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MINIMAL THREEFOLDS OF SMALL SLOPE AND THE
NOETHER INEQUALITY FOR CANONICALLY POLARIZED

THREEFOLDS

Meng Chen

Abstract. Assume that X is a smooth projective 3-fold with ample KX . We
study a problem of Miles Reid to prove the inequality

K3
X ≥ 2

3
(2pg(X) − 5),

where pg(X) is the geometric genus. This inequality is sharp according to known
examples of M. Kobayashi. We also birationally classify arbitrary minimal 3-folds
of general type with small slope.

1. Introduction

We work over an algebraically closed field k of characteristic 0.
On an irreducible complete curve C (may be singular), one has deg(KC) ≥

2g(C) − 2 where g(C) is the geometric genus of C.
This inequality has a 2-dimensional analogue which is the famous ”Noether’s

inequality” (see [16]). Explicitly, on a minimal surface S (with RDP singulari-
ties) of general type, one has

K2
S ≥ 2pg(S) − 4

where pg(S) := h0(S, KS) is the geometric genus of S. Together with the
Bogomolov-Miyaoka-Yau inequality (cf. [15], [25]): K2

S ≤ 9χ(OS), they have
ever played very important roles in surface theory (for instance the surface ge-
ography: see [2], [6], [7], [18] and [23] etc.).

The importance of the Noether inequality in mind, Miles Reid first asked the
question seeking for a 3-dimensional analogue in early 1980’s. Since then, there
have been many papers which give effective Noether type of inequalities either
in the form K3 ≥ aχ + b (see [17] and [1] etc.) or for restricted objects (see
[13] and [3] etc.). We mention here that an effective linear inequality in terms
of χ seems to be impossible because χ could be both positive and negative for a
general 3-fold of general type. It is Kobayashi’s interesting examples ([13]) that
shows the naive inequality K3 ≥ 2pg − 6 (in 3-dimensional case) is not correct
in general. Thus it becomes more interesting what the 3-dimensional Noether
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inequality is even under very restricted conditions. Such a ”Noether inequality”
is by all means important to the 3-fold geography (see [10]).

The aim of this paper is to present a Noether inequality for canonically polar-
ized threefolds and to give a classification to arbitrary minimal 3-folds of general
type with small slope. Our main results are as follows.

Theorem 1.1. Let X be a smooth projective threefold with ample canonical di-
visor KX . Then

K3
X ≥ 2

3
(2pg(X) − 5).

Theorem 1.2. Let X be a minimal projective Gorenstein 3-fold of general type
with canonical singularities. Assume

K3
X < 2pg(X) − 6.

Then X is fibred by curves of genus 2.

Theorem 1.3. Let X be a projective minimal 3-fold with only canonical singu-
larities. Assume

K3
X <

1
2
(3pg(X) − 5)

(and pg(X) �∈ [2, 11]). Then X must be fibred by curves of genus 2.

Further classifications to restricted minimal 3-folds are presented as an inter-
esting application.

Corollary 1.4. Let X be a smooth projective 3-fold with ample KX . Assume

K3
X <

3
2
pg(X) − 9

2
.

Then X must be canonically fibred by curves of genus 2.

Theorem 1.1 is sharp according to M. Kobayashi’s interesting examples ([13])
which say that there are canonically polarized 3-folds with infinite number of
configurations of invariants (K3, pg) satisfying the equality: K3 = 2

3 (2pg − 5).
Again due to Kobayashi’s examples, Theorem 1.2 and Theorem 1.3 are not
empty and they are parallel to surface case (see [21] and [24]). We do not know,
however, whether both are optimal.

Based on our previous paper ([3]), and in order to prove Theorem 1.1, we need
to treat the most difficult case, i.e. when X is canonically fibred by surfaces of
general type with (c2

1, pg) = (1, 2), through new methods. The new observation
of this paper is that we may choose a special embedded resolution to the given
polarized 3-fold and then successfully apply the Kawamata-Viehweg vanishing
theorem to Q-divisors on both 3-folds and surfaces to estimate the dimension
of those cohomological groups in question. We bound the K3

X from below by
studying the bicanonical system rather than in the traditional way.

This note was written while I was visiting the Institute of Mathematical Sci-
ences, the Chinese University of Hong Kong. I would like to thank Eckart
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Viehweg for his patient explaining my frequent email queries. Thanks are also
due to Kang Zuo for effective discussions and for his hospitality. Finally I ap-
preciate many helps from both Keiji Oguiso and Seunghun Lee.

2. Proof of Theorem 1.1 and Theorem 1.2

In this section, We work on minimal 3-folds of canonical index 1. According
to the Mori minimal model theory ([12], [14] and [19] etc.), one may take X to
be a minimal projective threefold with invertible canonical sheaf ωX = OX(KX)
and with locally factorial terminal singularities. From the expression of the
inequality in Theorem 1.1. One may assume pg(X) ≥ 3.

2.1. Notations. We study the canonical map ϕ1 which is usually a rational
map. Take the birational modification π : X ′ → X, according to Hironaka, such
that

(i) X ′ is smooth;
(ii) the movable part of |KX′ | is basepoint free.
(iii) π∗(KX) is linearly equivalent to a divisor supported by a divisor of normal

crossings.
Denote by g the composition ϕ1 ◦ π. So g : X ′ −→ W ′ ⊆ Ppg(X)−1 is a

morphism. Let g : X ′ f−→ B
s−→ W ′ be the Stein factorization of g. We have

the following commutative diagram:

X ′ f−−−−→ B

π

� �s

X −−−−→
ϕ1

W ′

We may write
KX′ = π∗(KX) + E = M + Z,

where M is the movable part of |KX′ |, Z the fixed part and E an effective
divisor which is a sum of distinct exceptional divisors. Throughout we always
mean π∗(KX) by KX′ −E. So, whenever we take the round up of απ∗(KX), we
always have �απ∗(KX)� ≤ �α�KX′ for all positive rational number α. We may
also write

π∗(KX) = M + E′
1,

where E′
1 = Z − E is actually an effective divisor.

