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EVEN SETS OF FOUR NODES ON RATIONAL SURFACES

Alberto Calabri, Ciro Ciliberto and Margarida Mendes Lopes

Abstract. We describe smooth rational projective algebraic surfaces X, over an
algebraically closed field of characteristic different from 2, having an even set of
four disjoint (−2)-curves N1, . . . , N4, i.e. such that N1 + · · · + N4 is divisible by
2 in Pic(X).

1. Introduction

Let X be a smooth projective algebraic surface over an algebraically closed
field k of characteristic �= 2. A set of ν disjoint nodal (i.e (−2)−curves) curves
N1, . . . , Nν is called an even set if there exists L ∈ Pic(X) such that 2L ≡
N1 + · · · + Nν . Since KXL = 0, L2 is even and therefore the number ν is
divisible by four because 4L2 = −2ν.

Assume that X is rational, and that N1, . . . , Nν is an even set of disjoint
nodal curves with ν ≥ 8. Let η : X → Σ be the map which contracts the curves
Ni, i = 1, . . . , ν, to nodes.

By Theorem 3.2 of [DMP], there exists a fibration f : Σ → P1 such that the
general fibre of f is a smooth rational curve and having ν/2 double fibres each
containing two nodes of Σ.

Equivalently there exists a fibration g : X → P1 with general smooth rational
fibres, having ν/2 fibres, each containing two nodal curves Nk, Nl and of the
form Nk + 2Γ + Nl, where Γ is a curve such that Γ2 = −1, KXΓ = −1. Since
a rational fibration has no multiple fibres, by Zariski’s lemma (see [BPV]), such
a curve Γ is necessarily 1-connected and as such there is a birational morphism
contracting Γ to a smooth point. Remark that such a fibre can be obtained from
a minimal model of the fibration by first blowing up a point x, then blowing up
the double point of the total transform of the ruling through x, and possibly
further blow-ups, cf. Example 1 in [DMP].

Note also that any set of 4m of these nodal curves contained in 2m such fibres
is necessarily even.
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By the proof of Theorem 3.2 of [DMP], an even set of four disjoint nodal
curves orthogonal to the fibres of a fibration g : X → P1, with smooth rational
fibres, is necessarily contained in two fibres of g as above.

Again by Theorem 3.3 in [DMP], if a rational surface Y with Picard number
ρ(Y ) = 10 − K2

Y contains α, α ≥ 3, disjoint nodal curves, then α ≤ ρ(Y ) − 2.
Furthermore, if α = ρ(Y ) − 2, then α = 2β is even, and Y is obtained from a
relatively minimal ruled rational surface Fe := Proj(OP1 ⊕OP1(e)), e ≥ 0, with
the process described above, i.e. by blowing up:

• β points p1, p2, . . . , pβ in distinct fibres F1, F2, . . . , Fβ of the same ruling
of Fe;

• the point qi, i = 1, 2, . . . , β, which is the intersection of the strict transform
of Fi with the exceptional curve over pi.

We keep the terminology introduced in [DMP] and we will call Y as above the
standard example of a rational surface with ρ(Y ) − 2 disjoint nodal curves. For
other terminology see “Notation and conventions” below.

In this note we complete the above results by proving the following:

Theorem 1.1. Let X be a smooth rational surface containing an even set of 4
disjoint nodal curves N1, . . . , N4. Then there exists a fibration g : X → P1 with
smooth rational fibres, having 2 fibres, each containing two nodal curves Nk, Nl

and of the form Nk +2Γ+Nl, where Γ is a curve such that Γ2 = −1, KXΓ = −1.

From Theorem 1.1 we obtain:

Corollary 1.2. If X is a smooth rational surface such that X contains an even
set of four nodal curves, then there is a birational morphism π : X → Y , where
Y is a standard example with K2

Y = 4 and the morphism π maps the four nodal
curves of X to the four nodal curves of Y .

