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RICCI FLOW AND NONNEGATIVITY

OF SECTIONAL CURVATURE

Lei Ni

Abstract. In this paper, we extend the general maximum principle in [NT3]

to the time dependent Lichnerowicz heat equation on symmetric tensors coupled

with the Ricci flow on complete Riemannian manifolds. As an application we

exhibit complete Riemannian manifolds with bounded nonnegative sectional cur-

vature of dimension greater than three such that the Ricci flow does not preserve

the nonnegativity of the sectional curvature, even though the nonnegativity of the

sectional curvature was proved to be preserved by Hamilton in dimension three.

This fact is proved through a general splitting theorem on the complete family of

metrics with nonnegative sectional curvature, deformed by the Ricci flow.

Introduction

The Ricci flow has been proved to be an effective tool in the study of the
geometry and topology of manifolds. One of the good properties of the Ricci
flow is that it preserves the ‘nonnegativity’ of various curvatures. In dimension
three, Hamilton [H1] proves that on compact manifolds the Ricci flow preserves
the nonnegativity of the Ricci curvature and the sectional curvature. Using
this property and the quantified version, curvature pinching estimate, it was
proved in [H1] that the normalized Ricci flow converges to a Einstein metric if
the initial metric has positive Ricci curvature. In particular, it implies that a
simply-connected compact three-manifold is diffeomorphic to the three sphere
if it admits a metric with positive Ricci curvature. One can refer [Ch] for an
updated survey and [P2] for some recent developement on the Ricci flow on
three manifolds. Later in [H2] it was proved that the Ricci flow also preserves
the nonnegativity of the curvature operator in all dimensions (on compact man-
ifolds). In the Kähler case, Bando and Mok [B, M] proved that the flow also
preserves the nonnegativity of the holomorphic bisectional curvature. The Ricci
flow on complete manifolds was initiated in [Sh2]. In [Sh3] Shi generalized the
above mentioned result of Bando and Mok to the complete Kähler manifolds
with bounded curvature. Interesting applications were also obtained therein.

In this paper, we shall study the topological consequences of the assumption
that Ricci flow preserves the nonnegativity of the sectional curvature on complete
Riemannian manifolds. The basic method is to study the heat equation, time
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dependent, deformation of the Busemann function via the new tensor maximum
principle proved in [NT3]. The maximum principle of this type was first proved
by Hamilton for compact manifolds [H2]. The proof of [H2] can be generalized
to the complete noncompact manifolds with bounded curvature with additional
assumption that the tensor satisfying certain heat equation is uniformly bounded
on the space-time. See for example [H3, Theorem 5.3], [NT2, Proposition 1.1]
and [Ca]. However in the study of the deformation of a continuous function,
the Busemann function (with respect to all rays from a fixed point) in our case,
one in general can not expect uniform pointwise control of its Hessian since the
Busemann function is not even differentiable in general. Therefore one needs
a more general maximum principle than those developed by Hamilton in [H3].
This is the main technical difficulty. This difficulty was resolved in [NT3] and
an (optimal in a certain sense) maximum principle was established there for
the time-independent heat equation. The tensor maximum principle proved in
Theorem 2.1 of this paper is a time-dependent analogue of the corresponding
result, Theorem 2.1 in [NT3].

By studying the deformation of the Busemann function, we shall prove that
on a simply-connected complete Riemannian manifolds with bounded nonneg-
ative sectional curvature, if the Ricci flow preserves the nonnegativity of the
sectional curvature, then the manifold splits as the product of a compact man-
ifold with nonnegative sectional curvature with a complete manifold which is
diffeomorphic to the Euclidean space. As a consequence of such splitting result,
we give examples of complete Riemannian manifolds with bounded nonnegative
sectional curvature of dimension ≥ 4 such that the Ricci flow does not preserve
the nonnegativity of the sectional curvature. As far as we know, this is the first
example of this kind even though this is believed to be the case by the experts.
Noticing that in dimension three the Ricci flow does preserve the nonnegativity
of the sectional curvature by [H1] on compact manifolds and complete manifolds
with bounded curvature. Another application of our approach is a classification
of complete manifolds with bounded nonnegative curvature operator, a result
which has been previously established in [N] using different methods without
assuming the boundedness of the curvature (see also [ CC, CY, GaM, H2], but
more importantly [MM, SiY] for the compact case). The use of the heat equation
deformation of Busemann functions to study the structure of complete manifolds
was initiated in [NT3]. Therefore this paper can be viewed as a continuation
of the pervious work. The difference between current paper and [NT3] is that
we have to consider the heat equation with respect to metrics evolved by the
Ricci flow in order to show that the Hessian of the solution to the heat equation
satisfies the Lichnerowicz heat equation. Therefore we have to derive the heat
kernel estimate of Li-Yau type (cf. [LY]) for the time dependent heat equation.
The estimate of this type was considered before in [Gr1, Sa] for a fixed com-
plete Riemannian metric satisfying the volume doubling properties for the balls
and the Neumann-Poincaré inequality. However, the heat equation considered
here does not belong to the classes considered in the previous cases (see Remark
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1.1 for more details). Therefore we devote the first section in establishing the
heat kernel estimate as well as the Harnack inequality for the time dependent
heat equation, following the approach of Grigoy’an in [Gr1]. The result itself
maybe has its own interests. There exists also related (weaker) lower bound
estimates on the fundamental solution of time-dependent heat equation in [Gu]
by Guenther.

1. Time-dependent heat equation

Let (M, g0
ij(x)) be a complete Riemannian manifold (of dimension n) with

bounded curvature tensor. We denote k0 to be the upper bound of |Rijkl|2, the
curvature tensor of g0. By [Sh2, Theorem 1.1, p. 224] we know that there exists
a constant T (n, k0) > 0 such that the Ricci flow

(1.1)
∂

∂t
gij(x, t) = −2Rij(x, t)

has solution on M × [0, T ]. Moreover, there exists A′
m = A′

m(n, m, k0) such that
for all (x, t) ∈ M × [0, T ],

(1.2) ‖∇mRijkl‖2(x, t) ≤ A′
m

tm
.