If dimϕ1(X) = 2, we see that a general fiber of f is a smooth projective curve
of genus g ≥ 2. We say that X is canonically fibred by curves of genus g.

If dimϕ1(X) = 1, we see that a general fiber S of f is a smooth projective
surface of general type. We say that X is canonically fibred by surfaces with
invariants (c2

1(S0), pg(S)), where S0 is the minimal model of S.
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2.2. The case dim(B) = 3. One has already the inequality

K3
X ≥ 2pg(X) − 6

according to Kobyashi ([13]) even for a general minimal 3-fold of general type.

For reader’s convenience, we reformulate our known results in [3] in the case
dim(B) ≤ 2.

Theorem 2.3. (Theorem 4.1 of [3]) Let X be a minimal projective Gorenstein
3-fold of general type with only locally factorial terminal singularities. Then we
have

(i) If dimϕ1(X) = 2, i.e., X is canonically fibred by curves of genus g, then

K3
X ≥ �2

3
(g − 1)�(pg(X) − 2).

(ii) If dimϕ1(X) = 1, then either K3
X ≥ 2pg(X)− 4 or (K2

S0
, pg(S)) = (1, 2).

Theorem 2.4. (Theorem 4.3 of [3]) Let X be a minimal projective smooth 3-
fold of general type. Suppose dimϕ1(X) = 2 and X is canonically fibred by
curves of genus 2. Then

K3
X ≥ 2

3
(2pg(X) − 5).

The inequality is sharp.

We are left to study the only case when dim(B) = 1 and X is canonically
fibred by surfaces with (c2

1, pg) = (1, 2). For this purpose, we need a little bit of
preparation.

2.5. Bounding K3
X from below. For the technical reason, we must assume

that KX is ample from now on. The inequality in Theorem 1.1 is trivial for
small value of pg(X). One may assume pg(X) ≥ 3. Furthermore, we assume
dim(B) = 1 and that a general fiber of the induced fibration f : X ′ −→ B is a
surface with (c2

1, pg) = (1, 2). Set b := g(B) the geometric genus of B.
By Lemma 4.5 of [3], we have two cases exactly:

q(X) = b = 1 and h2(OX) = 0,

q(X) = b = 0 and h2(OX) ≤ 1.

Write
|KX | = |N | + Z

where Z is the fixed part and N the movable one. Then it is obvious that

N = π∗(M) and Z = π∗(E′
1).

Set F := π∗(S). One may write

M =
a∑

i=1

Si
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as a disjoint union of distinct fibers of f , where a = pg(X) − 1 whenever b = 0,
or a = pg(X) otherwise. Thus we have

N =
a∑

i=1

Fi

where Fi = π∗(Si).
If |N | has base points, then F 2 > 0 as a 1-cycle. Thus KX · F 2 ≥ 2 because

it is an even number. Then it is obvious that

K3
X ≥ 2pg(X) − 2.

Otherwise, |N | is base point free. In this case, F is a nonsingular projective
surface with ample KF . Also since Z|F ∼ KF and K2

F = 1, we see that Z|F is
an irreducible curve on the surface F . Because f obviously factors through X,
we denote by f1 the induced fibration X −→ B. Denote by C the curve Z ∩ F .
Because C ∼ KF , C must be a curve with arithmetical genus 2. Thus C must
be one of the following types:

a) C is smooth;
b) C is an elliptic curve with exactly one node;
c) C is an elliptic curve with exactly one cusp of type x2 = y3;
d) C is a rational curve with exactly 2 nodes;
e) C is a rational curve with one node and one cusp of type x2 = y3;
f) C is a rational curve with exactly 2 cusps of type x2 = y3;
g) C is a rational curve with only one cusp of type x2 = y5.
We will see later that the singularities on C have strong connections with the

value of K3
X .

We consider the linear system |KX′ + π∗(KX)| on X ′. For a general fiber S,
denote by σ : S −→ F the natural contraction.

Now we fix some notations. Assume m > 0 is an integer and 0 ≤ n < m.
Under the premise of a ≥ m, we may write a := a1m + s where a1 > 0 is an
integer and 0 ≤ s < m. One may find distinct smooth fibers {Sk} such that

M ∼ S0 +
a−a1n−1∑

j=1

Sj +
a−1∑

i=a−a1n

Si.

Suppose the following condition (*) is satisfied:
(*) there is a number r ≥ 3 such that, for all i with a − a1n ≤ i ≤ a − 1,

h0(Si, KSi + �(π∗(KX) − na1

ma1 + s
π∗(Z))|Si)� ≥ r.

Because

π∗(KX) −
a−1∑

i=a−a1n

Si − na1

ma1 + s
π∗(Z) ≡ (1 − na1

ma1 + s
)π∗(KX)

is nef and big, one has, according to the Kawamata-Viehweg vanishing theorem,
the exact sequence:
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0 −→ H0(X ′, KX′ + �π∗(KX) −
a−1∑

i=a−a1n

Si − na1

ma1 + s
π∗(Z)�)

−→ H0(X ′, KX′ + �π∗(KX) − na1

ma1 + s
π∗(Z)�)

−→ ⊕a
i=a−a1nH0(Si, KSi + �π∗(KX) − na1

ma1 + s
π∗(Z)�|Si).