Proof. Let N1, ..., N4 be the nodal curves. By Theorem 1.1, X has a fibration f :
X → P1 in smooth rational curves having fibres Ni+2Γ1+Nj and Nk+2Γ2+Nl,
{i, j, k, l} = {1, 2, 3, 4}, and it is clear that, by contracting the (−1)-curves in
the other fibres and possibly some curves contained in Γm, m = 1, 2, we get to
a standard example.

Corollary 1.3. Let X be a weak Del Pezzo surface containing an even set of
four nodal curves.

Then there exists a birational morphism π : X → Y , where K2
Y = 4 and Y is

obtained from Fa, with a = 0, 1, or 2, by blowing up:

• two points p1, p2 in distinct fibres F1, F2 of the same ruling of Fa;
• the point qi, i = 1, 2, which is the intersection of the strict transform of Fi

with the exceptional curve of pi.

Furthermore, in case a = 2, none of the blown-up points lies on the (−2)-curve
of F2.
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Proof. Consider the birational morphism π : X → Y of Corollary 1.2. Since
−KX is nef, also −KY has to be nef. In particular, there are no rational curves
C on Y or X such that C2 ≤ −3. This implies the assertion.

Our interest in these results arose in the course of investigating surfaces of
general type with an involution, cf. [CCM]. However it seems to us of indepen-
dent interest.

The main ingredients used for the proof of Theorem 1.1, which is presented
in section 4, are some facts on adjoint systems on rational surfaces, which are
collected in section 2, and Lemma 3.1, which is proved in section 3.

Notation and conventions. We work over any algebraically closed field k of
characteristic �= 2.

All surfaces are projective algebraic varieties of dimension 2 over k. We do
not distinguish between line bundles and divisors on a smooth variety. Linear
equivalence is denoted by ≡ and numerical equivalence over Q by ∼. The inter-
section product of divisors (line bundles) A and B is denoted by AB. As usual,
given a divisor D on a surface, |D| will be the complete linear system of the
effective divisors D′ ≡ D.

By a curve on a smooth surface X we mean an effective, non zero divisor on
X. However a (−1)-curve (resp. (−2)-curve or nodal curve) is an irreducible
smooth rational curve C such that C2 = −1 (resp. C2 = −2). A (−1)-divisor
on X will be a divisor D satisfying D2 = −1 and KXD = −1.

The Kodaira dimension of a surface X is, as usual, denoted by κ(X).
A smooth surface X is called a weak del Pezzo surface if −KX is big and nef.

The remaining notation is standard in algebraic geometry.

2. Some properties of rational surfaces

In this section we list some properties of rational surfaces, which we will need
later. The properties on adjoint systems listed below can be also phrased in terms
of Mori’s theorem on the cone (cf. [R]), but here, for the reader’s convenience,
we state and prove them in the form we will need.

Lemma 2.1. Let X be a rational surface. Then:
(i) If D is a (−1)-divisor, then either |D| �= ∅ or |KX − D| �= ∅.
(ii) Assume −KX is nef and big. Then each effective (−1)-divisor D either

contains a (−1)-curve or K2
X = 1 and D ∈ | − KX + A| = | − KX | + A,

where A is an effective divisor such that KXA = 0, A2 = −2.

Proof. The first assertion is an immediate consequence of the Riemann-Roch
theorem, because χ(OX) = 1.

For (ii), we note that, if D is not irreducible, since −KX is nef and big, there
is one component ∆ of D such that −KX∆ = 1 and every other component
θ satisfies −KXθ = 0. By the index theorem (see, e.g., Corollary 2.4 in [Ba])
and the adjunction formula, we see that θ2 = −2 for each such θ and either
∆2 < 0 and ∆ is a (−1)-curve or ∆2 = K2

X = 1 and ∆ ∼ −KX . In the last case,
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∆ ≡ −KX because numerical equivalence coincides with linear equivalence on
rational surfaces.