In particular,

(1.3) ‖Rijkl‖(x, t) ≤
√

A0.

The argument of [H2, H3] (see also [NT2, Proposition 1.1]) can be adapted
to show that gij(x, t) has nonnegative curvature operator if the initial metric
gij(x, 0) has the nonnegative curvature operator. We are going to study the
initial value problem of the heat equation

(1.4)
(

∂

∂t
− ∆

)
v(x, t) = 0

with initial value v(x, 0) = u(x). Here ∆v = gij(x, t)vij , where vij denotes the
Hessian of v. Namely ∆ is time-dependent. The following lemma is well-known
to experts. For example, it was known and used in [CH] by Chow and Hamil-
ton in their study of the linear trace differential Harnack or Li-Yau-Hamilton
inequality for the Ricci flow.

Lemma 1.1. Let v(x, t) be a solution to (1.4). Then the complex Hessian
vij(x, t) satisfies

(1.5)
(

∂

∂t
− ∆

)
vij = 2Ripjqvpq − Ripvpj − Rpjvip.
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Here we have used Einstein convention and a normal frame.

Proof. Direct calculation, using formulae on page 274 of [H1], one has that

(1.6) (vij)t = (vt)ij + (∇iRjk + ∇jRik −∇kRij) vk.

On the other hand, the commutator calculation shows that
(1.7)
vijkk = vkkij + (−∇sRij + ∇iRjs + ∇jRis) vs + Risvsj + Rjsvis − 2Risjkvsk.

Now using (1.4) we have (vt)ij = vkkij . Then lemma follows from (1.6) and
(1.7).

Following [CH], the equation (1.5) is called Lichnerowicz heat equation for
symmetric tensors.

Corollary 1.2. Denote briefly by η the symmetric tensor vij. Denote by ‖η‖2

the norm of vij with respect to gij(x, t). Then exp(−2
√

A0t)‖η‖(x, t) is a subso-
lution of (1.4).

Proof. Direct calculation shows that(
∆ − ∂

∂t

)
‖η‖2 ≥ −4Ripjqηpqηij + 4Ripηpkηik + 2‖∇η‖2 − 4Ripηpkηik

≥ 2‖∇η‖2 − 4
√

A0‖η‖2.

Here we have used Lemma 1.1, namely the fact that η satisfies (1.5). The claim
of the corollary follows easily from the above calculation.

In the following we collect some fundamental results on solution (subsolutions)
of (1.4). Our basic assumption is (1.3). For the purpose of the later section we
also assume T ≤ 1 and gij(x, 0) has nonnegative Ricci curvature. By (1.1) and
(1.3) we know that, if gij(x, t) has nonnegative Ricci curvature,

(1.8) C(n, A0)gij(x, 0) ≤ gij(x, t) ≤ gij(x, 0).

Since gij(x, 0) has nonnegative Ricci curvature, by (1.8), for any 0 ≤ t ≤ T , we
still have the following Neumann type Poincaré inequality for gij(x, t).

Lemma 1.2. Let (M, gij(x, t)) be a solution to the Ricci flow such that the
initial metric gij(x, 0) has nonnegative Ricci curvature. For any domain Ω ⊂
B0(o, R) and any Lipschitz function ϕ on Ω, which vanishes on ∂Ω

(1.9)
∫

Ω

|∇ϕ|2(y) dy ≥ b

R2

(
V0(o, R)
|Ω|0

)β ∫
Ω

ϕ2(y) dy
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for some positive constants β, b which only depends on n and A0. Here |∇ϕ|2 is
calculated using gij(x, t), while |Ω|0, the volume of Ω, and V0(o, R), the volume
of B0(o, R), are calculated using gij(x, 0).

Proof. The lemma follows easily from Theorem 1.4 of [Gr1]. The point is that
only the weak form Neumann-Poincaré inequality and the volume doubling prop-
erty are needed in the proof of Theorem 1.4 of [Gr1]. Since gij(x, 0) has nonneg-
ative Ricci curvature these two properties hold for (M, gij(x, 0)). On the other
hand, the metric gij(x, t) is equivalent to gij(x, 0). Therefore these two sufficient
properties preserve.

Remark 1.1. Here we assume that gij(x, 0) has nonnegative Ricci curvature to
make our presentation easier. In fact, one can replace it by assuming (M, gij(x, 0))
satisfies (1.9) and a volume doubling property for balls as in [Gr1]. This applies
to some other results in this section.

The next result is a mean value inequality. The proof is just a modification
of the one in [Gr1] for the time-independent heat equation. Note that it is
known from [H1], applying the maximum principle for functions, that the scalar
curvature R(x, t) of gij(x, t) is nonnegative, under the assumption that gij(x, 0)
has nonnegative Ricci/scalar curvature.

Theorem 1.1. Let (M, g(t)) be as in Lemma 1.2. Let w(x, t) be a smooth
function satisfying

(1.10)
(

∆ − ∂

∂t

)
w(x, t) ≥ 0

on
∐√

t with t ≤ T , where
∐

R = B0(x, R)× (0, R2) and Bτ (x,
√

t) is the ball of
radius

√
t with respect to gij(x, τ). Then

(1.11) w2
+(x, t) ≤ C(n, A0, T )

V0(x,
√

t)t

∫ t

0

∫
B0(x,

√
t)

w2
+(y, τ) dydτ

Here w+ = max{0, w}, V0(x, r) denotes the volume of B0(x, r) with respect to
gij(x, 0).

Proof. We essentially repeat the argument of the proof of Theorem 3.1 in [Gr1].
The key to the argument is the fact that gij(x, t) satisfying the Neumann-
Poincaré inequality (1.9) and the volume double property for balls. We have
these two properties if we assume that the initial metric has nonnegative Ricci
curvature. To make the iteration argument work using Lemma 1.2 we need
also to prove that the Lemma 3.1 of [Gr1] still holds for our case. In fact, for
any R ≤

√
t, let φ(x, t) be a cut-off function supported in B0(x, R) such that

φ(x, 0) = 0. For θ > 0, let wθ = (w − θ)+. Multiplying wθφ
2 on both sides of
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(1.10) we have that

∫
{w≥θ}

wtwθφ
2 dy ≤

∫
{w≥θ}

(∆w)wθφ
2 dy

= −2
∫
{w≥θ}

〈∇wθ,∇φ〉wθφ dy −
∫
{w≥θ}

|∇wθ|2φ2 dy

= −
∫
{w≥θ}

|∇(wθφ)|2 dy +
∫

M

|∇φ|2w2
θ dy.