Similarly because

π∗(KX) −
a−a1n−1∑

j=1

Sj −
a−1∑

i=a−a1n

Si − a − 1
a

π∗(Z) ≡ 1
a
π∗(KX)

is nef and big, one has again the exact sequence:

0 −→ H0(X ′, KX′ + �π∗(KX) −
a−a1n−1∑

j=1

Sj −
a−1∑

i=a−a1n

Si − a − 1
a

π∗(Z)�)

−→ H0(X ′, KX′ + �π∗(KX) −
a−1∑

i=a−a1n

Si − a − 1
a

π∗(Z)�) −→

⊕a−a1n−1
j=1 H0(Sj , KSj + �π∗(KX) −

a−1∑
i=a−a1n

Si − a − 1
a

π∗(Z)�|Sj ).

Noting that

KSj
+ �π∗(KX) −

a−1∑
i=a−a1n

Si − a − 1
a

π∗(Z)�|Sj

≥KSj + �(π∗(KX) −
a−1∑

i=a−a1n

Si − a − 1
a

π∗(Z))|Sj �

=KSj
+ �1

a
π∗(Z)|Sj

� ≥ KSj
,

we have
rj := h0(Sj , KSj + �1

a
π∗(Z)|Sj �) ≥ pg(Sj) = 2.

On the other hand, we have

h0(X ′,KX′ + �π∗(KX) −
a−a1n−1∑

j=1

Sj −
a−1∑

i=a−a1n

Si − a − 1
a

π∗(Z)�)

≥h0(X ′, KX′ + S0).

Whenever h2(OX) = 0, the surjective map

H0(X ′, KX′ + S0) −→ H0(S0, KS0)



THE NOETHER INEQUALITY FOR CANONICALLY POLARIZED 3-FOLDS 839

gives
h0(X ′, KX′ + S0) = pg(X) + 2.

In this situation, we set δ := 2.
Whenever b = 0 and h2(OX) = 1, we have

h0(X ′, KX′ + S0) ≥ pg(X) + 1.

Whence we set δ := 1.
The above two exact sequences give

P2(X) ≥ pg(X) + δ +
a−a1n−1∑

j=1

rj + a1nr.

Since
P2(X) =

1
2
K3

X − 3(1 − b + h2(OX) − pg(X)),

one has

K3
X ≥ 2(−2pg(X) + δ +

a−a1n−1∑
i=1

rj + a1nr + 3h2(OX) − 3b + 3).(1)

The above inequality is a key to better inequalities provided we know all the
numbers rj , r and n. We study it case by case as follows. We first present the
following

Lemma 2.6. On the general fiber S of f , denote by D := (π∗(Z)|S)red. Then
h0(S, KS + D) = 2 if and only if D is supported on a rational tree.

Proof. Let N be a very big natural number such that � 1
N π∗(Z)|S� = D. One

has
π∗(Z)|S ∼ π∗(KX)|S ∼= σ∗(KF )

is nef and big. Using the Riemann-Roch and the vanishing theorem, we get

h0(S, KS + D) =
1
2
D · (KS + D) + χ(OS).

So h0(S, KS + D) = 2 if and only if

(KS + D) · D = −2.

Because D is 1-connected and reduced, it is the obvious fact that D supports on
a rational tree. We are done.

2.7. The case 2.5 a), b) and c). If there is a smooth fiber F on X such that
C = D ∩ F is in the case 2.5 a), b) and c). Taking a smooth modification to
the morphism f |D : D �→ B. One may easily see that C is always among these
3 types for a general fiber F . Thus we have rj ≥ 3 for all j by Lemma 2.6. We
may take n = 0.

Now if b = 1, then the inequality (1) gives

K3
X ≥ 2(pg(X) − 1).
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If b = 0 and h2(OX) = 1, then (1) gives

K3
X ≥ 2(pg(X) + 1).

If b = 0 and h2(OX) = 0, then (1) gives

K3
X ≥ 2(pg(X) − 1).

We are left the situation that, for a general fiber F of f1, C falls into the
cases 2.5 d) through g). For these cases, our argument depend on a special
modification π.

2.8. The rest cases.
From now on, we may suppose that C is a singular rational curve for a general

fiber F of f1. We proceed our proof by considering the singularities on the surface
Z. First of all, Z must be singular along a curve. Otherwise, if Z has isolated
singularities, C would be a smooth curve of genus 2 which contradicts to our
assumption.

We hope to find a special embedded resolution of the pair (X, Z) to prove
Theorem 1.1.

Claim 2.9. Z has at most 2 horizontal (with respect to f1) irreducible singular
curves and the multiplicity of any such singular curve on Z is 2.

Proof. In the process of finding the embedded resolution for (X, Z), we do not
care those vertical modifications supported only on finite number of fibers with
regard to the fibration f1 : X −→ B. This is because those vertical modifications
do not affect the behavior of π∗(KX)|S for a general fiber S of f . By abuse of
concepts, we call this kind of vertical modifications to be negligible.

Pick up any irreducible singular curve G of Z such that f1(G) = B. Because
G has at most finite number of singular points, we may take a negligible modi-
fication π0 : X0 −→ X such that G is smooth upstairs. Denote by Z0 the strict
transform of Z. We still denote by G the strict transform of G upstairs. On X0,
Z0 has a singular curve along G and G is a smooth curve.