Lemma 2.2. Let D be a nef curve on a regular surface X such that pa(D) ≥ 1.
If KX + D is not nef, then any irreducible curve θ satisfying θ(KX + D) < 0 is
a (−1)-curve θ such that θD = 0.

Proof. Since X is regular, we have that h0(X, KX + D) ≥ pa(D) ≥ 1.
Assume KX + D not nef. Then there is an irreducible curve θ such that

θ(KX + D) < 0. The curve θ is a component of the fixed part of |KX + D|,
and so θ2 < 0. Since D is nef, we have KXθ < 0, i.e. θ is a (−1)-curve and
θD = 0.

Lemma 2.3. Let D be a curve on a rational surface X such that pa(D) = 1
and D2 ≥ 1. If KX + D is nef, then D ≡ −KX . In particular K2

X ≥ 1.

Proof. As in the previous lemma, h0(X, KX + D) �= 0. Since (KX + D)D = 0,
the index theorem and the hypothesis KX + D nef imply that KX + D ∼ 0,
hence KX + D ≡ 0, because X is rational.

Proposition 2.4. Let D be a nef and big 2-connected curve on a rational surface
X with K2

X ≤ 0. Assume that p := pa(D) ≥ 2 and KXD < 0. If KX +D is nef,
then the following possibilities can occur:

(i) (KX + D)2 = 0, and KX + D ≡ (p− 1)G, where |G| is a pencil of rational
curves without base points such that GD = 2;

(ii) (KX + D)2 > 0, and the general curve D1 in |KX + D| is irreducible
satisfying pa(D1) < pa(D).

Proof. Since X is regular, h0(X, KX + D) = p ≥ 2.
Write |KX +D| = |M |+F , where |M | is the moving part and F the fixed part

of the linear system |KX + D|. Since D is 2-connected, ωD has no base points
(see, e.g., [CFM], Proposition A.7, or [M]) and so the nef divisor D satisfies
DF = 0. This implies that, if F �= 0, every curve θ contained in F is such that
θD = 0 and so, by the index theorem, θ2 < 0. In particular, if F �= 0, then
MF > 0, because KX + D is nef. Note that DM = D(M + F ) = D(KX + D)
is even, hence the equality (KX + D)M = M2 + MF implies, by the adjunction
formula, that MF is even.

Suppose that the general curve M in |M | is reducible. Then |M | is composed
with a pencil |G|, p ≥ 3, M ≡ (p− 1)G and GD = 2. Note that p ≥ 3 implies in
particular that D2 ≥ 5, because KXD < 0. Since GD = 2, the index theorem
implies that G2 = 0. Note that GKX = GF − GD = GF − 2 and thus GF is
even. Now ((p − 1)G)(KX + D) = (p − 1)GF . Since

((p − 1)G)(KX + D) ≤ (KX + D)2 = K2
X + KXD + 2(p − 1) < 2(p − 1),

we conclude that GF = 0. So F = 0 and we are in case (i).
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Suppose now that the general curve M in |M | is irreducible. We note that
h0(X, M) = p and thus h0(M,OM (M)) = p−1, because X is regular. Now note
that

KXM = (KX + D)M − MD = M2 + MF − 2(p − 1),

hence KXM + M2 = 2M2 + MF − 2(p − 1). Since

M2 + MF ≤ (KX + D)2 = K2
X + KXD + 2(p − 1) < 2(p − 1),

one has KXM < 0 and therefore the series OM (M) is non special. By the
Riemann-Roch theorem we obtain then

p − 1 = M2 − M2 − 1
2
MF + (p − 1),

hence MF = 0 and thus F = 0. If M2 = 0, we have p = 2 and we are in case
(i), whereas, if M2 > 0, we are in case (ii).

In this case, since K2
X ≤ 0 and KXD < 0, we have necessarily pa(M) <

pa(D).