(1.12)

Integrating the time variable and noticing that φ ∈ C∞
0 (B0(x, R)) we have that∫ t

0

∫
B0(x,R)

wθ(wθ)τφ2 dydτ ≤ −
∫ t

0

∫
B0(x,R)

|∇(wθφ)|2 dydτ +
∫ t

0

∫
B0(x,R)

|∇φ|2w2
θ dydτ.

The left hand side above equals to

1
2

∫ t

0

∫
B0(x,R)

(w2
θ)τφ2 dydτ =

(
1
2

∫
B0(x,R)

w2
θφ dy

)
(t) −

(
1
2

∫
B0(x,R)

w2
θφ dy

)
(0)

+
∫ t

0

∫
B0(x,R)

w2
θ

(
−φτφ +

1
2
R(y, τ)φ2

)
dydτ.

Combining the above two inequalities and using the fact R ≥ 0 we have that
(1.13)∫

B0(x,R)

w2
θφ2 dy

∣∣∣∣∣
t

+2
∫ t

0

∫
B0(x,R)

|∇(wθφ)|2dydτ ≤ 2
∫ t

0

∫
B0(x,R)

w2
θ

(
|∇φ|2 + |φφτ |

)
dydτ.

Similarly, one can prove Lemma 3.2 of [Gr1], noticing that Lemma 1.2 holds for
metric gij(x, t). Then the iteration scheme in [Gr1] can be applied to complete
the proof of the theorem.

Next is the Harnack inequality for positive solutions. Let v be a positive
solution to (1.4) on

∐
8R where

∐
R = B0(x, R) × (0, R2).

Theorem 1.2. Let (M, gij(x, t)) be as in Lemma 1.2. Then there exists a con-
stant γ = γ(n, A0) > 0 such that

(1.14) v(x, 64R2) ≥ γ sup
B0(x,R)×(3R3,4R2)

v.

Proof. The proof follows similarly as the proof of Theorem 4.1 in [Gr1]. Since
Lemma 4.2–4.4 in [Gr1] are robust enough to be adapted to the current situation
we only need to establish the following result corresponding to Lemma 4.1 of
[Gr1].
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Lemma 1.3. Let v(x, t) be a positive solution to (1.4) in
∐

2R and set

H = {(x, t) ∈
∐

R
: v(x, t) > 1},

∐̃
R

= B0(x, R) × (3R2, 4R2).

Then for any δ > 0 there exists ε = ε(δ, A0, n) such that if

(1.15) |H| ≥ δ|
∐

R
|,

then
inf∐̃

R

v ≥ ε.

Here |H| and |
∐̃

R| are measured with respect to the metric gij(x, 0).

Proof. We have the similar situation as in the proof of Theorem 1.1. The ar-
gument follows closely as in [Gr1]. Let h = log(1/v). It is easy to see that(

∂
∂t − ∆

)
h = −|∇h|2. For a cut-off function φ(x), we have that

∂

∂t

(∫
B0(x,R)

h+φ2 dy

)
=

∫
B0(x,R)

(h+)tφ
2 dy −

∫
B0(x,R)

h+φ2R dy

≤
∫

B0(x,R)

(h+)tφ
2 dy

≤
∫

B0(x,R)

(∆h+)φ2 dy − |∇h+|2φ2 dy

≤ −1
2

∫
B0(x,R)

|∇h+|2φ2 dy + 2
∫

B0(x,R)

|∇φ|2 dy.

This is the (4.3) of [Gr1]. The rest of the proof follows verbatim as in the proof
of [Gr1, Lemma 4.1].

One has the following immediate corollary of the above theorem.

Corollary 1.2. Let v(x, t) be a weak positive solution to (1.4) on M × [0, T ].
Then for any T ≥ t > s > 0

(1.16)
v(y, s)
v(x, t)

≤ exp
(

C

(
r2(x, y)
t − s

+
t

s
+ 1

))
.

Here C = C(γ) > 0.

Proof. This was proved, for example in [Mo, page 110-112].
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Theorem 1.3. Let (M, gij(x, t)) be a complete solution to the Ricci flow with
bounded curvature. Assume that gij(x, t) has nonnegative Ricci curvature. Let
H(x, y, t) be the minimal positive heat kernel of the heat equation (1.4). Then
there exist positive constants C1, C2 and D1, D1 such that
(1.17)

C1
1

V0(x,
√

t)
exp

(
−D2

r2(x, y)
t

)
≤ H(x, y, t) ≤ C2

1
V0(x,

√
t)

exp
(
−D1

r2(x, y)
t

)
.

Here V0(x, a) and r(x, y) denote the volume of B0(x, a) and distance between
x and y, with respect to gij(x, 0), respectively. D1 < 1

4 is a absolute constant.
D2 = D2(γ), Ci = Ci(n, D1, D2, A0).

Proof. It is easy to see that for any t > 0,∫
M

H(x, y, t) dy ≤ 1.

Here dy is the volume element with respect to the metric at time t. Fix a
point z ∈ M and let u(x, t) = H(x, z, t). Then, using the equivalence between
the metric gij(x, t) and gij(x, 0), we can deduce from the above inequality that
there exist a constant C(A0) > 0 and a point y ∈ B0(z, 2

√
t) such that

u(y, 2t) ≤ C(A0)
V0(z, 2

√
t)

.

Applying the Harnack and the volume doubling property we have that

(1.18) u(z, t) ≤ C(n, A0)
V0(z,

√
t)

.