Let π1 : X1 −→ X0 be a blow-up along the curve G. Denote by E1 the
exceptional divisor on X1. One may write

π∗(Z0) = Z1 + mE1

where Z1 is the strict transform of Z0 and m ≥ 2, because G belongs to singular
locus of Z0.

We consider the following commutative diagram:

S(1)
inclusion−−−−−→ X1

σ1

� �π0

S(0) −−−−−→
inclusion

X0
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where S(0) = π−1
0 (F ) and S(1) = π−1

1 (S(0)). Denote by Z1 ⊂ X1 the strict
transform of Z0. Then one sees that Z1 ∩ S(1) is irreducible. Also σ1 is the
blow-up along the center {G ∩ S(0)}. Now we have

σ∗
1(C) = σ∗

1(Z ∩ S(0)) = π∗
0(Z)|S(1)

= Z1|S(1) + mE1|S(1) .

Because m ≥ 2, we see that G actually passes through a singular point of C.
Since C has at most double points, m ≤ 2. Thus m = 2 and E1|S(1) is either
an irreducible (−1)-curve or a sum of two distinct (−1)-curves. This also means
that, on X0, one has 1 ≤ G · S(0) ≤ 2.

Now it is clear that Z has at most two dictinct horizontal singular curves like
G and the multiplicity of each is 2. The lemma is proved.

Based on the above argument, it is actually clear for us to illustrate all pos-
sibilities. Explicitly we have the following possibilities:

I) if Z1 is still singular along certain curve over G, then C1 is still singular
and C must have only one cusp (of type x2 = y5). In this case, G is the only
singular curve of Z and Z1 is singular along only one curve;

II) if Z1 is smooth at generic points of Z1∩E1 and the natural map {E1|Z1}red

�→ G is not birational, then C has a node at each point of {G ∩ F}.
III) if Z1 is smooth at generic points of Z1∩E1 and the natural map {E1|Z1}red

�→ G is birational, then C has a cusp (of type x2 = y3) at each point {G ∩ F}.
Lemma 2.10. For Case II), one has the same inequalities as in 2.7.

Proof. If we are at Case II), then π∗(KX)|S = π∗(Z)|S always contains an
elliptic cycle C0 +C1 with g(C0) = g(C1) = 0 and C0 ·C1 = 2 for a general fiber
S. This means, for any j, one has rj ≥ 3 by Lemma 2.6. We then take n = 0
and get the same inequalities as in 2.7.

Combining all arguments above, we are left the following 3 situations derived
from possibilities I) and III):

A) Z has only one horizontal singular curve G, C has only one cusp (of type
x2 = y5) for a general fiber F and G meets the singular point of C;

B) Z has only one horizontal singular curve G, C has exactly 2 cusps (of type
x2 = y3) for a general fiber F , and G meets the 2 singular points of C;

B’) Z has two distinct horizontal singular curves G and H, C has exactly
2 cusps (of type x2 = y3) for a general fiber F , and both G and H meet one
singular point each of C.

2.11. Embedded resolution of Type A). We construct an embedded reso-
lution πA for the pair (X, Z) of Type A). Take π0 and π1 to be as in the proof
of Claim 2.9. Because Z1 still has a unique singular curve which is over G, we
denote such a curve by G1. Modulo negligible modifications, one may assume
G1 to be again nonsingular.

Let π2 : X2 −→ X1 be the blow-up along G1. Denote by Z2 the strict
transform of Z1 and by E2 the exceptional divisor. Set S(2) = π−1

2 (S(1)). Denote
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by σ2 : S(2) −→ S(1) the respective blow-up. Because of the singularity type of
C, one sees that the strict transform C2 of C is already smooth. Since E2 only
touches C2 at one point, we denote by G2 the reduced part of E2|Z2 which is
of course irreducible. By considering the multiplicity of G2 in Z2 (for instance
taking blowing-ups and then considering its impacts on C2), one may see that
Z2 is smooth at generic points of G2. Modulo negligible modifications, Z2 is
already smooth. But the pull-back of Z is in general not of normal crossing. We
need more blow-ups.

Let π3 : X3 −→ X2 be the blow-up along G2 which, modulo negligible modi-
fications, is a smooth curve. Let E3 be the exceptional divisor and Z3 the strict
transform of Z2. Denote by S(3) = π−1

3 (S(2)). Then one may see that E2, E3

and Z3 meet at an irreducible curve G3.
Finally blow-up X3 along the curve G3 (which could be smooth modulo neg-

ligible modifications), we get π4 : X4 −→ X3. Denote by E4 the exceptional
divisor. Take more negligible modifications, we get a resolution πA : X ′ −→ X
which is the composition of πi and those necessary negligible modifications. We
replace our original π by πA, keeping the same notations as above. Pick up a
general fiber S, then we may see that

π∗(KX)|S = π∗(Z)|S = 10L4 + 5L3 + 4L2 + 2L1 + C̃

where Li are respective exceptional divisors induced from those blow-ups of πi

for i = 1, 2, 3, 4 and C̃ is the strict transform of C.
Denote by σ : S −→ F the induced blow-up. Then σ∗(C) = π∗(Z)|S . From

the whole process of blow-ups, one sees that σ∗(C) is a normal crossing divisor
on S. The intersection graph of σ∗(C) is as follows:

10L4

C̃ 5L3 4L2

2L1

(-1)

Type A) Slice

Take two joint objects from {Z̃, E1, E2, E3, E4}, they meet a general fiber
S at exactly one point. According to the next lemma, the divisor

Z̃ + E1 + E2 + E3 + E4

is normal crossing over a general point of B. Taking necessary negligible modi-
fications, πA is finally an embedded resolution of (X, Z).

