct concrete examples. First, observe that
there are coordinates such that the curves t → γ∗(x, t) are horizontal for x on
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the y-axis. In other words for such an x = (0, x2) we have the following (again
assuming we’ve reparameterized our curves so that (1.9) holds:)

(1.11) γ∗((0, x2),−x1) = (x1, x2)

Equivalently,

(1.12) γ((x1, x2),−x1) = (0, x2)

Thus in the real-analytic situation, γ must be of the following form, for some
real-analytic function δ(x1, x2, t):

(1.13) γ((x1, x2), t) = (x1 + t, x2 + (x1 + t)δ(x1, x2, t))

Conversely, every γ of the form (1.13) gives a Radon transform in a coordinate
system where the curves for γ∗ are horizontal for x on the y-axis. It is not hard
to determine which δ(x1, x2, t) give an operator which satisfies the conditions of
Theorem 1.2 for (J∗)0(t, u). For we have

(1.14) (b∗)0(t, u) = γ(γ∗((0, 0), t), t+u) = γ((−t, 0), t+u) = (u, uδ(−t, 0, t+u))

In view of (1.10′), the statements of Theorem 1.2 corresponding to (J∗)0(t, u)
hold exactly when the Newton polygon of ∂

∂t (uδ(−t, 0, t + u)) intersects the
line y = x in the interior of its vertical edge. The statements of Theorem 1.2
corresponding to J0(t, u) have an analogous realization with the roles of γ∗ and
γ reversing.
Interesting examples of when the conditions of Theorem 1.2 hold occur in the
setting of line complexes:

Real-Analytic Line Complexes.
We assume γ(x, t) is of the following form, for a real-analytic function a(x1, x2):

(1.15) γ(x, t) = (x1 + t, x2 + a(x1, x2) t)

In this case, denoting γ∗((0, 0), t) by (y1, y2) we have

(1.16) (b∗)0(t, u) = (y1 + t + u, y2 + a(y1, y2)(t + u))

In particular,

(1.17) (b∗)02(t, u) = y2 + a(y1, y2)(t + u)

Note that γ(γ∗((0, 0), t), t) = (0, 0). Taking second components of this we have

(1.18) y2 + a(y1, y2)t = 0
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Hence

(1.19) (b∗)02(t, u) = a(y1, y2)u = −y2u

t
= −γ∗((0, 0), t) u

t

The second to last equality follows from (1.18). We conclude by (1.10′) that

(1.20) (J∗)0(t, u) =
∂

∂t

γ∗((0, 0), t) u

t

Hence the conditions of Theorem 1.2 hold if t → γ∗((0, 0), t) has a zero of order
four or greater at the origin. This can also be expressed in terms of the function
a(0, t). For (1.18) can be rewritten as

(1.21) γ∗
2 ((0, 0), t) = −a(−t, γ∗

2 ((0, 0), t)) t

Thus expanding a in the second component we have

(1.22) γ∗
2 ((0, 0), t) = −a(−t, 0) t + O(γ∗

2 ((0, 0), t) t)

Hence we have

(1.23) |γ∗
2 ((0, 0), t)| ∼ |a(−t, 0) t|

So the order of the zero of a(t, 0) at t = 0 is the same as that of γ∗
2 ((0,0),t)

t .
As a result, the hypotheses of Theorem 1.2 hold as long as a(t, 0) has a zero of
order three or greater at the origin. In the terminology of singularity theory, this
is equivalent to the operator T having a one-sided type k singularity for some
k ≥ 2. (see [GrSe5] for background material.) For k ≤ 3, sharp estimates for
such operators have been proven in [GrSe2] [GrSe3] [GrSe4]. Thus combining
those results with this paper, we get sharp estimates for all real-analytic line
complexes in the plane.

Relation to Fefferman-Phong Metrics.
In [G3], the author defined a metric associated to a Radon transform with

certain properties that resemble those of the metric Fefferman and Phong use
[FP] in their study of subelliptic PDE’s. In fact, in many situations the L2

Sobolev smoothing of a Radon or Radon-like transform can be expressed in
terms of the inradii of balls of this metric in a way analogous to that of [FP].
(See [G4] for examples and more discussion.)