Therefore we have the upper bound for H(x, x, t). The upper bound in (1.17)
follows from a general result of Grigor’yan [Gr2, Theorem 1.1]. (The result in
[Gr2] is for heat operator with respect to a fixed metric. However, the key of the
proof is the existence of backward heat kernel apart from the Harnack inequality,
as shown in [LY, L], which can be constructed in our case as shown in [NT1,
Theorem 1.2] using the metric shrinking property.) The lower bound can be
obtained using the argument in [Gr1, page 73]. Let φ be a cut-off function such
that φ = 1 on B0(y, 1

2

√
t) and φ = 0 outside B0(y,

√
t). Now define

w(x, s) =
∫

M

H(x, y, s)φ(y) dy0

for s ≥ 0 and w(x, s) ≡ 1 for s ≤ 0. Then w(x, s) is a solution to the heat
equation on B0(y,

√
t

2 )×(−∞, T ). Here we have extend the metric to be gij(x, 0)
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for s ≤ 0. Applying the Harnack inequality (1.16) we have that

1 = u(y, 0) ≤ C(n)u(y,

√
t

2
)

= C(n)
∫

M

H(y, z,
t

2
)φ(z) dz0

≤ C(n)
∫

B0(y,
√

t)

H(y, z,
t

2
) dz0

≤ C(n)
∫

B0(y,
√

t)

H(y, y, t) dz0

≤ C(n)H(y, y, t)V0(y,
√

t).

This gives the lower bound for H(x, x, t). The general form in (1.17) is just
another application of the Harnack inequality, or Corollary 1.2.

Remark 1.2. In [Sa], the above Theorem 1.2 and Theorem 1.3 were proved for
the parabolic operator of type ∂

∂t − L, with

Lf = m−1div (mA(∇f)) ,

where m is a measure independent of t, A is a measurable section of End (TM )
which is uniformly equivalent to the identity. The time dependent Laplacian
operator can only expressed in the above form with time dependent measure√

det(gij(x, t))dx1 ∧ · · · ∧ dxn. Therefore one can not just apply the results
of [Sa] directly. One can also prove the above theorems following the iteration
procedure of Moser as in [Sa]. The iteration procedure in [Gr1] was told by
experts to be closer to the one of De Giorgi.

2. A maximum principle for tensors and its applications

In this section we shall prove a maximum principle for the symmetric tensors
satisfying (1.5) under the assumption that (M, gij(x, t)) has bounded nonnega-
tive sectional curvature. Since the argument is very close to that in [NT3] we
will be sketchy here.

Let ηij be a symmetric tensor satisfying (1.5). The basic assumption on η is
that there exists a constant a > 0 such that

(2.1)
∫

M

‖η‖(x, 0) exp
(
−ar2(x)

)
dx < ∞

and

(2.2) lim inf
r→∞

∫ T

0

∫
B0(o,r)

‖η‖2(x, t) exp
(
−ar2(x)

)
dx dt < ∞.
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Here ‖η‖(x, t) is the norm of ηij(x, t) with respect to metrics gij(x, t). But
B0(0, r) is the ball with respect to the initial metric gij(x, 0) and r(x) is the
distance from x to a fixed point o ∈ M with respect to the initial metric. Due
to the fact that the maximum principle for the heat equation does not hold
on complete manifolds in general, one needs some growth conditions on the
solutions to make it true. The condition (2.2) is optimal by comparing to the
example given in [J, page 211-213]. The above mentioned classical example
is a solution to the heat equation on R × [0,∞), which has zero initial data.
The violation of the uniqueness implies the failure of the maximum principle
for the sub-solutions. The example has growth, as |x| → ∞, just faster than
exp(ar2(x)). The condition (2.1) is needed to ensure that the equation (1.5)
does have a solution indeed. It is also in the sharp form.

Before we state our result, let us first fix some notations. Let ϕ : [0,∞) →
[0, 1] be a smooth function so that ϕ ≡ 1 on [0, 1] and ϕ ≡ 0 on [2,∞). For any
x0 ∈ M and R > 0, let ϕx0,R be the function defined by

ϕx0,R(x) = ϕ

(
r(x, x0)

R

)
.

Again, r(x, y) denotes the distance function of the initial metric. Let fx0,R be
the solution of (

∂

∂t
− ∆

)
f = −f

with initial value ϕx0,R, given by

fx0,R(x, t) =
∫

M

H(x, y, t)ϕx0,R(y)dy0.

It is easy to see that f is defined for all t and positive, and it is bounded for
t > 0.

We shall establish the following maximum principle.

Theorem 2.1. Let (M, gij(x, t)) be a complete noncompact Riemannian mani-
folds satisfying (1.1)–(1.3), with nonnegative sectional curvature. Let η(x, t) be a
symmetric tensor satisfying (1.5) on M × [0, T ] with 0 < T < 1

40a such that ||η||
satisfies (2.1) and (2.2). Suppose at t = 0, ηij ≥ −bgij(x, 0) for some constant
b ≥ 0. Then there exists 0 < T0 < T depending only on T and a so that the
following are true.

(i) ηij(x, t) ≥ −be(4n
√

A0+1)tgij(x, t) for all (x, t) ∈ M × [0, T0].
(ii) For any T0 > t′ ≥ 0, suppose that there is a point x′ in Mm and there ex-

ist constants ν > 0 and R > 0 such that the sum of the first k eigenvalues
λ1, . . . , λk of ηij satisfies

λ1 + · · · + λk ≥ −kb + νkϕx′,R
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for all x at time t′. Then for all t > t′ and for all x ∈ M , the sum of
the first k eigenvalues of ηij(x, t), with respect to gij(x, t), satisfies

λ1 + · · · + λk ≥ −kbe(4n
√

A0+1)t + νkfx′,R(x, t − t′).

Proof. We only prove (ii). The proof of (i) is by the exactly same, if not easier,
argument. First we let

(2.3) h(x, t) =
∫

M

H(x, y, t)‖η‖(y, 0) dy0.