Lemma 2.12. Let P be a point of a smooth variety V . Suppose I have 3 ir-
reducible smooth divisor Hi ⊂ V for i = 1, 2, 3 such that P ∈ Hi for all i.
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Assume

(H1 · H2 · H3)P = 1.

Then H1 + H2 + H3 is a normal crossing divisor at P .

Proof. This is a trivial statement. Denote by fi the local equations of Hi for all
i. Then, by definition,

dimk(OV,P /(f1, f2, f3)) = (H1 · H2 · H3)P = 1.

This means that f1, f2 and f3 actually form a local parameters of the point P .
We are done.

2.13. Embedded resolution of Type B∗). The construction is somehow
similar to 2.11. Both Type B) and Type B’) are essentially the same case. We
omit those minor differences of the details for Type B) which is simply a copy
of the one below. The most important point is that, for Type B) and Type B’),
we finally have the same π∗(Z)|S for a general fiber S.

Take π0 to be as in the proof of Claim 2.9. Let π1 : X1 −→ X0 be the
blow-up along two smooth curve G and H. Denote by Z1 the strict transform
of Z, and by E1, E′

1 the exceptional divisors. Similarly, one may see that Z1 is
already smooth simply because of the singularity type of C. We also see that
E1 (or E′

1) and Z1 meet at an irreducible curve G1 (or H1). Modulo negligible
modifications, one may assume both G1 and H1 are smooth curves. We keep
parallel notations as in 2.11.

Going on blow-ups along G1 and H1, one gets π2 : X2 −→ X1. Denote by
E2, E′

2 the exceptional divisors. One sees that E2 (or E′
2), E1 (or E′

1) and
Z2 still meet along an irreducible curve G2 (or H2). One may take negligible
modifications such that G2 and H2 are smooth.

We finally blow-up X2 along G2 and H2 to obtain π3 : X3 −→ X2. Taking
further negligible modification, we get a resolution πB : X ′ −→ X. We have

π∗
B(Z) = Z̃ + 6E3 + 6E′

3 + 3E2 + 3E′
2 + 2E1 + 2E′

1.

The slice on a general fiber S is

π∗
B(Z)|S = C̃ + 6L3 + 6L′

3 + 3L2 + 3L′
2 + 2L1 + 2L′

1

where Li = Ei|S and L′
i = E′

i|S for all i. The intersection graph is as follows.
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C̃

6L3 (−1) 6L′
3 (−1)

2L1 2L′
1

3L2 3L′
2

Type B) Slice
Applying Lemma 2.12, one may see that πB is an embedded resolution of

(X, Z).

2.14. The inequalities for Type A) case. We apply the argument in 2.5.
We take two integers m and n such that 1− na1

ma1+s > 1
10 . Write a := a1m+s as in

2.5. In order to get an effective inequality, we only need to verify the condition
(*). For simplicity, we still denote πA by π. Recall that we have

π∗(KX)|S = π∗(Z)|S = 10L4 + 5L3 + 4L2 + 2L1 + C̃

where L2
4 = −1 and all these curves are smooth rational curves. Set D0 :=

(π∗(Z)|S)red. Then D0 is of course a rational tree. From the intersection form
of π∗(Z)|S , we have

D0 · L4 = 2.

Now we verify the condition (*). For a general fiber S, we have

h0(S, KS + �(π∗(KX) − na1

ma1 + s
π∗(Z))|S�)

≥h0(S, KS + D0 + L4) = h0(S, KS + �1
5
π∗(Z)|S�)

=
1
2
(KS + D0 + L4)(D0 + L4) + χ(OS) = 3.

Thus the inequality (1) gives

K3
X ≥ 2(−2pg(X) + δ + (2 +

n

m
)a + 3h2(OX) − 3b − n(m − 1)

m
+ 1).(2)

Now we see that, if pg(X) is very big (thus m can be big), then the ratio
K3

X/pg(X) is close to 9
5 , a very good inequality. The inequality in Theorem 1.1

allows us to assume pg(X) ≥ 5 and so a ≥ 4. We may take m = 4 and n = 3.
Apparently, 1 − 3a1

4a1+s ≥ 1
7 > 1

10 because s < 4 by definition.
Explicitly, if b = 1, then we have

K3
X ≥ 3

2
(pg(X) − 3).
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This is better than the inequality in Theorem 1.1 only whenever pg(X) ≥ 7. But
the trivial inequality K3

X ≥ pg(X) amends whenever pg(X) ≤ 6.
If b = 0 and h2(OX) = 0, then we have

K3
X ≥ 2(

3
4
pg(X) − 2).

This is better than the inequality in Theorem 1.1.
If b = 0 and h2(OX) = 1, then we have

K3
X ≥ 3

2
pg(X).

This is much better than what we want in Theorem 1.1.

2.15. The inequalities for Type B), Type B’) case. We take positive
integers m and n such that 1 − na1

ma1+s > 1
6 . Write a := a1m + s as in 2.5. In

order to get an effective inequality, we only need to verify the condition (*). For
simplicity, we still denote πB by π. Recall that we have

π∗(KX)|S = π∗(Z)|S = 6(L3 + L′
3) + 3(L2 + L′

2) + 2(L1 + L′
1) + C̃

where L2
3 = L′

3
2 = −1 and all these curves are smooth rational curves. Set

D0 := (π∗(Z)|S)red. Then D0 is of course a rational tree. From the intersection
form of π∗(Z)|S , we have

D0 · L3 = D0 · L′
3 = 2.