Furthermore, it can be shown in the real-analytic case in two dimensions, that
the measure of the set {γ∗(γ(x, t), t + u) : |t|, |u| < r} is at least c times that of
the whole ball of radius r for some constant c, so that the set {γ∗(γ(x, t), t+u) :
|t|, |u| < r} is in some sense comparable to the ball itself. By the right-hand
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assumption of (1.2), the vector ∂
∂uγ∗(γ(x, t), t + u) is always of magnitude ∼ 1,

and the vector ∂
∂tγ

∗(γ(x, t), t + u) is of magnitude at most ∼ 1. Thus the
determinant Jx(t, u) is comparable to the inradius of the ”ball”

(1.24) {c1
∂

∂t
γ∗(γ(x, t), t + u) + c2

∂

∂u
γ∗(γ(x, t), t + u) : |c1|, |c2| < 1}

The analogous statement holds for (J∗)x(t, u). Thus Theorems 1.1 and 1.2 can be
viewed as statements about the distribution functions of inradii of infinitesimal
Fefferman-Phong-like balls, giving a theorem analogous to that of [FP], [G4],
and others.

2. The Main Estimates

Let ρ(t) be a function on R whose Fourier transform is a nonnegative function
supported on [−2, 2] that is equal to one on [−1, 1]. Let ζ(x) = ρ(x1)ρ(x2).
Since the operator f → ζ ∗ Tf is bounded from Hs to Hs+c for any c, to prove
Theorem 1.1 it suffices to show ζ ∗ Tf − Tf = (ζ − δ) ∗ Tf is bounded from
Hs to Hs+ ε

2(ε+1) , where ε is as in Theorem 1.1. Let ρm(t) = 2mρ(2mt) and
ρ0

m(t) = 2mρ(2mt) − 2m+1ρ(2m+1t). Then we have

(2.1) ζ(x) − δ(x) =
∞∑

m=0

ρm(x1)ρ0
m(x2) +

∞∑
m=0

ρ0
m(x1)ρm+1(x2)

If we write ψm(x) = ρm(x1)ρ0
m(x2) and ψ̃m = ρ0

m(x1)ρm+1(x2), then we have

(2.2) ζ ∗ Tf − Tf =
∞∑

m=0

ψm ∗ Tf +
∞∑

m=0

ψ̃m ∗ Tf

The two sums in (2.2) are analyzed in the same way, so we will restrict ourselves
to proving boundedness of the first sum. Let φm(x) = (1−�)

ε
2(ε+1) ψm(x). Write

Umf = φm ∗ Tf

(2.3) U =
∑
m

Um

Our goal is therefore to show that U is bounded on L2. To do this, we use
Cotlar-Stein almost-orthogonality on the sum (2.3). First we show boundedness
of the individual Um’s.
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Lemma 2.1. Under the hypotheses of Theorem 1.1, we have ||Um||L2→L2 < C.

Proof. Let φc
m denote the operator given by convolving by φm; in other words

φc
mg = φm ∗ g. Thus UmU∗

m = φc
mTT ∗(φc

m)∗. We will apply Schur’s test to
UmU∗

m. In other words, denoting the kernel of UmU∗
m by K(x, y), we will show

that
∫
|K(x, y)| dy,

∫
|K(x, y)| dx < C. Since UmU∗

m is self adjoint, it suffices to
do the y integral. Let L(x, y) be the kernel of TT ∗. Then K(x, y) is given by

(2.4) K(x, y) =
∫

φm(x − a)L(a, b)φ̄m(b − y) da db

Observe that the Fourier transform of φm is given by (1+ |ξ|2) ε
2(1+ε) σ(2−mξ) for

a smooth function σ supported away from the line ξ2 = 0. As a result we may
find a smooth Φm such that

(2.5)
dΦm

dx2
= φm

Furthermore, we have

(2.6)
∫

|φm(x)| dx < C2
mε

2(ε+1) ,

∫
|Φm(x)| dx < C2m(−1+ ε

2(ε+1) )

We now examine the function L(x, y), the kernel of TT ∗. By (1.1) and (1.3), we
have

(2.7) TT ∗f(x) =
∫

f(γ∗(γ(x, t), u))φ∗(γ(x, t), u)φ(x, t) dt du

Changing variables (t, u)old = (t, t+u)new, letting η(x, t, u) denote φ∗(γ(x, t), t+
u)φ(x, t) we have

