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CONVOLUTION AND FRACTIONAL INTEGRATION WITH
MEASURES ON HOMOGENEOUS CURVES IN R

n

Philip Gressman

1. Introduction

In this paper we consider convolution operators on R
n of the form

Rγf(x) :=
∫ 1

−1

f(x − h(t))|t|−1+γ dt(1)

where h(t) := (td1 , . . . , tdn) for a strictly increasing sequence of positive integers
d1, . . . , dn and 0 < γ ≤ 1. Let p0 := |d|/(γn) and q0 := |d|/(γ(n − 1)), where
|d| :=

∑
j dj . Let T ⊂ [0, 1] × [0, 1] be the closed trapezoid with vertices (0, 0),

(1, 1), Q := (p−1
0 , q−1

0 ), and Q′ := (1 − q−1
0 , 1 − p−1

0 ). We will show that Rγ is
bounded from Lp(Rn) to Lq(Rn) if the point (p−1, q−1) is in T \ {Q,Q′}. This
result is optimal, except possibly at Q and Q′ (i.e., Rγ is not bounded when
(p−1, q−1) �∈ T ). In the place of strong estimates at these exceptional points, we
will prove restricted weak type estimates.

The method of proof we use was first employed by Christ in [1] to study
the case of the curve h(t) = (t, t2, · · · , tn) with no fractional integration (γ =
1). Tao and Wright have established strong (p, q) boundedness for completely
general families of smooth curves [9], but in that paper they were unable to
show boundedness in endpoint cases. Earlier papers, such as Oberlin [5], [6]
and Greenleaf, Seeger, and Wainger [3], have attained boundary estimates (even
strong boundary estimates) but are limited to dimensions n ≤ 4, with work in
dimension 4 restricted to the curve h(t) = (t, t2, t3, t4).

2. Preliminaries and the Parameter Sets Ωk

To prove the desired estimates, it suffices to consider a truncated version of
(1) in which t ranges from 0 to 1. The corresponding half −1 ≤ t ≤ 0 can
be treated analogously. Also it suffices (by duality and interpolation) to prove
Rγ satisfies a restricted weak type (p0, q0) estimate. Furthermore, we will take
γ = 1 throughout most of the paper (the case 0 < γ < 1 will be deduced from
the case γ = 1 by interpolation). We have thus reduced matters to the study of
the operator Rf(x) :=

∫ 1

0
f(x − h(t)) dt.
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To establish the particular restricted weak type estimate of interest, it is
necessary and sufficient to show that for any Borel set E ⊂ R

n of finite, non-
zero measure and any α > 0

|{x ∈ R
n | RχE(x) > α}| � (|E|nα−|d|)1/(n−1)(2)

(throughout, u � v means u ≤ Cv with C depending only on constants fixed
a priori such as n, the integers dj , and the fractional integration parameter γ).
From now on, fix F := {x ∈ R

n | 2α ≥ RχE(x) > α} and β := 1
|E|

∫
F

RχE .
Since β/α ∼ |F |/|E|, estimate (2) is equivalent to

α|d|(β/α)n−1 � |E|.(3)

We come now to the engine which will drive the rest of the proof. This first
lemma is almost the same as lemma 1 in Christ [1]; the difference is that here the
sets Ωk ⊂ R

k
+ are tailored to avoid the coordinate hyperplanes {t ∈ R

k
+ | ti = 0}.

This new feature was not necessary in [1], but will be essential for our purposes.

Lemma 1. Let ν := max{α/2, β/12}, and let Φk : R
k → R

n be given by
Φk(t1, . . . , tk) := h(t1) − h(t2) + . . . + (−1)k−1h(tk) for all 1 ≤ k ≤ 2n. There
exists an x0 ∈ E, a constant ε depending only on n, and sets Ωk ⊂ [ν, 1]k,
1 ≤ k ≤ 2n, such that for each even k

x0 + Φk(Ωk) ⊂ E(4)

(t1, . . . , tk) ∈ Ωk ⇒ (t1, . . . , tk−1) ∈ Ωk−1(5)

(t1, . . . , tk−1) ∈ Ωk−1 ⇒ α ≥
∫

χΩk
(t1, . . . , tk) dtk ≥ εα(6)

(t1, . . . , tk) ∈ Ωk ⇒ |tk − tj | ≥ εα ∀j < k,(7)

and for each odd k analogous statements hold, replacing E by F and α by β.