Now we verify the condition (*). For a general fiber S, we have

h0(S, KS + �(π∗(KX) − na1

ma1 + s
π∗(Z))|S�)

≥h0(S, KS + D0 + L3 + L′
3) = h0(S, KS + �1

3
π∗(Z)|S�)

=
1
2
(KS + D0 + L3 + L′

3)(D0 + L3 + L′
3) + χ(OS) = 4.

Thus the inequality (1) gives

K3
X ≥ 2(−2pg(X) + δ + (2 +

2n

m
)a + 3h2(OX) − 3b − 2n(m − 1)

m
+ 1).(3)

Still one may see that, if pg(X) is bigger, the ratio K3
X/pg(X) is close to 10

3 .
Under the assumption of pg(X) ≥ 4, we may take m = 3 and n = 2. So

1 − 2a1

3a1 + s
≥ 1

5
>

1
6
.

Explicitly, if b = 1, then we have

K3
X ≥ 8

3
(pg(X) − 2).

This is better than what we want in Theorem 1.1.
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If b = 0 and h2(OX) = 0, then we have

K3
X ≥ 2(

4
3
pg(X) − 3).

This is also better than what we want in Theorem 1.1.
If b = 0 and h2(OX) = 1, then we have

K3
X ≥ 8

3
pg(X) − 2.

Already these inequalities are better than the one in Theorem 1.1.

2.16. Summary. Comparing what we have got, we may conclude Theorem 1.1.

2.17. Proof of Corollary 1.4.

Proof. If K3
X < 3

2pg(X)− 9
2 , then we have pg(X) ≥ 5. This means that we have

the canonical map. From the argument above, the only possibility is that X is
canonically fibred by curves of genus 2. This inequality is not empty according
to Kobayashi’s example.

2.18. Proof of Theorem 1.2

Proof. If K3
X < 2pg(X) − 6, then one has pg(X) ≥ 5. We may study the

canonical map. Both 2.2 and Theorem 2.3 tell that either X is canonically
fibred by curves of genus 2 or X is canonically fibred by surfaces of general type
with (c2

1, pg) = (1, 2). We study the later case.
We take the induced fibration f : X ′ −→ B where a general fiber S is a

smooth projective surface with (c2
1, pg) = (1, 2). Noting that f∗ωX′/B is a vector

bundle of rank 2 because pg(S) = 2, we considering the natural projection

p : P(f∗ωX′/B) −→ B.

Because KX′ + S1 + S2 ≥ KX′ , we see that the fibration f rationally factors
through p. Taking birational modifications, we may have a morphism from f to
p. Thus we have the following commutative diagram:

X ′ ψ−−−−→ P(f∗ωX′/B)

f

� �p

B −−−−−→
identity

B

For any fiber S of f , we see that ψ|S = φKS
because we have

|KX′ + S1 + S2||S = |KS |
by Lemma 4.6 of [3], where the Si are general smooth fibers of f . Therefore ψ
is actually a fibration over a ruled surface with a general fiber a smooth curve
of genus 2. We are done.
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3. Proof of Theorem 1.3

Though partial effective Noether type of inequalities for a general minimal
3-fold are given in [3], there remain several hard cases to study. In this section,
we are able to develop the technique in [4] to present integral and more precise
results which make it possible for us to describe those 3-folds with small slope

K3
X

pg(X) .

3.1. Notations. We are treating a general object so that most of the divisors we
come across are rational divisors. In order to prove Theorem 1.3, we may assume
that X is a normal projective minimal 3-fold with only Q-factorial terminal
singularities. We suppose pg(X) ≥ 2.

We study the canonical map ϕ1 which is usually a rational map. Take the
birational modification π : X ′ → X, according to Hironaka, such that

(i) X ′ is smooth;
(ii) the movable part of |KX′ | is basepoint free. (Sometimes we even call for

such a modification that those movable parts of a finite number of linear systems
are all basepoint free.)

(iii) π∗(KX) is linearly equivalent to a divisor supported by a divisor of normal
crossings.

Denote by g the composition ϕ1 ◦ π. So g : X ′ −→ W ′ ⊆ Ppg(X)−1 is a
morphism. Let g : X ′ f−→ B

s−→ W ′ be the Stein factorization of g. So we have
the same commutative diagram as in 2.1. Write

KX′ =Q π∗(KX) + E1 =Q M1 + Z1,

where M1 is the movable part of |KX′ |, Z1 the fixed part and E1 an effective Q-
divisor which is a Q-sum of distinct exceptional divisors. Throughout we always
mean π∗(KX) by KX′ − E1. So, whenever we take the round up of mπ∗(KX),
we always have �mπ∗(KX)� ≤ mKX′ for all positive number m. We may also
write

π∗(KX) =Q M1 + E′
1,

where E′
1 = Z1 − E1 is actually an effective Q-divisor.

If dimϕ1(X) = 2, we see that a general fiber of f is a smooth projective
curve C of genus g ≥ 2. If dimϕ1(X) = 1, we see that a general fiber S of
f is a smooth projective surface S of general type. The invariants of S are
(c2

1(S0), pg(S)) where S0 is the minimal model of S.
A generic irreducible element S of |M1| means either a general member of

|M1| whenever dimϕ1(X) ≥ 2 or, otherwise, a general fiber of f .

For reader’s convenience, we recall known results from [3].