TT ∗f(x) =
∫

f(γ∗(γ(x, t), t + u))η(x, t, u) dt du

(2.8) =
∫

f(bx(t, u))η(x, t, u) dt du

The function η(x, t, u) is just a smooth cutoff function. We conclude that the
kernel L(x, y) of TT ∗ is given by

(2.9)
∫

δ(y − bx(t, u))η(x, t, u) dt du
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We now decompose L(x, y) = L1(x, y) + L2(x, y) in the following way. Letting
α(t) be a nonnegative bump function on R that is equal to 1 in a neighborhood
of the origin, we define

(2.10a) L1(x, y) =
∫

δ(y − bx(t, u))η(x, t, u)α(2
2m
ε+1 [Jx(t, u)]2) dt du

(2.10b) L2(x, y) =
∫

δ(y − bx(t, u))η(x, t, u)(1 − α)(2
2m
ε+1 [Jx(t, u)]2) dt du

We correspondingly write K(x, y) = K1(x, y) + K2(x, y), where

(2.11) Ki(x, y) =
∫

φm(x − a)Li(a, b)φ̄m(b − y) da db

By (2.6), we have

(2.12a)
∫

|K1(x, y)| dy < C2m ε
1+ε sup

a

∫
|L1(a, b)| db

For K2(x, y), we integrate (2.11) by parts in b2, and obtain

|K2(x, y)| < C

∫
|φm(x − a)∇bL2(a, b)Φ̄m(b − y)| da db

Therefore, using (2.6) again, we have

(2.12b)
∫

|K2(x, y)| dy < C2−m 1
1+ε sup

a

∫
|∇bL2(a, b)| db

Hence in order to prove Lemma 2.1 by using Schur’s test on K(x, y), we must
prove the following inequalities (we switch variable names from (a, b) to (x, y)):

(2.13a)
∫

|L1(x, y)| dy < C2−m ε
1+ε

(2.13b)
∫

|∇yL2(x, y)| dy < C2m 1
1+ε

(2.13a) follows immediately from (2.10a) and the definition (1.8) of ε. So we turn
our attention to (2.13b). In what follows we will be taking various derivatives of
delta functions; if one wishes to be completely rigorous, one can take a sequence
of smooth δN converging to a delta function, apply the following steps with δN
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in place of the delta function, and take limits. First, we observe that ∂yj L2(x, y)
is given by

(2.14)
∫

[
∂

∂yj
δ(y − bx(t, u))]η(x, t, u)(1 − α)(2

2m
ε+1 [Jx(t, u)]2) dt du

We replace the yj derivative by a derivative in t and u so that we may integrate
by parts. Namely, we seek functions g1j(t, u) and g2j(t, u) such that

(2.15)
∂

∂yj
δ(y−bx(t, u)) = g1j(t, u)

∂

∂t
δ(y−bx(t, u))+g2j(t, u)

∂

∂u
δ(y−bx(t, u))

Letting ej denote the standard jth coordinate vector, gj(t, u) denote the column
vector (g1j(t, u), g2j(t, u)), and Dbx(t, u) denote the derivative matrix of bx(t, u),
we have

(2.16) Dbx(t, u)gj(t, u) = ej

Thus each gij(t, u) is of the form hij(t,u)
Jx(u,v) for some smooth functions hij(t, u).

Hence (2.14) can be written as the sum of two terms, which we write as follows,
after an integration by parts:

(2.17a)
∫

δ(y − bx(t, u))
∂

∂t
{h1j(t, u)

Jx(t, u)
η(x, t, u)(1 − α)(2

2m
ε+1 [Jx(t, u)]2)} dt du

(2.17b)
∫

δ(y − bx(t, u))
∂

∂u
{h2j(t, u)

Jx(t, u)
η(x, t, u)(1 − α)(2

2m
ε+1 [Jx(t, u)]2)} dt du

The two terms are dealt with the same way, so we only consider (2.17a), which we
denote by I(x, y). We write h1j(t, u)η(x, t, u) as ζ(x, t, u), take absolute values
in (2.17a) and integrate, obtaining

(2.18)
∫

|I(x, y)| dy ≤
∫

| ∂

∂t
{ 1
Jx(t, u)