It is easy to see that h(x, t) is a solution to (1.4). Using Corollary 1.2, the
assumption (2.2) and the maximum principle of [NT1] we have that

(2.4) exp (−2
√

A0t)‖η‖(x, t) ≤ h(x, t).

Denote by A0(o, r1, r2) the annulus B0(o, r2) \ B0(o, r1). Here o ∈ M is a fixed
point B0(o, r) is the ball as before. For any R > 0, let σR be a cut-off function
which is 1 on A0(o, R

4 , 4R) and 0 outside A0(o, R
8 , 8R). We define

hR(x, t) =
∫

M

H(x, y, t)σR(y)||η||(y, 0)dy0.

Then hR satisfies the heat equation with initial data σR||η||. By Lemma 2.2
of [NT3], noticing that the only thing used in Lemma 2.2 is the heat kernel
upper bound estimate, we have that there exists a function τ(r) > 0 with
limr→∞ τ(r) = 0 and T0 > 0 such that for all (x, t) ∈ Ao(R

2 , 2R) × [0, T0]

h(x, t) ≤ hR(x, t) + τ(R)

and for any r > 0
lim

R→∞
sup

B0(o,r)×[0,T0]

hR = 0.

Now let
h̃R(x, t) = exp

(
(4n

√
A0 + 1)t

)
(hR(x, t) + τ(R)) .

By (2.4) we have that
‖η‖(x, t) ≤ h̃R(x, t)

for (x, t) ∈ A0(R
2 , 2R) × [0, T0]. We can also construct a positive function

φ(x, t) > 0 (using the representation through heat kernel) satisfying the heat
equation (

∂

∂t
− ∆

)
φ = (4n

√
A0 + 1)φ.
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The big coefficient (4n
√

A0 + 1) is to dominate the negative input from the
time differentiation of metrics. We can make φ(x, t) ≥ exp(c(r2(x) + 1)) as
in [NT2, Lemma 1.1]. Now we prove theorem for the case ν = 1. Let ψ =
−f + εφ + h̃R + exp((4n

√
A0 + 1)t)b and

(ηR)ij(x, t) = ηij(x, t) + ψgij(x, t)

where f = fx0,R(x, t) defined right before the statement of the theorem. It
is easy to see that the first k eigenvalues of (ηR)ij(x, 0) is positive due to the
assumption and positivity of φ. The functions φ and h̃R are constructed so that
ηR ≥ 0 on ∂B0(o, R) × [0, T0]. Now if the sum of the first k eigenvalues is not
nonnegative on B0(o, R) × [0, T0] we can apply the maximum to the first such
instance, namely to (x0, t0) ∈ B0(o, R) × [0, T0], where the sum of the first k-
eigenvalues of ηR reach zero for the first time inside B0(o, R). By choosing the
normal coordinate near x0, such that ηR is diagonal at x0 and the j-th coordinate
direction is the j-th eigen-direction, we have that

0 ≥
(

∂

∂t
− ∆

)  k∑
i,j=1

(ηR)ijg
ij


=

k∑
i,j=1

((
∂

∂t
− ∆

)
(ηR)ij

)
gij + 2

k∑
i,j=1

(ηR)ijR
ij

≥
k∑

i,j=1

[
2Ripjqηpq − Ripηpj − Rpjηip +

((
∂

∂t
− ∆

)
ψ

)
gij − 2ψRij

]
gij .

Observe that under the assumption Rijij ≥ 0, and under the above choice of
the orthogonal frame such that the tensor ηij is also diagonal at the fixed point
(x0, t0) with its eigenvalues λi of η ordered as λ1 ≤ λ2 ≤ · · · ≤ λn. Then we
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have that

k∑
i,j=1

[
2Ripjqηpq − Ripηpj − Rpjηip

]
gij

= 2

(
k∑

i=1

n∑
p=1

Ripipλp −
k∑

i=1

Riiλi

)

= 2

(
k∑

i=1

n∑
p=1

Ripipλp −
k∑

i=1

n∑
p=1

Ripipλi

)

= 2

 k∑
i=1

m∑
p=k+1

λpRipip −
k∑

i=1

m∑
p=k+1

Ripipλi


= 2

 k∑
i=1

m∑
p=k+1

Ripip(λp − λi)


≥ 0.

Then we have that

0 ≥ k

[(
∂

∂t
− ∆

)
ψ

]
− 2ψ

k∑
ij

Rijg
ij

≥ k
[
εφ + h̃R + exp((4n

√
A0 + 1)t)b

]
> 0.

The contradiction shows that the sum of the first k-eigenvalue for ηR is non-
negative on B0(o, R) × [0, T0]. The theorem follows by letting R → ∞ and
ε → 0.

The similar maximum principle for the scalar heat equations is relatively easy
to prove. They also require an assumption as (2.2). The time dependent case was
first proved in [NT1] following the original argument for the time-independent
case in [L]. As an application we have the following approximation result on
continuous convex functions.

Theorem 2.2. Let (M, gij(x, t)) be as above. Let u(x) be a Lipschitz continuous
convex function satisfying

(2.5) |u|(x) ≤ C exp
(
ar2(x)

)
for some positive constants C and a. Let v(x, t) be the solution to the time-
dependent heat equation (1.4). There exists T0 > 0 depending only on a and
there exists T0 > T1 > 0 such that the following are true.

(i) For 0 < t ≤ T0, v(·, t) is a smooth convex function (with respect to
gij(x, t)).



896 LEI NI

(ii) Let

K(x, t) = {w ∈ T 1,0
x (M)| vij(x, t)wi = 0, for all j}

be the null space of vij(x, t). Then for any 0 < t < T1, K(x, t) is a
distribution on M . Moreover the distribution is invariant in time as well
as under the parallel translation.

In order to prove the above theorem we need the following approximation
result due to Greene-Wu [GW3, Proposition 2.3].

Lemma 2.1. Let u be a convex function on M . Assume that u is Lipschitz with
Lipschitz constant 1. For any b > 0, there is a C∞ convex function w such that

(i) |w(x) − w(y)| ≤ r(x, y);
(ii) |w − u| ≤ b on M ; and
(iii) wij ≥ −bgij on M .