Proof. Consider the truncated operator R̃f(x) :=
∫ 1

ν
f(x − h(t)) dt and the

associated sequences of sets

E0 := E, F0 := F

Ej+1 :=
{

x ∈ Ej

∣∣∣ R̃∗χFj (x) > 2−j−3β
}

Fj+1 :=
{

y ∈ Fj

∣∣∣ R̃χEj+1(y) > 2−j−3α
}

(In [1], the original operator R is used instead of R̃). To be of any use, the sets
Ej and Fj must be non-empty; we will establish the stronger property〈

R̃χEj , χFj

〉 ≥ 2−j−1β|E| ∀j ≥ 0(8)

by induction. Take j = 0, and suppose that ν = α/2. We step through defini-
tions in the usual way:〈

R̃χE , χF

〉 ≥ 〈
RχE , χF

〉 − α

2
|F | ≥ 1

2
〈
RχE , χF

〉
=

1
2
β|E|.
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If instead ν = β/12, split E = Es ∪ Eb, where Es is the subset of E on which
R∗χF ≤ β/4 and Eb is the relative complement of Es in E. We use the trivial
inequality

〈
χE , R∗χF

〉 ≤ β
4 |Es| +

〈
χEb

, R∗χF

〉
to estimate

〈
χE , R̃∗χF

〉
from

below:〈
χE , R̃∗χF

〉 ≥ 2
3
〈
χEb

, R∗χF

〉 ≥ 2
3

(〈
χE , R∗χF

〉 − β

4
|Es|

)
≥ 1

2
β|E|.

As a consequence, it is again true that
〈
R̃χE , χF

〉 ≥ 1
2β|E|. This establishes

the truth of (8) when j = 0. The induction step is straightforward:〈
R̃χEj+1 , χFj+1

〉
=

〈
R̃χEj+1 , χFj

〉 − 〈
R̃χEj+1 , χFj\Fj+1

〉
≥ 〈

χEj+1 , R̃∗χFj

〉 − 2−j−3α|F |
≥ 〈

χEj , R̃∗χFj

〉 − 〈
χEj\Ej+1 , R̃∗χFj

〉 − 2−j−3β|E|
≥ 〈

R̃χEj
, χFj

〉 − 2−j−2β|E|
≥ 2−j−2β|E|.

This establishes the claim (8).
Now the sets Ωk may be defined. Fix a point x0 anywhere in En. By definition

of En and R̃,

|{t ∈ [ν, 1] | x0 + h(t) ∈ Fn−1 }| > 2−n−2β.

We may take Ω1 to be any Borel subset of {t ∈ [ν, 1] | x0 + h(t) ∈ Fn−1 } with
measure 2−n−2β. The construction of Ω2 proceeds iteratively. For each t1 ∈ Ω1,
x0 + h(t1) is in Fn−1; therefore R̃χEn−1(x0 + h(t1)) > 2−n−1α. As a result, the
set {

(t1, t2) ∈ Ω1 × [ν, 1] | x0 + Φ2(t1, t2) ∈ En−1, |t2 − t1| > 2−n−2α
}

(9)

must have cross-sections (for each t1 ∈ Ω1) of measure at least 2−n−2α. The
set Ω2 is now chosen to be a subset of (9) which has cross-sections of measure
precisely 2−n−2α for each t1 ∈ Ω1; with a little care this may be done so that
Ω2 is Borel. For generic odd k, we let Ωk be a Borel subset of

{t ∈ Ωk−1 × [ν, 1] | c0 + Φk(t) ∈ Fn−(k+1)/2, ∀j < k |tk − tj | > εkβ}

with cross sections (in the k-th direction) of measure 2−n−4+(k+1)/2β. For k
even we take Ωk from

{t ∈ Ωk−1 × [ν, 1] | x0 + Φk(t) ∈ En−(k/2), ∀j < k |tk − tj | > εkα}

with cross sections of measure 2−n−3+(k/2)α. In both cases εk is suitably chosen
to permit our choices. These Ωk satisfy (4) - (7) by construction.
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3. An Initial Estimate

It turns out to be quite easy to bound |E| from below with expressions of
the form α|d|(β/α)ρ. The difficulty is, of course, achieving an optimal ρ. This
will be accomplished in two stages. The first set of estimates will be optimal
in dimensions 2 and 3, and a second set in the next section will yield optimal
exponents for all n.