ζ(x, t, u)(1 − α)(2
2m
ε+1 [Jx(t, u)]2)}| dt du

As a result, in order to prove (2.13b), it suffices to verify that

(2.19)
∫

| ∂

∂t
{ 1
Jx(t, u)

ζ(x, t, u)(1 − α)(2
2m
ε+1 [Jx(t, u)]2)}| dt du < C2m 1

1+ε

By the curvature condition (1.7), there is a positive integer a, a positive number
δ, and a direction v1 such that the following holds for x in a neighborhood of
the origin:

(2.20a) |∂
aJx

∂va
1

(t, u)| > δ
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We can also let v2 be a direction close to v1, but not a multiple of v1, such that

(2.20b) |∂
aJx

∂va
2

(t, u)| > δ

Since ∂
∂t = c1

∂
∂v1

+ c2
∂

∂v2
for some constants c1 and c2, in order to prove (2.19)

it suffices to show that for each i we have

(2.21)
∫

| ∂

∂vi
{ 1
Jx(t, u)

ζ(x, t, u)(1 − α)(2
2m
ε+1 [Jx(t, u)]2)}| dt du < C2m 1

1+ε

If the derivative in (2.21) lands on the cutoff ζ(x, t, u), one obtains a term of
absolute value at most C2

m
ε+1 by virtue of the fact that 1

|Jx(t,u)| < C ′2
m

ε+1 on the
support of the integrand, so we focus on the terms obtained when the derivative
lands on the other two factors. If it lands on the 1

Jx(t,u) factor, we get a term of
absolute value at most

(2.22) C

∫
|Jx(t,u)|>c2

− m
ε+1

|∂vi
Jx(t, u)|

|Jx(t, u)|2 dt du

We integrate this first in the vi direction. By the condition (2.20), the domain
of integration consists of finitely many intervals, on each of which ∂viJ

x(t, u) is
monotone (in the vi direction). On each of these intervals, |∂vi

Jx(t,u)|
|Jx(t,u)|2 integrates

to the absolute value of the difference between the values of 1
Jx(t,u) at the two

endpoints of the interval, which can be no more than C2
m

ε+1 . Hence (2.22) is
bounded by C2

m
ε+1 , which is what is required for (2.21).

We turn our attention to the term where the derivative in (2.21) lands on the
(1 − α) factor. We get a term of absolute value at most

(2.23) 2
2m
ε+1

∫
|ζ(x, t, u)||∂viJ

x(t, u)||α′(2
2m
ε+1 [Jx(t, u)]2)| dt du

Since α′ is compactly supported, for some constants c and C this is bounded by

(2.24) C2
2m
ε+1

∫
Jx(t,u)<c2

− m
ε+1

|∂viJ
x(t, u)| dt du

We integrate (2.24), first in the vi direction. Because of the condition (2.20),
like before there are boundedly many intervals of integration in the vi integral
in (2.24), and over each such interval the integrand integrates to the absolute
value of the difference of the values of Jx(t, u) at the endpoints of the interval,
which is at most C2−

m
ε+1 . Hence the whole integral (2.24) is bounded by C2

m
ε+1 .

Since (2.24) was the final term we needed to consider, we have verified (2.19)
and thus (2.13b). This completes the proof of Lemma 2.1.

We now prove the almost-orthogonality estimates:
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Lemma 2.2.

(2.25) ||UmU∗
n||L2→L2 , ||U∗

mUn||L2→L2 < C2−|m−n|

Proof. For |m − n| ≥ 3, U∗
mUn is just the zero operator by the definition of φn

used here, so it suffices to prove the estimates for UmU∗
n. Replacing UmU∗

n by its
adjoint if necessary, we may assume that m ≥ n. Analgous to (2.4), the kernel
of UmU∗

n, which we denote by Mm,n(x, y), is given by

(2.26) Mm,n(x, y) =
∫

φm(x − a)L(a, b)φ̄n(b − y) da db

We integrate (2.21) by parts in a2, obtaining

(2.27) Mm,n(x, y) =
∫

Φm(x − a)
∂L

∂a2
(a, b)φ̄n(b − y) da db

Thus we need to look at a derivative of the function L(a, b), the kernel of TT ∗.
Differentiating (1.1), we see that ∂(Tf)

∂x2
can be written is T1

∂f
∂x1

+ T2
∂f
∂x2

, where
T1 and T2 are Radon transform operators of the form (1.1) except with different
cutoff functions from φ(x, t). One has a similar statement for T ∗, so we can
write ∂(TT∗f)