Proof of Theorem 2.2. In order to apply Theorem 2.1 to current theorem one
needs to verify that ηij = vij(x, t) satisfies the assumption (2.1) and (2.2).
Lemma 2.1 provides a smoothing approximation of u, therefore we only need
to verify the assumption for smooth u which satisfies uij ≥ −bgij for some
b > 0. The Lemma 3.1 of [NT3] can be applied to current situation to serve
this purpose. One just needs to observe that (i) of Lemma 3.1 in [NT3] follows
from the representation formula via the heat kernel, (ii) of Lemma 3.1 in [NT3]
only uses nonnegative Ricci and the argument in the proof of (iii) of Lemma 3.1
in [NT3] can be transplanted without any changes to the time-dependent heat
operator. After that, one can conclude that vij(x, t) ≥ 0. By Theorem 2.1 one
can easily infer that the null space of vij(x, y) must be of constant rank for some
small interval [0, T1]. (See also the forth-coming book [Cetc] for the detailed
proof of this point.) The fact that it is invariant under the parallel translation
follows exactly same as in [NT3]. The time-invariance of the null space was
sketched in [H2]. See also [Ca]. For a clear and rigorous proof please wait and
see [Cetc].

The following is the main result on the structure of solutions to the Ricci flow
preserving the nonnegativity of the sectional curvature.

Theorem 2.3. Let (M, gij(x, t)) be solution to the (1.1) satisfying (1.3) with
nonnegative sectional curvature. Denote (M̃, g̃ij(x, t)) the universal cover of
(M, gij(x, t)). Then M̃ splits isometrically as M̃ = Ñ × M̃1, where Ñ is a
compact manifold with nonnegative sectional curvature. M̃1 is diffeomorphic to
R

k. For the metric on M̃1, obtained by restricting g̃ij(x, t) onto M̃1 with t > 0,
there is a smooth strictly convex exhaustion function on M̃1. Moreover, the soul
of M̃1 is a point and the soul of M̃ is Ñ × {o}, if o is a soul of M̃1.

Proof. By lifting everything to its universal cover we can assume that M is
simply-connected. Let B be the Busemann function on M , with respect to the
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initial metric gij(x, 0) and a fixed point in M . As it was proved in [CG, GW2]
that B is a convex Lipschitz function with Lipschitz constant 1. Also it is an
exhaustion function on M . In fact B(x) ≥ cr(x) when r(x) is sufficient large,
for some C > 0, where r(x) is the distance function to a fixed point o ∈ M . Let
v(x, t) be the solution of (1.4) with v(x, 0) = B(x). Under the assumption that
Rijij ≥ 0 is preserved under the Ricci flow (1.1), we know that v(x, t) is convex
by Theorem 2.2. Applying Theorem 2.2 again we know that the null space of
vij(x, t) is a parallel distribution on M . By the simply-connectedness of M and
the De Rham’s decomposition theorem we know that M splits as M = N ′×M ′

1,
where on M1, (vij(x, t)) > 0 as a tensor, and vij ≡ 0 on N ′. Since v(x, t) is
strictly convex and exhaustive on M ′

1, by Theorem 3 (a) of [GW2] we know that
M ′

1 is diffeomorphic to R
k′

, where k′ = dim(M ′
1). We claim that N ′ is compact.

Otherwise, v is not constant since v is exhaustive on N ′ (v is an exhaustion
function on M by Corollary 1.4 of [NT3]). Using the fact that vij ≡ 0 on N ′,
the gradient of v is a parallel vector field, which gives the splitting of N ′ as
N ′ = N ′′ × R, such that v is constant on N ′′. By the exhaustion of v again we
conclude that N ′′ is compact. Also v is a linear function on the flat factor R.
But we already know that v is exhaustive, which implies that v → +∞ on both
ends of R. This is a contradiction. This proves that N ′ is compact. Let Ñ = N ′

and M̃1 = M ′
1 we have the splitting for (M, gij(x, t1)) for some t1 > 0. It is

also clear that there exists strictly convex exhaustion function on M̃1. As for
the splitting at t = 0 we can obtain by the limiting argument. First we have the
isometric splitting M = Ñ × M̃1 as above for some fixed t1 > 0. On the other
hand, by Theorem 2.2 (see also [H2, Lemma 8.2]) we know that the distribution
given by the null space of vij is also invariant in time. Therefore, the splitting
M = Ñ × M̃1 also holds for 0 < t ≤ t1. Now just taking limit as t → 0 we have
the metric splitting of (M, gij(x, 0)) as Ñ × M̃1. (At t = 0 the distribution may
not be the null spaces of the Hessian of B. In fact the Hessian of B may not
even be defined. However, a parallel translation invariant distribution does split
the manifold by De Rham decomposition.)

As a consequence of the fact that there exist strictly convex exhaustion func-
tion on (M̃1, gij(t1)|M̃1

), we know that the soul of M̃1 (with respect to gij(t1))
is a point. The reason is as follows. First the restriction of v(x, t) to its soul
will be constant since the soul is a compact totally geodesic submanifold. On
the other hand v(x, t) is strictly convex if the soul, which is a totally geodesic
submanifold, has positive dimension. The contradiction implies that the soul of
M̃1 is a point for t > 0. For the case t = 0 the result follows by the topological
consideration. Assume that the soul of (M̃1, gij(0))|M̃1

is not a point. Denote
the soul by S(M̃1). Then since S(M̃1) is the homotopy retraction of M̃1 we
know that Hs(M̃1) =, where s = dim(S(M̃1)) ≥ 1. On the other hand since we
already know that M̃1 is diffeomorphic to R

k. Thus Hs(M̃1) = {0}, which is a
contradiction. Therefore we know that the soul of M̃1 with respect to the initial
metric is also a point. The claim that the soul of M is just Ñ ×{o} follows from
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the following simple lemma.

Lemma 2.2. Let N be a compact Riemannain manifolds with nonnegative sec-
tional curvature. Let M1 be a complete noncompact Riemannian manifold with
nonnegative sectional curvature. Let M = N × M1. Then the soul of M ,
S(M) = N × S(M1), where S(M1) is a soul of M1.