Theorem 3.2. (Theorem 3 and Proposition 3.4 of [3]) Under the above assump-
tions, one has

1) K3
X ≥ 2pg(X) − 4 whenever pg(X) ≥ 6, dim(B) = 2 and g(C) ≥ 3;

2) K3
X ≥ 3

2pg(X)− 5
2 whenever pg(X) ≥ 10, (c2

1(S0), pg(S)) = (1, 1), dim(B) =
1 and dimϕ2KX

(X) ≥ 2.
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Standard surface theory tells us that a surface S of general type with K2
S0

= 1
has only 2 possibilities: either pg(S) = 1 or pg(S) = 2.

Before proving Theorem 1.3, we must study the other cases. The following
proposition presents a general method to estimate certain intersection numbers
on X.

Proposition 3.3. Let X be a minimal projective 3-fold of general type with
only Q-factorial terminal singularities and assume pg(X) ≥ 2. Keep the same
notations as in 3.1 . Pick up a generic irreducible element S of |M1|. Suppose,
on the smooth surface S, there is a movable linear system |G| and denote by C
a generic irreducible element of |G|. Set ξ := (π∗(KX) · C)X′ and

p :=

{
1 if dimϕ1(X) ≥ 2
a if π∗(KX) ≡Q aS + effective Q-divisors

Assume
(i) there is a rational number β > 0 such that π∗(KX)|S − βC is numerically

equivalent to an effective Q-divisor;
(ii) the inequality α := (m − 1 − 1

p − 1
β )ξ > 1 holds. Set α0 := �α�. Then we

have the inequality
mξ ≥ 2g(C) − 2 + α0

.

Proof. This is a weak version of Theorem 2.2 in [4]. We do not need the bira-
tionality of ϕm. So one may drop additional assumptions there.

3.4. The case dim(B) = 1 and c2
1(S0) ≥ 2. We have

π∗(KX) =Q M1 + E′
1 ≡Q aS + E′

1

where a ≥ pg(X) − 1. So one has

K3
X = π∗(KX)3 ≥ (π∗(KX)2 · S)(pg(X) − 1).

If b = g(B) > 0, then the movable part of |KX | is already base point free.
Thus one has

π∗(KX)|S = σ∗(KS0).
Thus π∗(KX)2 · S = (σ∗(KS0))

2 ≥ 2. So

K3
X ≥ 2(pg(X) − 1).

From now on, we assume b = 0 and pg(X) ≥ 12. In order to apply Proposition
3.3, we must find the number β and the curve C.

Note that pg(X) > 0 implies pg(S) > 0. According to [8], we know that
|2KS0 | is base point free. So is |2σ∗(KS0)|. We set C be a general member of
|2σ∗(KS0)|. So C is a smooth curve with deg(KC) ≥ 12. According to Step 2 of
Proposition 3.3 in [3], we have

π∗(KX)|S ≥Q

5
6
σ∗(KS0).
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Thus we may set β = 5
12 . Also one may set p = 11. An initial lower bound for

ξ is

ξ ≥ 5
12

C2 ≥ 10
3

.

Now we may choose m and run Proposition 3.3.
Take m1 = 4. Then α1 ≥ (3 − 1

11 − 12
5 )ξ ≥ 64

33 . So α0 ≥ 2. Applying
Proposition 3.3, one gets ξ ≥ 7

2 .
Take m2 = 5. Then α2 = (4 − 1

11 − 12
5 )ξ ≥ 581

110 . So α0 ≥ 6. Applying
Proposition 3.3, one gets ξ ≥ 18

5 .
Take m3 = 6. Then α3 = (5 − 1

11 − 12
5 )ξ ≥ 2484

275 > 9. So α0 ≥ 10. Applying
Proposition 3.3, one gets ξ ≥ 11

3 which might be the best bound through our
method.

So we have (π∗(KX)|S)2 ≥ 5
12ξ ≥ 55

36 > 3
2 . Thus we have the inequality

K3
X ≥ 55

36
(pg(X) − 1).(4)

3.5. The case dim(B) = 1, K2
S0

= pg(S) = 1 and dimϕ2kX
(X) = 1. We

assume pg(X) ≥ 10. Considering the induced fibration f : X ′ −→ B, we have
q(X) ≤ 1 and q(X) − h2(OX) ≥ 0 according to [5]. In fact, this case is very
simple since f∗ωX′ is an invertible sheaf while R1f∗ωX′ = 0. So we have

χ(OX) = 1 − q(X) + h2(OX) − pg(X) ≤ 1 − pg(X).

Applying Reid’s plurigenus formula ([20]), one has

P2(X) ≥ 1
2
K3

X − 3χ(OX)

≥ 1
2
K3

X + 3pg(X) − 3.

We may remodify our original π such that the movable part of |2KX′ | is also
base point free. Write

|2KX′ | = |M2| + Z2

where M2 is the movable part. One has

M2 ≡ a2S

where a2 ≥ P2(X) − 1. Because

2π∗(KX) ≥Q M2,

we have

2K3
X ≥ a2(π∗(KX)|S)2.(5)

So the key point might be to estimate the number (π∗(KX)|S)2 which is a
rational number.

The base point freeness of |2σ∗(KS0)| allows us to take C to be a general
member of this system. Then C is a smooth curve with deg(KC) = 6. Because

π∗(KX) ≡Q

a2

2
S + ∗,
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we may take p = �a2
2 � ≥ 12. Similarly 5π∗(KX)|S ≥Q 4σ∗(KS0) by Step 2 of

Proposition 3.3 in [3], we may take β = 2
5 . We have ξ ≥ 2

5C2 ≥ 8
5 .