∂x2
as the sum of four operators as follows:

(2.28)
∂(TT ∗f)

∂x2
=

2∑
i=1

2∑
j=1

VijW
∗
ij

∂f

∂xj

Here Vij , Wij are of the form (1.1) except with a different cutoff functions. As
a result, the kernel Mm,n(x, y) can be written as the sum of four kernels of the
form

(2.29)
∫

Φm(x − a)Lij(a, b)
∂φ̄n

∂yj
(b − y) da db

Here Lij is the kernel of VijW
∗
ij . The operator with kernel (2.29) can thus be

written as XijY
∗
ij , where

(2.30) Xijf = Φm ∗ Vijf, Yijf =
∂φ̄n

∂xj
∗ Wijf

Lemma 2.1 gives L2 to L2 bounds for Xij and Yij . For the differences between
these operators and T are the differing cutoffs in the definition of Vij or Wij ,
which don’t matter, and the fact that φm is replaced by Φm for the Xij , and φn

is replaced by ∂φn

∂xj
for the Yij . In the case of the Xij , changing φm to Φm will

introduce a factor of 2−m, while changing φn to ∂φn

∂xj
will introduce a factor of

2n, but otherwise the arguments of Lemma 2.1 still hold. Hence we have

(2.31) ||Xij ||L2→L2 < C2−m, ||Yij ||L2→L2 < C2n

As a result,

(2.32) ||XijY
∗
ij ||L2→L2 < C2n−m

Since UmU∗
n is the sum of the four terms XijY

∗
ij , Lemma 2.2 follows.
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3. Sharpness of the Estimates

In this section we assume the Newton polygon condition of Theorem 1.1 is sat-
isfied, so that the leftmost vertex of the Newton polygon is of the form (p, q)
with p > q. Assume that T is bounded from Hs to Hs+δ. In order to show the
sharpness aspect of Theorem 1.1, we must show that δ ≤ 1

2(p+1) . As in section
1, we assume that we are in coordinates such that

(3.1) γ(x, t) = (x + t, γ2(x, t))

(3.2) γ((0, 0), t) = (t, 0)

We do a finite Taylor expansion of J0(t, u), obtaining

(3.3) J0(t, u) =
∑

m,n<M

fmntmun + O(|t|M + |u|M )

Denote the sum in (3.3) by SM (t, u). It is not hard to show (see [G] or [PS] for
example) that there exists a constant c0 and a d > 0 such that when |t| < |u|d
we have

(3.4) SM (t, u) = c0t
puq + o(tpuq)

As a result, on the set |t| < |u|d we have

(3.5) J0(t, u) = c0t
puq + o(tpuq) + O(|t|M + |u|M )

Note that the size of the o(tpuq) term will depend on M . Observe that since T is
bounded from L2 to L2

δ , so is T ∗. We fix a large integer N and let t0, u0 > 0 be
such that t0 = uN

0 . Let g(x) be the characteristic function of the set E defined
by

(3.6) E = {(x1, x2) : |x1| < u0, |x2 − γ∗
2 ((0, 0),−x1)| < 4c0t

p+1
0 uq

0}

Note that γ∗((0, 0),−x1) is of the form (x1, γ
∗
2 ((0, 0),−x1)), so that the set

E has vertical slices of diameter 8c0t
p+1
0 uq

0 centered at points γ∗
2 ((0, 0),−x1)

with |x1| < u0. We will examine the consequences of the assumption that
||T ∗g||L2

δ
< C||g||L2 , when we first let t0 go to zero with N fixed, and then let

N go to infinity. We will see that this implies that δ ≤ 1
2(p+1) , proving the

sharpness part of Theorem 1.1. We have the following lemma:
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Lemma 3.1. There are constants c1, c2 > 0 independent of N such that for u0

sufficiently small, depending on N , we have

(3.7) |T ∗g(t, u′)| > c1u0 if |t| < t0 and |u′| < c0t
p+1
0 uq

0

(3.8) T ∗g(t, u′) = 0 if |t| < t0 and |u′| > c2t
p+1
0 uq

0

Proof. We start with proving (3.7). Suppose (t, u′) is such that |t| < t0 and
|u′| < c0t

p+1
0 uq

0. In view of (1.3), in order to prove (3.7), it suffices to show that
for |u| < u0

2 , we have γ∗((t, u′), u) ∈ E. Since t << u, it suffices to show that
for |u| < u0