Proof. For any point z ∈ M we write z = (x, y) according to the product. First
of all, it is easy to see that N×S(M1) is totally geodesic. It is also totally convex
since any geodesic γ(s) on M can be written as (γ1(s), γ2(s)), where γi(s) are
geodesics in the factor. Therefore, due to the fact S(M1) is totally convex we
know that γ(s) lies inside N × S(M1) if its two end points do.

Let γ(s) be any geodesic ray issued from p ∈ M . Write p = (x0, y0) according
to the product. Since N is compact we have that for the projection γ(s) =
(γ1(s), γ2(s)), γ1(s) = x0 and γ2(s) is a ray in M1. Let Bγ be the Busemann
function with respect to γ. We claim that Bγ(x, y) = Bγ2(y), where Bγ2(y) is
the Busemann function of γ2 in M1. Once we have the claim we conclude that
the level set of Bγ is just N× the level set of Bγ2 in M1 and the half space
Hγ = {z ∈ M | Bγ(z) ≤ 0}, as proved in [LT, Proposition 2.1], Hγ = N × Hγ2 .
Since this is true for any ray we have that C =

⋂
γ Hγ is given by N×CM1 , where

CM1 denote the corresponding totally convex compact subset in M1 cutting
out similarly by Hγ2 . As in [CG], if the compact totally convex subset C has
non-empty boundary we define Ca = {z|d(z, ∂C) ≥ a}. It is easy to see that
Ca = N × Ca

M1
. In particular, this implies that the soul of M is N × S(M1)

since the soul of M is constructed by retracting Ca iteratively.
Now we verify the claim Bγ(x, y) = Bγ2(y). By the definition we have that

Bγ(x, y) = lim
s→∞

s − d((x, y), γ(s))

= lim
s→∞

s −
√

d2
N (x, x0) + d2

M1
(y, γ2(s))

= lim
s→∞

(s − dM1(y, γ2(s))+
(√

d2
M1

(y, γ2(s))−
√

d2
N (x, x0)+d2

M1
(y, γ2(s))

)
= lim

s→∞
(s − dM1(y, γ2(s))−

dN (x, x0)√
d2

M1
(y, γ2(s))+

√
d2

N (x, x0)+d2
M1

(y, γ2(s))

= lim
s→∞

(s − dM1(y, γ2(s))

= Bγ2(y).

This completes the proof of the lemma.

Remark 2.1. Combining with Theorem 5.2 of [NT3], the proof of Theorem 2.3
(Lemma 2.2) implies that if the M is a complete Kähler manifolds with nonneg-
ative sectional curvature, whose universal cover does not contain the Euclidean
factor, then the soul of M is either a point or the compact factor which is a
compact Hermitian symmetric spaces. In particular, the result holds if the Ricci
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curvature of M is positive somewhere. Therefore one can view the result such as
Theorem 4.2 or Theorem 5.1 as a complex analogue of the ‘soul theorem’ when
only the nonnegativity of the bisectional curvature is assumed.

Since the Ricci flow preserves the nonnegativity of the curvature operator
(if the curvature is uniformly bounded by [H2]) we have the following corol-
lary on the structure of complete simply-connected Riemannian manifolds with
nonnegative curvature operator.

Corollary 2.1. Let M be a complete simply-connected Riemannian manifold
with bounded nonnegative curvature operator. Then M is a product of a com-
pact Riemannian manifold with nonnegative curvature operator with a complete
noncompact manfold which is diffeomorphic to R

k.

Remark 2.2. The compact factor in the above result has been classified in [CY]
to be the product of compact symmetric spaces, Kähler manifolds biholomorphic
to the complex projective spaces and the manifolds homeomorphic to spheres.
See also [CC] and [GaM]. More importantly, it relies crucially on the result of
[H2], [MM] and [SiY]. Some literature attribute the result to [GM]. But [GM]
just proved the cohomology groups with coefficient R (of compact Mn with non-
negative curvature operator) are the same as the sphere Sn. It seems that the
classification was quite far from finished without the crucial later work in [MM]
and [SiY].

The above Corollary 2.1 was proved earlier in [N] by Noronha without assum-
ing the curvature tensor being bounded. Our method here has this restriction
on boundedness of the curvature since we have to use the short time existence
result of Shi in [Sh2] on the Ricci flow. In the case of dimension three, the same
result holds if one assumes that the sectional curvature is nonnegative, which is
same as the curvature operator being nonnegative. However in [Sh1] the stronger
result was proved even for nonnegative Ricci curvature case. The proof in [Sh1]
appeals to the previous deep results of Hamilton [H1, H2] and Schoen-Yau [SY].

3. Examples

As another application of Theorem 2.3 we give examples of complete Rie-
mannian manifolds with nonnegative sectional curvature on which the Ricci
flow (at least the solution satisfying (1.3)) does not preserve the nonnegativity
of the sectional curvature. These manifolds can be constructed as follows. Let
G = SO(n + 1) with the standard bi-invariant metric and H = SO(n) be its
close subgroup. Then H has action on G (as translation) as well as its standard
action on P = R

n (as rotation). Let M = G×P/H. Topologically M is just the
tangent bundle over Sn since H → G → G/H = Sn is just the corresponding
principle bundle over Sn. The construction is due to Cheeger and Gromoll [CG]
where the examples were to illustrate their structure theorem therein. About
these examples the following are known (cf. [CG]): The metric on M has non-
negative sectional curvature due to the fact that the metric is constructed as the
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base of a Riemannian submersion; There is also another Riemannian submersion
π∗ from T(Sn) to Sn with fiber given by π(g×P ), where π is the first submersion
map from G×P to M (in general, there always exists a Riemannian submersion
from M to its soul according to a result of Perelman [P1]); The fiber (which is
given by π(g × P )) of this submersion π∗ : M → Sn is totally geodesic; The
fibers are not flat. Namely the metric on each tangent space Tp(Sn) is not the
standard flat metric; M has the unique soul S(M) = π(G×{0}) and the metric
on M is not of product even locally.