Theorem 1. Let h(t) and E, F, α, β be as described above. Then for even n

|E| � α|d|(β/α)1+3+···+(n−1),(10)

and for odd n

|E| � α|d|(β/α)−1+|d|−2−4−···−(n−1).(11)

Proof. Assume first that n is even. In this case lemma 1 says that x0+Φn(Ωn) ⊂
E, so

|E| ≥
∫

Φn(Ωn)

dx ≥ (n!)−1

∫
Ωn

∣∣∣∣det
(

∂Φn

∂t

)∣∣∣∣ (t) dt,(12)

using the fact that Φn is smooth, and outside a closed, nowhere dense set, the
equation Φn(t) = x has at most n! solutions for a given x (this fact will be
established shortly).

For t = (t1, . . . , tn) ∈ Ωn, lemma 1 guarantees that tj ≥ α/2 for all j.
Provided i < j, lemma 1 also guarantees |tj − ti| � α for j even and |tj − ti| � β
for j odd. We apply these inequalities to an estimate of the Jacobian determinant
(also to be established)∣∣∣∣det

(
∂Φn

∂t

)∣∣∣∣ (t) � (min
i

|ti|)|d|−n(n+1)/2
∏
i<j

|tj − ti|,(13)

and conclude |det
(

∂Φn

∂t

) | � α|d|−n(β/α)ρ on Ωn, where ρ = 2 + 4 + · · · + (n −
2). An induction argument easily establishes |Ωn| � αn/2βn/2. Applying the
estimate of the Jacobian determinant and the estimate of the size of |Ωn| to the
right-hand side of (12) gives (10).

Consider the case when n is odd. Now Φn(Ωn) ⊂ F . From (13) and lemma 1
we find |det

(
∂Φn

∂t

) | � β|d|+ρ−n(n+1)/2αρ−(n−1)/2 on Ωn, where ρ = 2+4+ · · ·+
(n− 1) (here we used the fact that tj ≥ β/12). In this case we also have |Ωn| �
α(n−1)/2β(n+1)/2; proceeding as above we find |F | � α|d|(β/α)|d|−ρ. Multiplying
both sides by (β/α)−1 and recalling |E| ∼ |F |(β/α)−1 gives (11).

Remark. It is worth noting that (11) is dual to the estimate

|E| � α|d|(β/α)2+4+···+(n−1),(14)

which is of the form found in Christ [1] and gives (3) when n = 3. Because R and
R∗ are equal (up to conjugation by a reflection), (11) and (14) are equivalent.
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Next we justify making the change of variables x �→ Φn(t) by demonstrating
that almost every x has no more than n! preimages via Φ−1

n . The following
lemma establishes this assertion for a broad class of curves h(t).

Lemma 2. Let h be a C1 curve in R
n and suppose that

det
(

∂Φn

∂t

)
(t1, . . . , tn) �= 0(15)

when t1, . . . , tn are positive and distinct. Then for any x ∈ R
n, there are no

more than n! points t for which Φn(t) = x and t1, . . . , tn are positive and distinct.

Proof. We will show that Φn is one-to-one on the region

Γn :=
{
(t1, . . . , tn) | 0 < tσ(1) < . . . < tσ(n)

}
,

where σ is any permutation of {1, 2, . . . , n}. Let t, t′ ∈ Γn, t �= t′, and for all j
from 1 to n let Ij be the smallest closed interval containing both tj and t′j . By
the fundamental theorem of calculus,

Φn(t′) − Φn(t) =
∑

j

(−1)sj

∫
Ij

dh

dt
(u) du = M(t′, t)v

where sj = j + 1 if t′j ≥ tj (sj = j otherwise), M(t′, t) is the matrix whose
j-th column is (−1)sj

∫
Ij

dh
dt (u) du, and v = [1 · · · 1]T . We wish to show Φn(t′)−

Φn(t) �= 0; one way to accomplish this is to construct a second matrix M̃(t′, t)
such that M(t′, t)v = M̃(t′, t)v and det M̃(t′, t) �= 0. Consider the function

f(x) :=
n∑

j=1

(−1)sj χIj (x).