4 , we have γ∗((t, u′), t + u) ∈ E.
We start with the case where u′ = 0. In our coordinates (3.2) holds and we have

(3.9) γ∗((t, 0), t + u) = γ∗(γ((0, 0), t), t + u) = b0(t, u) = (b0
1(t, u), b0

2(t, u))

Note that b0
1(t, u) = −u and hence |b0

1(t, u)| < u0. As a result, we will verify
(3.7) if we can show that

(3.10) |b0
2(t, u) − γ∗

2 ((0, 0), u)| < 2c0t
p+1
0 uq

0

Note that γ∗
2 ((0, 0), u) = b0

2(0, u), so by the mean value theorem, for some |t′| < t

we have

(3.11) b0
2(t, u) − γ∗

2 ((0, 0), u) = t
∂b0

2

∂t
(t′, u) = tJ0(t′, u)

The last inequality follows from (1.10). Since |t′| ≤ |t| < t0 and |u| < u0
4 , by

(3.5) we have

(3.12) |tJ0(t′, u)| < 2c0t
p+1
0 uq

0

Here, in (3.5) we take M to be sufficiently large so that the error term is small;
note that M depends on the N for which t0 = uN

0 . Combining (3.11) and (3.12)
gives (3.10). Thus we have shown (3.7) in the case where u′ = 0.
We now assume that u′ is arbitrary with |u′| < c0t

p+1
0 uq

0. Observe that

|γ∗
1 ((t, u′), t + u)| = |u| < u0

again, so in order to verify (3.7) it suffices to show that

(3.13) |γ∗
2 ((t, u′), t + u) − γ∗

2 ((0, 0), u)| < 4c0t
p+1
0 uq

0
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Observe that because γ∗
2 ((t, u′), 0) = u′ for all (t, u′) we have

(3.14)
∂γ∗

2

∂u′ ((t, u
′), t + u) = 1 + O(|t + u|)

Using (3.14) and (3.10), and recalling that γ∗((t, 0), t + u) = b0
2(t, u), we have

|γ∗
2 ((t, u′), t + u) − γ∗

2 ((0, 0), u)|

≤ |γ∗
2 ((t, u′), t + u) − γ∗

2 ((t, 0), t + u)| + |γ∗
2 ((t, 0), t + u) − γ∗

2 ((0, 0), u)|
< 2|u′| + 2c0t

p+1
0 uq

0

< 4c0t
p+1
0 uq

0

Thus (3.13) holds and (3.7) follows.
We proceed to proving (3.8). In view of (1.3), in order to prove (3.8) it

suffices to show that there is a constant c2 such that g(γ∗((t, u′), u))) = 0 for
all u and all (t, u′) with |t| < t0 and |u′| > c2t

p+1
0 uq+1

0 . If |u| > 2u0, the first
component of γ∗((t, u′), u), given by t − u, is of absolute value greater than u0

and thus g(γ∗((t, u′), u))) = 0. Hence (3.8) will be proven if we can show that if
for |u| < 2u0 we have

(3.15) |γ∗
2 ((t, u′), u) − γ∗

2 ((0, 0), u − t)| > 4c0t
p+1
0 qq

0

By (3.14) and the fact that |u′| > c2t
p+1
0 uq

0, we have

|γ∗
2 ((t, u′), u) − γ∗

2 ((0, 0), u − t)|

(3.16) > |γ∗
2 ((t, u′), u) − γ∗

2 ((t, 0), u)| − |γ∗
2 ((t, 0), u) − γ∗

2 ((0, 0), u − t)|

>
c2

2
tp+1
0 uq

0 − |γ∗
2 ((t, 0), u) − γ∗

2 ((0, 0), u − t)|

Next, observe that γ∗
2 ((t, 0), u) = b0

2(t, u − t) and γ∗((0, 0), u − t) = b0
2(0, u − t),

so by the mean-value theorem, for some t′ with |t′| < |t| we have

(3.17) γ∗
2 ((t, 0), u) − γ∗

2 ((0, 0), u − t) = t
∂b0

2

∂t
(t′, u − t) = tJ0(t′, u − t)