3. Even sets of nodes and double covers

Let X be a smooth projective algebraic surface. Given an even set of disjoint
nodal curves N1, . . . , Nν on X, let π : Y → X be the double cover branched
on N1, . . . , Nν , defined by 2L ≡ N1 + · · · + Nν (cf. pg. 42 in [BPV]) and let
η : X → Σ, as in the Introduction, be the map that contracts the curves Ni

to nodes. The inverse image on Y of a curve Ni is a (−1)-curve ∆i. Blowing
these (−1)-curves down to points p1, . . . , pν , we obtain a smooth surface Ȳ and
a double cover π̄ : Ȳ → Σ branched precisely over the singularities of Σ. Then
we have the following commutative diagram:

Y −−−−→ Ȳ

π



� π̄



�

X
η−−−−→ Σ

Note that Σ has canonical singularities, so that KΣ is a Cartier divisor. Moreover
π̄∗(KΣ) = KȲ . Hence

κ(Y ) = κ(Ȳ ) = κ(X), K2
Y = 2K2

X − ν,

K2
Ȳ = 2K2

X , χ(Y,OY ) = χ(Ȳ ,OȲ ) = 2 − ν

4
.

Finally we will need the following:

Lemma 3.1. Let Ē be a (−1)-curve of Ȳ and let E be the strict transform of
Ē in Y . Then E is a component of π∗(C) where C is an irreducible curve such
that KXC = −1, and such that, for each nodal curve Ni, either CNi = 2 or
CNi = 0.
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Proof. Since Ē is a smooth curve, E meets each of the (−1)-curves ∆i transver-
sally in at most one point. Note that

∑
∆i ≡ π∗(L). Let m be the number

of curves ∆i having non-empty intersection with E. Then E2 = −1 − m and
KY E = m − 1. Since KY ≡ π∗(KX + L), we conclude that π∗(KX)E = −1.
Since the map H2(X, Q) → H2(Y, Q) induced by π multiplies the intersection
form by 2, we conclude that the curve E is not invariant under the involution
ι of Y associated to π. Then, if C = π(E), π∗(C) = E + ι(E) and C is as
stated.

4. The proof of Theorem 1.1

We use the notation of the statement of Theorem 1.1 and we denote again
by L the line bundle such that N1 + · · · + N4 ≡ 2L. The line bundle L satisfies
L2 = −2, KXL = 0 and |L| = ∅.

We will need the following:

Lemma 4.1. If there exists a (−1)-curve E such that EL = 1 and E meets
transversally exactly two of the nodal curves, say N1, N2, then X is as in The-
orem 1.1.

Proof. Since EL = 1, E + L is a (−1)-divisor and therefore by Lemma 2.1, (i),
either |E +L| �= ∅ or |KX −(E +L)| �= ∅. The second possibility clearly does not
occur, since, otherwise, 2KX would be effective. Therefore |E + L| �= ∅. Since
N3L = N4L = −1, we can write E + L ≡ Γ + N3 + N4 where Γ is an effective
(−1)-divisor.

Note that E(E + L) = 0 implies EΓ = 0 and actually E ∩ Γ = ∅. In fact
otherwise E would be a component of Γ, hence E + L ≡ E + ∆, where ∆ is an
effective divisor, implying that |L| �= ∅.

By the Riemann-Roch theorem, h0(X, 2E + N1 + N2) ≥ 2. Now, the relation
2E +N1 +N2 +N3 +N4 ≡ 2(E +L) ≡ 2Γ+2N3 +2N4 implies 2E +N1 +N2 ≡
2Γ + N3 + N4. So |2E + N1 + N2| is a pencil of rational curves without base
points having fibres as in the statement.

Now we can give the:

Proof of Theorem 1.1. Since, by contracting (−1)-curves disjoint from N1, . . . , N4,
we still obtain a surface having an even set of 4 disjoint nodal curves, we will
from now on make the following:

Assumption 4.2. There is no (−1)-curve onX disjoint from the curves N1, . . . ,N4,
i.e., for every (−1)-curve E, one has EL ≥ 1.