Since t′ �= t, f is not identically zero (because t′ and t are in the same ordered
region Γn). Modulo endpoints, there exist pairwise disjoint, open intervals Jk

and non-zero integers ck so that f(x) =
∑

k ckχJk
(x). As there are n intervals

Ij , we may demand without loss of generality that there be 2n− 1 intervals Jk.
We may also demand that Jk be to the left of Jk+1 for all k.

Consider the integer pk := |ck−1 − ck|. If pk �= 0, there must be at least pk

intervals Ij1 , Ij2 , . . . which have an endpoint falling somewhere between Jk−1

and Jk. Keeping track of these endpoints shows
∑

k pk ≤ 2n − 2.
If k1, k2, . . . , kL is any subsequence of 1, 2, . . . , (2n − 1) chosen so that ckl

alternates in sign, we have 2(L−1) ≤ ∑
l |ckl

−ckl−1 | ≤ 2(n−1) or L ≤ n. Thus,
the function f cannot be too oscillatory. In particular, we may divide the support
of f (again modulo endpoints) into n non-empty, pairwise disjoint intervals Fk

on which f is either non-negative or non-positive (and never identically zero).
We now define M̃(t′, t) by taking its k-column to be

∫
Fk

dh
dt (u)f(u) du. The

condition M(t′, t)v = M̃(t′, t)v is an immediate consequence of the fact that
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the Fk are disjoint and cover the support of f . By multilinearity, taking u =
(u1, . . . , un),

det M̃(t′, t) = (−1)n−1

∫
∏

k Fk

(
det

(
∂Φn

∂u

)
(u)

n∏
k=1

f(uk)

)
du.

The integrand has constant sign and is non-zero on a set of positive measure, so
det M̃(t′, t) �= 0.

The final piece of theorem 1 is to examine the Jacobian determinant of Φn(t).
The following lemma is a well-known fact about Vandermonde-type determinants
(see for example pp. 200-201 of [10]; it is also readily established by induction
on n). In particular, (13) and (15) follow immediately.

Lemma 3. Let h(t) = (td1 , . . . , tdn), where 1 ≤ d1 < · · · < dn are integers.
Then

det
(

∂Φn

∂t

)
(t) = cP(t)

∏
i<j

(tj − ti),(16)

where P is a symmetric, homogeneous polynomial with positive integer coeffi-
cients and the constant c equals (−1)n−1

∏
j dj.

4. The Main Estimate

When β/α << 1, theorem 1 fails to prove (3). The reason is that lemma
1 does not offer enough control over the distances |ti − tj | to prove a sufficient
lower bound for the Jacobian determinant of Φn. To resolve this problem we
return to the ideas of Christ [1] to gain more control over these distances (for
example, taking into account that they are not independent of one another).

For bookkeeping purposes, we will construct a partition Λ (hereafter called a
band structure following the terminology of [1]) of the indices {1, 2, . . . , k} into
disjoint subsets (called bands) in such a way that |ti − tj | is “big” when i and
j are in distinct bands and “small” when i and j are in the same band. Taking
a cue from lemma 1, we demand that that no two even indices be in the same
band and that no even index be in the same band as the index 1. We will also
classify each index 1, . . . , k according to its status within its own band; possible
types are free, quasi-free, and bound. The classification proceeds according to
the following rules:

1. Each band will have precisely one free index. If a band contains an even
index or the index 1, then that index will be free (no band can contain two
such indices). Otherwise the lowest index in a band is called free.

2. In any band containing exactly two indices, the index not free is quasi-
free. A quasi-free index together with its free companion will be called a
free/quasi-free pair.

3. All indices not free or quasi-free are bound. A bound index is said to be
bound to the unique free index of its band.
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If index i is bound to index j, we write i ⇒ j and set B(i) := j. We will
enumerate the bound indices as b1, b2, . . . , and f1, f2, . . . will be an enumeration
of the remaining indices (those either free or quasi-free).