By (3.5) and the fact that |t| < t0, |u − t| < 3u0, we have for a constant C that

(3.18) |J0(t′, u − t)| < Ctp0u
q
0

As before, we are assuming M is sufficiently large such that the error term in
(3.5) is small for t0 = uN

0 ; hence M depends on N . Combining (3.18), (3.17),
and (3.16), we conclude that

(3.19) |γ∗
2 ((t, u′), u) − γ∗

2 ((0, 0), u − t)| >
c2

2
tp+1
0 uq

0 − Ctp+1
0 uq

0
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Thus so long as c2 is chosen such that c2
2 −C > 4c0, (3.15) will hold and therefore

(3.8) will as well. This completes the proof of Lemma 3.1.
We now let U be the convolution operator whose multiplier is |ξ|δ. By the

assumption that T ∗ is bounded from L2 to L2
δ , we have that UT ∗ is bounded on

L2. In particular, if g is the characteristic function of E as above, then there is
a uniform constant C such that for any t0 and u0 we have

(3.20) ||UT ∗g||L2 < C||g||L2

Observe that if x is such that T ∗g(x) = 0, then for some number c3, UT ∗g(x) is
given by

(3.21) UT ∗g(x) = c3

∫
|x − y|−2−δT ∗g(y) dy

In particular, by Lemma 3.1 this holds for x in [− t0
2 , t0

2 ] × [c2t
p+1
0 uq

0, (c2 +
1)tp+1

0 uq
0]. Since φ(0, 0) �= 0, without loss of generality we can assume the

integrand in (3.21) is nonnegative or nonpositive. As a result, (3.21) implies
that

(3.22) |UT ∗g(x)| > C

∫
{y:|y1−x1|, |y2|<c0tp+1

0 uq
0}

|x − y|−2−δT ∗g(y) dy

By (3.7) of Lemma 3.1, for such x we thus have

(3.23) |UT ∗g(x)| > Cu0

∫
{y:|y1−x1|, |y2|<c0tp+1

0 uq
0}

|x − y|−2−δ

Since we are assuming that x is such that x2 ∈ [c2t
p+1
0 uq

0, (c2 +1)tp+1
0 uq

0], on the
domain of the integral (3.23) we have |x − y| ∼ |x2 − y2| ∼ tp+1

0 uq
0, so we have

|UT ∗g(x)| > Cu0 × t
2(p+1)
0 u2q

0 × t
−(p+1)(2+δ)
0 u

−q(2+δ)
0

(3.24) Ct
−(p+1)δ
0 u1−qδ

0

Integrating this over x in [− t0
2 , t0

2 ] × [c2t
p+1
0 uq

0, (c2 + 1)tp+1
0 uq

0], we have

(3.25) ||UT ∗g||L2 > Ct
−(p+1)δ
0 u1−qδ

0 × t
1
2
0 × t

p+1
2

0 u
q
2
0

On the other hand, g is the characteristic function of E, given by (3.6). As a
result, we have

(3.26) ||g||L2 < Cu
1
2
0 × t

p+1
2

0 u
q
2
0
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Since we are assuming UT ∗ is bounded on L2, we have

(3.27) t
−(p+1)δ
0 u1−qδ

0 × t
1
2
0 × t

p+1
2

0 u
q
2
0 < Cu

1
2
0 × t

p+1
2

0 u
q
2
0

Equivalently,

(3.28) t
1
2−(p+1)δ
0 u

1
2−qδ
0 < C

Recalling now that we are assuming u0 = t
1
N
0 for some fixed large N , (3.28)

implies that

(3.29) t
1
2−(p+1)δ+ 1

2N − q
N δ

0 < C

Letting t0 go to zero, we must have

(3.30)
1
2
− (p + 1)δ +

1
2N

− q

N
δ ≥ 0

Equivalently,

(3.31) δ ≤
1
2 + 1

2N

p + 1 + q
N

Taking the limit as N goes to infinity, we have

(3.32) δ ≤ 1
2(p + 1)

Since δ was an arbitrary number such that T is bounded from Hs to Hs+δ, and
(p, q) was defined to be the leftmost vertex of the Newton polygon of J0(t, u),
(3.32) proves the sharpness part of Theorem 1.1, and we are done.
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