Proposition 3.1. For the example manifolds above, the Ricci flow with (1.3)
does not preserve the nonnegativity of the sectional curvature.

Proof. First M is simply-connected by the exact sequence of the fibration F →
M → Sn with F = R

n. Assume that the Ricci flow preserves the nonnegativity
of the sectional curvature. If the manifold has bounded curvature, then by
Theorem 2.3, we know that M = N × M1, where M1 is diffeomorphic to R

k.
This contradicts to the fact that the metric on M is not locally product (for
most cases, it already contradicts to the fact that the tangent bundle T (Sn)
is non-trivial topologically). In order to apply Theorem 2.3 we need to verify
the curvature of the initial metric is uniformly bounded. In the following we
focus on the case M = SO(3) × P/H. The general case follows from a similar
consideration.

As we know from [CG, page 442 and CE, page 146-147], the metric is so
defined that π : SO(3)×R

2 → T (S2) is a Riemannian submersion, where SO(3)
is the equipped with the bi-invariant metric. Since the Riemannian submersion
increases the curvature, we know that the metric constructed in this way has
nonnegative sectional curvature. The metric can also be described using the
second submersion π∗ from T (S2) → S2 such that for any point in the fiber if
the tangent direction is horizontal we use the metric from S2 and for the vertical
direction we use the metric given by

dr2 +
r2

1 + r2
dθ2.

Here (r, θ) is the polar coordinates for R
2. This expression was claimed in [CE,

page 146]. For the sake of the completeness we indicate the calculation here.
Similar to the situation considered in [C] (see also [CGL]) we can use ∂

∂s to
denote the component of the Killing vector field of action SO(2) in SO(3). The
normalized Killing vector field is given by

W =
1√

1 + r2

(
∂

∂θ
+

∂

∂s

)
.

Since

H(
∂

∂θ
) =

∂

∂θ
− 〈 ∂

∂θ
, W 〉W

=
∂

∂θ
− r2

1 + r2
W
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the metric on the base of ∂
∂θ is given by

‖ ∂

∂θ
‖2

M = ‖H(
∂

∂θ
)‖2 =

r2

1 + r2
.

Here H( ∂
∂θ ) denotes the horizontal lift (projection) of ∂

∂θ . This description make
it easy to verify that the curvature is uniformly bounded. In order to calculate
the curvature we need the formula of [O’N] on the submersion. The Corollary 1
of [O’N, page 465] says that

(a)K(Pvw) = K̂(Pvw) − 〈Tvv, Tww〉 − ‖Tvw‖2

‖v ∧ w‖2

(b)K(Pxv)‖x‖2‖v‖2 = 〈(∇xT )vv, x〉 + ‖Axv‖ − ‖Tvx‖2

(c)K(Pxy) = K∗(Px∗y∗) −
3‖Axy‖2

‖x ∧ y‖2
, where x∗ = π∗(x),

(3.1)

where x, y are horizontal and v, w are vertical. Here A and T are the second
fundamental form type tensor for the Riemannian submersion π∗ : T (S2) → S2

with the property that T ≡ 0 is the fiber of the submersion is totally geodesic.
K̂(·) denotes the sectional curvature of the fiber and K∗(·) denotes the sectional
curvature of the base respectively. (One should consult [O’N] for more details
on the definition of these operators and their geometric meanings.) Since the
fiber of π∗ is totally geodesic (cf. [CG, page 442]), T ≡ 0, we have the simplified
formula

(a)K(Pvw) = K̂(Pvw)

(b)K(Pxv)‖x‖2‖v‖2 = ‖Axv‖2

(c)K(Pxy) = K∗(Px∗y∗) −
3‖Axy‖2

‖x ∧ y‖2
, where x∗ = π∗(x).

(3.2)

By (c) and the nonnegativity of K(Pxy) we have that K(Pxy) is uniformly
bounded. The curvature of the fiber can be calculated directly. In fact in terms
of the polar coordinates on the fiber it is given by

3
(1 + r2)2

.

Therefore we have that K(Pvw) is also uniformly bounded. The only thing need
to be checked is the mixed curvature K(Pxv). By the definition of A we know
that

Axv = H∇xV

where H is the horizontal projection and V is any arbitrary extension of v. For
a unit horizonal vector E we have

〈Axv, E〉 = −〈v,∇xE〉.
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Therefore it is enough to show that the right hand side is bounded. Since, by
the first submersion consideration using the quotient, we know that K(Pxy) is
nonnegative. Therefore by (c) of (3.2),

‖Axy‖2 ≤ 1
3
K∗(Px∗y∗)‖x ∧ y‖2.

This shows that |〈v,∇xE〉| is uniformly bounded.
For the sake of the completeness we also include a proof of the fact that the

fiber of π∗ is totally geodesic since there is no written proof in the literature.
Recall that M = SO(n+1)×P/SO(n). Here SO(n) is viewed as close subgroup
of SO(n + 1) by the inclusion:

A →
(

1 0
0 A

)
.

We have the involution ζ which is given by

ζ =
(

1 0
0 −I

)
.

ζ acts on SO(n+1) by A → ζAζ. It is easy to see that the fixed point set of ζ is
SO(n). Now we consider the action of ζ on SO(n + 1)× P as (g, x) → (ζgζ, x).
It is easy to see that this action is commutative with the action of SO(n) since
for any h ∈ SO(n) ζh = hζ. Therefore the action descends to M . It is easy to
see that the fixed point of this action is π(e, P ). This implies that the fiber (of
the submersion π∗) π(e, P ) is totally geodesic since it is the fixed point set of
an isometry. The other fiber can be verified similarly since for any point p ∈ Sn

there is also an involution fixes p.

Remark 3.1. Since we used Theorem 2.3 in Proposition 3.1 above, the examples
only apply to the solution to Ricci flow satisfying (1.3). This includes the solution
provided by Shi’s existence theorem. It is still unknown that the solution to Ricci
flow satisfying (1.3) is unique or not. Whether or not there exist similar compact
examples also worths further investigation.
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