In the next section we will show that there exists ω ⊂ Ωk, for some k with
n ≤ k ≤ 2n − 2, and a band structure on {1, . . . , k} such that the following are
true (t = (t1, . . . , tk) is any point in ω):

(i) |ω| ∼ |Ωk|.
(ii) The total number of indices classified either free or quasi-free is n.
(iii) |ti − tj | ≥ δα when i, j belong to distinct bands.
(iv) εβ ≤ |ti − tj | ≤ δα when i, j are a free/quasi-free pair.
(v) εβ ≤ |ti − tj | ≤ δ′α when i is bound to j.
(vi) The constants ε, δ, and δ′/δ are controlled a priori and small relative to

unity.
The set ω takes the place of Ωn in theorem 1 and allows for optimal results.

Theorem 2. Let h(t) := (td1 , td2 , · · · , tdn) and E, F, α, β be as defined. Then
for n ≥ 2, estimate (3) holds, i.e., |E| � α|d|(β/α)n−1.

Proof. Let us take ω for granted. Consider the case when k is even. As in
theorem 1, we have the trivial estimate |E| ≥ |Φk(ω)|; however, ω may live in
more than n dimensions. Thus, extra care must be taken to compute |Φk(ω)|.
Following [1], we make a preliminary change of variables

τj = tfj
, 1 ≤ j ≤ n

si = tbi
− tB(bi), 1 ≤ i ≤ k − n

and regard Φk as a function of (τ, s), Gs(τ) := Φk(t). The variable s is fixed
and the computations proceed with Gs(τ) acting as a map from R

n to itself;
in particular, we make the change of variables x �→ Gs(τ) and the estimate∣∣det

(
∂Gs

∂τ

)∣∣ � α|d|−n(β/α)M on ω (M is the number of quasi-free indices; we
will, of course, prove this). The proof proceeds analogously to theorem 1:

|E| ≥ | {Gs(τ) | t(τ, s) ∈ ω} |
�

∫
{τ | t(τ,s)∈ω}

∣∣∣∣det
(

∂Gs(τ)
∂τ

)∣∣∣∣ dτ

� α|d|−n(β/α)M| {τ | t(τ, s) ∈ ω} |.
Now we average this lower bound for |E| over the ball {s ∈ R

k−n | |si| ≤ δ′α ∀i};
the result is |E| � α|d|−k(β/α)M|ω|. When k is even, |ω| ∼ αk(β/α)k/2, hence
|E| � α|d|(β/α)M+k/2. A simple counting argument shows that M+k/2 ≤ n−1.
Thanks to theorem 1 we need only consider the case β � α, so (3) follows.

When k is odd, we proceed exactly as above, but conclude instead that |F | �
α|d|(β/α)M+(k+1)/2. This time at least (k + 1)/2 indices are free, so M + (k +
1)/2 ≤ n. As a result |F | � α|d|(β/α)n and |E| � α|d|(β/α)n−1 as desired.

As before, the number of preimages G−1
s ({x}) must be bounded if the cor-

responding change of variables is to be justified. Unfortunately, arguments like
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lemma 2 no longer work. There is hope, but as in Christ [1] it involves Bezout’s
theorem. To be precise, we consider the homogeneous system (in the variables
τ0, τ1, . . . , τn)

0 = (x1τ
d1
0 , x2τ

d2
0 , . . . , xnτdn

0 ) − Gsτ0(τ1, . . . , τn).

From page 198 of [7], this system either has an infinite number of solutions in
CP

n or exactly
∏

dj solutions counting multiplicity. So long as x is not in the
image (under Gs) of the set where the Jacobian of Gs is degenerate (which must
have measure zero), there cannot be an infinite number of solutions. Fixing
τ0 = 1 and restricting to real space, we see that x = Gs(τ) has at most

∏
j dj

solutions.
The remaining issue to be resolved in this section is to establish a lower bound

of the Jacobian determinant of Gs on the set ω. Recall

Gs(τ) =
n∑

j=1

(−1)fj−1h(τj) +
∑

bi⇒fj

(−1)bi−1h(τj + si)

 .