We will argue by contradiction. So suppose that there is no fibration as in
the statement. This implies that K2

X < 4, by Theorem 3.3 in [DMP]. Moreover,
by Lemma 4.1 and Assumption 4.2, only the following two cases are possible:

(I) given a (−1)-curve E, one has EL ≥ 2; thus by the index theorem K2
X ≤

1, and K2
X = 1 if and only if EL = 2 and −KX ≡ E + L; or
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(II) given a (−1)-curve E, one has EL = 1 and E intersects exactly one of
the nodal curves, say EN1 = 2; thus by the index theorem K2

X ≤ 1 and
K2

X = 1 if and only if −KX ≡ E + N1.

The surface Ȳ as in Section 3 is not minimal, because K2
Ȳ

< 8 and so there
exists on X an irreducible curve C as in Lemma 3.1 meeting m of the nodal
curves, say N1, . . . , Nm with m ≥ 0, and satisfying CL = m. Since C is irre-
ducible and KXC = −1, one has C2 ≥ −1. Furthermore Assumption 4.2 means
that, if C2 = −1, then necessarily m > 0.

Set D := C + N1 + · · · + Nm. Remark that

DNi = 0, i = 1, . . . , 4, and therefore DL = 0 and D2 = C2 + 2m.

The curve D is nef, big and 2-connected. Since KXD = −1, the index theorem
yields K2

X ≤ 1, and

K2
X = 1 ⇐⇒ −KX ≡ D.

We start by considering this case.

4.1. The case K2
X = 1. Since −KX ≡ D, D2 = 1 and so either D = C is

irreducible or C is a (−1)-curve intersecting only one of the nodal curves, say
N1, and D = C + N1. We notice that in both cases | − KX | = |D| is a pencil
without fixed components.

Since K2
X = 1, one has that −KX + L is a (−1)-divisor, and, by Lemma 2.1,

(i), | − KX + L| �= ∅ because −KX(2KX − L) < 0. Since, for each i = 1, . . . , 4,
Ni(−KX + L) = −1, we can write −KX + L ≡ Γ + N1 + N2 + N3 + N4 where
Γ is an effective (−1)-divisor. Note that

Γ + L ≡ −KX .(1)

4.1.1. Claim: Γ is irreducible. Since −KX is nef and big, by Lemma 2.1, (ii),
Γ contains one (−1)-curve γ which will satisfy one of the cases (I) or (II).

If γL ≥ 2, then, by case (I) and identity (1), we have −KX ≡ γ + L ≡ Γ + L,
which implies γ = Γ, i.e. the claim.

If γL = 1, then, again by (1), one has γΓ = 0. Since γ is in case (II), there
is a nodal curve Ni such that γNi = 2 and γ + Ni ≡ −KX . Since NiΓ =
Ni(−KX − L) = 1 by (1), then Niγ = 2 implies that Ni is also a component of
Γ. But, always by identity (1), one then has −KX ≡ γ + Ni ≤ Γ ≡ −KX − L,
which implies −L ≥ 0, that is impossible.

4.1.2. Claim: every (−1)-curve E �= Γ satisfies EL = 1, hence there is a nodal
curve Ni such that ENi = 2 and −KX ≡ E + Ni. Suppose that E is a (−1)-
curve such that EL = 2. Then, by (I) and (1), one has E + L ≡ −KX , hence
E = Γ. The last assertions follow by case (II).



806 A. CALABRI, C. CILIBERTO AND M. MENDES LOPES

4.1.3. Claim: there are (−1)-curves E1, E2, different from Γ, such that E1E2 =
1, E1N1 = E2N2 = 2 and −KX ≡ E1 + N1 ≡ E2 + N2. Since −KX moves in a
pencil without fixed components and −KXN1 = 0, there is a curve E1 + N1 in
the pencil | − KX |, where E1 is an effective (−1)-divisor.