Now take m1 = 5. Then

α1 = (4 − 1
p
− 1

β
)ξ > 2.

Proposition 3.3 gives ξ ≥ 9
5 .

Take m2 = 6. Then

α2 = (5 − 1
p
− 1

β
)ξ > 4.

Proposition 3.3 gives ξ ≥ 11
6 .

Take m3 = 7. Then

α3 = (6 − 1
p
− 1

β
)ξ > 6.

Proposition 3.3 gives ξ ≥ 13
7 .

In general, we may get

ξ ≥ 2mk − 1
mk

for all mk ≥ 8 by induction. Thus ξ ≥ 2. This means (π∗(KX)|S)2 ≥ 2
5ξ ≥ 4

5 .
So the inequality (5) becomes

K3
X ≥ 3

2
pg(X) − 2.(6)

3.6. Proof of Theorem 1.3.

Proof. Assume K3
X < 3

2pg(X)− 5
2 . Because K3

X > 0, one sees that pg(X) ≥ 2. So
one may always consider the canonical map ϕ1. Suppose pg(X) ≥ 12. According
to 2.2, Theorem 3.2 and the inequalities (4) and (6), X must be either canonically
fibred by curves of genus 2 or canonically fibred by surfaces of general type with
(c2

1, pg) = (1, 2). Then a parallel argument to that in the proof of Theorem 1.2
also works. We are done.

In fact, a combination of [3] and this section may present the following more
general result for which we omit the details.

Theorem 3.7. There are two sequences (computable) of positive rational num-
bers {ak} and {bk} with k ≥ 2 such that

1) 4
3 < ak ≤ 2 for all k ≥ 2 and ak1 ≤ ak2 whenever k1 < k2;

2) limk→+∞ ak = 2 and {bk} is bounded;
3) for any minimal projective 3-fold X of general type with canonical singu-

larities, set k := �pg(X)−2
2 �. If K3

X < akpg(X) − bk and pg(X) �∈ [2, 5], then X
is fibred by curves of genus 2.

3.8. Examples. The only known examples satisfying the equality in Theorem
1.1 or the assumption of both Theorem 1.2 and Theorem 1.3 were found by M.
Kobayashi ([13]).
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3.9. An open problem. If X is a Gorenstein minimal projective threefold
of general type with only canonical singularities, then it is well-known that
χ(OX) < 0 according to Miyaoka ([15]). There should be an analogue of the
Noether inequality as in Theorem 1.1 in the form:

K3
X ≥ −aχ(OX) − b

where a and b are positive rational numbers. One may try to study the bi-
canonical map of X. We have an effective lower bound for a. Any bound a > 1
is nontrivial and interesting. The author’s opinion is that to find a Noether
inequality in this direction is more difficult simply because the inter relations
among pg, q and h2(OX) are far from being clear to us, unlike in surface case.
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Birkhäuser, Basel-Boston-Berlin.

[10] B. Hunt, Complex manifold geography in dimension 2 and 3, J. Differential Geom. 30
(1989), 51–153.

[11] Y. Kawamata, A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann.
261 (1982), 43–46.

[12] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem, Adv.
Stud. Pure Math. 10 (1987), 283–360.

[13] M. Kobayashi, On Noether’s inequality for threefolds. J. Math. Soc. Japan 44 (1992),
145–156.

[14] J. Kollár, S. Mori, Birational geometry of algebraic varieties, 1998, Cambridge Univ.
Press.

[15] Y. Miyaoka, The pseudo-effectivity of 3c2 − c21 for varieties with numerically effective
canonical classes, Algebraic Geometry, Sendai, 1985. Adv. Stud. Pure Math. 10 (1987),
449–476.

[16] M. Noether, Zur Theorie des eindeutigen Entsprechens algebraischer Ge-bilde, Math.
Ann. 2 (1870), 293-316; 8 (1875), 495–533.

[17] K. Ohno, Some inequalities for minimal fibrations of surfaces of general type over curves,
J. Math. Soc. Japan 44 (1992), 643–666



852 MENG CHEN

[18] Ulf Persson, An introduction to the geography of surfaces of general type. Algebraic ge-
ometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 195–218, Proc. Sympos. Pure Math.,
46, Part 1, Amer. Math. Soc., Providence, RI, 1987.

[19] M. Reid, Minimal models of canonical 3-folds, Adv. Stud. Pure Math. 1 (1983), 131–180.
[20] M. Reid, Young person’s guide to canonical singularities, Algebraic Geometry, Bowdoin,

1985. Proc. Sympos. Pure Math. 46 Part I, 345–414. Amer. Math. Soc., Providence, RI,
1987.

[21] M. Reid, Quadrics through a canonical surface. Algebraic geometry (L’Aquila, 1988),
191–213, Lecture Notes in Math., 1417, Springer, Berlin, 1990.

[22] E. Viehweg, Vanishing theorems, J. reine angew. Math. 335 (1982), 1–8.
[23] Gang Xiao, An example of hyperelliptic surfaces with positive index. Northeast. Math. J.

2 (1986), 255–257.
[24] Gang Xiao, Surfaces fibres en courbes de genre deux. (French) Lecture Notes in Mathe-

matics, 1137. Springer-Verlag, Berlin, 1985.
[25] S. T. Yau, Calabi’s conjecture and some new results in algebraic geometry. Proc. Nat.

Acad. Sci. U.S.A. 74 (1977), 1798–1799.

Institute of Mathematics, Fudan University, Shanghai, 200433, PR China
E-mail address: mchen@fudan.edu.cn