As bound indices are necessarily odd, (−1)bi−1 = 1 in all cases. Taking partial
derivatives yields

∂Gs

∂τj
= (−1)fj−1 dh

dt
(τj) +

∑
bi⇒fj

dh

dt
(τj + si).

When s = 0, ∂Gs

∂τj
is an integer multiple of dh

dt ; furthermore, it is a non-zero
multiple since no free index may have only one bound companion. Let Mh(τ)
be the n × n matrix whose j-th column is dh

dt (τj) and set Vh(τ) := detMh(τ).
By multilinearity we have

det
(

∂Gs

∂τ

)
(τ) =

∑
i

(−1)ν(i)Vh(τ + εi);(17)

∑
i(−1)ν(i) �= 0 follows, once again, from examining the case s = 0. We recall

(16) and factor Vh. Take, for example, a term from the right-hand side of (17):

Vh(τ + εi) = P(τ + εi)
∏
j<l

(τl − τj + (εi)l − (εi)j) .

Observe that |(εi)l − (εi)j | ≤ 2δ′α. If it happens that |τl − τj | < δα, then τl and
τj must correspond (before the linear change of variables) to a free/quasi-free
pair, in which case (εi)l = (εi)j = 0 since non-zero perturbations arise only from
bound indices. Thus, if δ′/δ is sufficiently small, we have(

1 − 2δ′

δ

)n(n−1)
2

≤
∏
j<l

τl − τj + (εi)l − (εi)j

τl − τj
≤

(
1 +

2δ′

δ

)n(n−1)
2

.

Furthermore, τl ≥ α/2 for all l, so (1 − 2δ′)τl ≤ τl + (εi)l ≤ (1 + 2δ′)τl and

(1 − 2δ′)|d|−
n(n+1)

2 ≤ P(τ + εi)
P(τ)

≤ (1 + 2δ′)|d|−
n(n+1)

2 .
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With apropriate a priori bounds on δ and δ′/δ we may combine the above
inequalities to conclude∣∣∣∣∣det

(
∂Gs

∂τ

)
(τ) − Vh(τ)

∑
i

(−1)ν(i)

∣∣∣∣∣ ≤ 1
2
|Vh(τ)| .

On the set ω, |Vh| � α|d|−n(β/α)M because |τl| ≥ α/2 for all l and |τl−τj | ≥ δα

unless τl and τj correspond to a free/quasi-free pair. Finally, |det
(

∂Gs

∂τ

) | ∼ Vh

on ω, so the estimate is complete.
The last piece of theorem 2 is to demonstrate the existence of ω and its band

structure, which is the task of the next section.

5. Existence of Band Structures

Let σ be a permutation of {1, . . . , 2n − 2} for which the set Ω̃2n−2 := {t ∈
Ω2n−2 | tσ(1) < · · · < tσ(2n−2)} satisfies |Ω̃2n−2| ≥ |Ω2n−2|/(2n − 2)!. For all
j < 2n − 2, we restrict the sets Ωj according to σ:

Ω̃j := {(t1, . . . , tj) ∈ Ωj | ∃(tj+1, . . . , t2n−2) s.t. (t1, . . . , t2n−2) ∈ Ω̃2n−2}.
Observe that |Ω̃j | ∼ |Ωj | for all j (when j is even |Ωj−1| � 1

α |Ωj | � 1
α |Ω̃j | ≤

1
α

∫
Ω̃j−1

α dt = |Ω̃j−1| and similarly with β when j is odd). We will work with

Ω̃j instead of Ωj to simplify computations.
Suppose r is an integer no greater than 2n − 2; let Sr be the power set of

{2, . . . , r}. For Γ ∈ Sr, define Ω̃Γ
r := {t ∈ Ω̃r | tσ(j) ≥ tσ(j−1) + δα iff j ∈

Γ, σ(j), σ(j − 1) ≤ r}. As Sr has at most 2r−1 elements, there must be at least
one Γ so that |Ω̃Γ

r | ≥ 21−r|Ω̃r|. Given such a Γ := {L2, · · · , LR}, 2 ≤ L2 < · · · <

LR ≤ r, we may construct a band structure on Ω̃Γ
r :

(18) {{σ(1), σ(2), . . . , σ(L2 − 1)}, {σ(L2), σ(L2 + 1), . . . , σ(L3 − 1)},
· · · , {σ(LR−1), . . . , σ(LR − 1)}, {σ(LR), . . . , σ(r)}} .

For j < r, the sets Ω̃Γ
j also inherit natural band structures: the band structure

of Ω̃Γ
j is the restriction of the partition (18) to a partition of {1, . . . , j}. These

bands depend on the parameter δ (the bands will be said to have size δ).

Lemma 4. Given δ0, (δ′0/δ0) sufficiently small (depending only on n), there ex-
ists δ ≤ δ0, δ′ := δ(δ′0/δ0), k ∈ {n, . . . , 2n − 2}, ω ⊂ Ωk, and a band structure
such that

(i) |ω| ∼ |Ωk|.
(ii) The number of indices either free or quasi-free is n.
(iii) |ti − tj | ≥ δα when i, j belong to distinct bands.
(iv) εβ ≤ |ti − tj | ≤ δα when i, j belong to the same band, i �= j.
(v) εβ ≤ |ti − tj | ≤ δ′α when i is bound to j.
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Proof. To begin, let k0 := 2n − 2, ω := Ω̃2n−2, take δ = δ0. Construct bands
of size δ for ω (and restrict ω to Ω̃Γ

k0
for appropriate Γ). The variables N and

M will always represent the number of indices designated free and quasi-free,
respectively. If δ is sufficiently small, all even indices and the index 1 will be
free thanks to lemma 1. Properties (i), (iii), and (iv) also hold and will remain
true at all times. To achieve (ii) and (v), we follow the recipe given in [1]:

1. Construct bands of size δ for ω and restrict ω accordingly. When k0 =
2n− 2, there are at least n free indices, so N +M ≥ n. Stepping through
the process below, N + M can never fall below n. If N + M = n, go to
step 3; otherwise proceed to step 2.

2. Project ω onto Ω̃k0−1 and reset k0 to k0 − 1. The new ω inherits a com-
patible band structure from the old, and since we removed only one index,
N +M can decrease by at most one (it could increase by at most one if a
bound index becomes quasi-free). Repeat this restriction process for lower
and lower k0 until N + M = n (since N + M ≤ k0, we must reach the
goal in a bounded number of repetitions). When this is accomplished, go
to step 3.

3. Let δ′ := δ(δ′0/δ0), ω̃ := {t ∈ ω | |ti − tj | ≤ δ′α ∀i, j i ⇒ j}. If |ω̃| ≥ |ω|/2,
the set ω̃ satisfies (i)-(v) with k := k0 and the process is complete. If not,
continue to step 4.

4. Replace ω by ω \ ω̃ and δ by δ(δ′0/δ0). Because the process did not termi-
nate at step 3, when we construct new bands of size δ for ω, at least one
index which was bound will become free (one of the old bands must break
apart). Furthermore, indices which were previously free will remain free,
and indices which were quasi-free will remain quasi-free or become free.
As a result, N + M has increased (it’s now strictly greater than n) and
the total number of bound indices has decreased. Go back to step 2.

Each time the process passes through step 4, the number of bound variables
decreases. If there are no bound variables, the process will terminate at step 3
(since ω̃ = ω). Therefore, the process must terminate in a bounded number of
steps. The final set ω̃ constructed in step 3 is precisely the set satisfying the
conditions of the lemma.

6. Fractional Integration

We now consider convolutions with added fractional integration as in (1).
As promised, an interpolation argument quickly reduces the argument to the
established estimates γ = 1.

Theorem 3. Let 0 < γ ≤ 1. Then Rγ defined in (1) satisfies a restricted weak
type (p, q) estimate with p = |d|/(γn) and q = |d|/(γ(n − 1)).

Proof. Observe that when γ = 1/k for some integer k, a change of variables
t �→ tk reduces this theorem to the case γ = 1 for some more degenerate curve.
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For all other γ, we use analytic interpolation of the restricted weak type estimates∣∣∣∣∫ RγχE(x)χF (x) dx

∣∣∣∣ � |E|Re(γ) n
|d| |F |1−Re(γ) n−1

|d|

between the lines Re(γ) = 1/k and Re(γ) = 1/(k + 1).

Remark. The limiting case γ = 0, where we define

R0f(x) := p.v.

∫ 1

−1

f(x − h(t))
dt

t
,

has long been known to be bounded on Lp for 1 < p < ∞ as we would expect.
See for example [8].

7. Comments

It is straightforward to show that Rγ cannot be of restricted type (p, q) when
(p−1, q−1) �∈ T . One needs only test on characteristic functions of small balls
about the origin and again on non-isotropic boxes, just as done in Christ [1].
The only difference is that the boxes should scale like the curve h(t), i.e., they
should have side lengths (δd1 , . . . , δdn). The unboundedness of Rγ outside T is
also established by Tao and Wright [9], where they construct appropriate test
functions for general families of curves.

The proofs presented here are independent of the endpoints of t-integration
in (1). In particular, theorem 3 also holds for the global operators

Rγf(x) :=
∫ ∞

−∞
f(x − h(t))|t|−1+γ dt,

as does the dual bound (but Rγ is no longer bounded on L1 or L∞).
Theorem 3 also holds in the case of curves h(t) := (td1 , . . . , tdn) where the di

are distinct real numbers, and di ≥ i for each i (some modification of the region
of boundedness must occur if the exponents di are too small). The only new
ingredients are a generalized factorization to replace (16) and an extension of
Bezout’s theorem to more general systems such as “fewnomials.” See theorem 3
of chapter 2 in [4] for more about systems of fewnomials.

In low dimensions, the arguments presented here can be applied to C∞ curves
of finite type (curves with n linearly independent derivatives at the origin); the
only change is to replace (13) by lemma 2.1 of Christ [2]. In higher dimensions,
problems arise because the equation Gs(τ) = x can have arbitrarily many solu-
tions τ on sets of x with positive measure. What is needed is a proof that only
boundedly many of these solutions lie in ω ⊂ Ωk.

We construct an example of a “bad” Gs(τ) as follows. Let ψ(t) be a smooth
function which is identically one on the interval [3/4, 5/4] and vanishing outside
(2/3, 4/3). Let

φ(t) :=
∞∑

k=1

2−2k

(t − 2−k)3ψ(2kt).
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The function φ is C∞ and vanishes to infinite order at t = 0. In addition, φ has
vanishing second derivative and non-vanishing third derivative at t = 2−k for
k ≥ 1. Consider the plane curve h(t) := (t, t2 +φ(t)). Following the prescription
of section 4, let G(s1,s2)(t1, t2) := h(t1) + h(t1 + s1) − h(t2) − h(t2 + s2). Direct
computation shows that

G(ε,0)

(
u − ε

2
, u

)
=

(
0,

ε2

2
+ φ

(
u +

ε

2

)
− 2φ(u) + φ

(
u − ε

2

))
det

∂G(ε,0)

∂τ

(
u − ε

2
, u

)
= 2

dφ

dt

(
u +

ε

2

)
− 4

dφ

dt
(u) + 2

dφ

dt

(
u − ε

2

)
.

For any k ≥ 1, there is a solution uk,ε of the equation G(ε,0)(uk,ε − ε/2, uk,ε) =
(0, ε2/2) which approaches 2−k as ε → 0; this is shown by applying the interme-
diate value theorem to the identity

φ
(
u +

ε

2

)
− 2φ(u) + φ

(
u − ε

2

)
=

ε2

4

∫
[0,1]2

d2φ

dt2

(
u +

ε

2
(x + y − 1)

)
dxdy

(19)

and recalling that d2φ
dt2 (2−k) = 0 �= d3φ

dt3 (2−k). It must also be that as ε → 0,

1
ε2

det
∂G(ε,0)

∂τ
(uk,ε − ε/2, uk,ε) → 1

2
d3φ

dt3
(2−k) �= 0

(simply differentiate (19) with respect to u). We conclude that for any fixed
k ≥ 1 and any small, positive ε, the equation G(ε,0)(τ) = (0, ε2/2) has a solution
τk,ε near the point (2−k − ε/2, 2−k); furthermore, G(ε,0)(τ) is invertible near τk,ε

when ε is sufficiently small. For any natural number N , then, there is an ε and
an open set of points x (which includes x = (0, ε2/2)) for which G(ε,0)(τ) = x
has at least N solutions.
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