The curve E1 is irreducible. Indeed, by Lemma 2.1, (ii), E1 contains a (−1)-
curve θ. Remark that θ �= Γ, otherwise by (1) we would have θ + L ≡ E1 + N1,
which would imply L > 0, a contradiction. Hence, by Claim 4.1.2, there exists
one of the nodal curves Ni such that −KX ≡ θ + Ni ≡ E1 + N1. Since θ ≤ E1

and | − KX | has no fixed components, this implies θ = E1.
The curve E2 is found by applying the same reasoning to the fibre of the

pencil | − KX | which contains N2.
Since −KX ≡ E1 +N1 ≡ E2 +N2, for both curves E1, E2 we are in case (II),

and not case (I). Therefore E1N2 = E2N1 = 0, which implies that E1E2 = 1.

4.1.4. Claim: the linear system |E1 + E2| is a base point free pencil of rational
curves, the curve 2Γ+N3+N4 sits in the pencil |E1+E2|, which has at least three
reducible fibres. Notice that −2KX ≡ E1+N1+E2+N2 ≡ 2Γ+N1+N2+N3+N4,
whence the first two assertions follow. For the last assertion, remark that ρ(X) =
9, thus |E1 + E2| contains yet another reducible fibre.

Now we can conclude the proof for the case K2
X = 1.

A reducible fibre of |E1 + E2| contains at least one (−1)-curve G. So there is
a (−1)-curve G such that GE1 = GE2 = GΓ = 0. Since G �= Γ, one has GL = 1
by Claim 4.1.1 and so G is in case (II). On the other hand, 1 = −KXG =
G(Ei + Ni) = GNi, i = 1, 2, which is not possible in case (II).

4.2. The case K2
X < 1. We start with the following:

4.2.1. Claim: every (−1)-curve E satisfies EL ≥ 2, i.e. we are in case (I).
Suppose otherwise, namely suppose there is a (−1)-curve E for which case (II)
holds, i.e. EL = 1, EN1 = 2 and ENi = 0, i = 2, 3, 4. Hence the curve
A := E + N1 is nef, pa(A) = 1 and AL = 0. Since (KX + A)2 < 0, then KX + A
is not nef and so, by Lemma 2.2, there exists a (−1)-curve θ such that θA = 0.
Then one has (θ + L)A = 0 and, therefore, (θ + L)2 < 0 by the index theorem.
This implies θL = 1, namely θ is as in case (II), i.e. there is a nodal curve, say
N2, such that N2θ = 2. But then (N2 + θ)2 = 1 and A(N2 + θ) = 0, which
contradicts the index theorem. This proves the claim.

Now we consider again the nef and big 2-connected curve D := C +N1 + ...+
Nm, which satisfies KXD = −1. In particular pa(D) ≥ 1.

4.2.2. Claim: KX + D is nef and moreover D2 ≥ 3, pa(D) ≥ 2. Suppose that
KX + D is not nef. By Lemma 2.2, there is a (−1)-curve E such that DE = 0.
By Claim 4.2.1, one has (E+L)2 > 0. Since DL = 0, one also has D(E+L) = 0.
This gives a contradiction to the index theorem and so KX + D is nef.
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In particular 0 ≤ (KX + D)2 = K2
X + 2KXD + D2. Since K2

X ≤ 0 and
KXD = −1, we obtain D2 ≥ 2. Since D2 is odd by the adjunction formula, we
have proved the last two assertions.

4.2.3. Claim: there is a positive dimensional linear system |M | whose general
curve M is irreducible, smooth, rational and such that ML = 0. We note first
that mKX + D is orthogonal to L, for any m ∈ N.

If (KX + D)2 = 0, by Proposition 2.4 one has KX + D ≡ (p− 1)G, where |G|
is a pencil of rational curves without base points and we have proven the claim.
If (KX + D)2 > 0, again by Proposition 2.4 the general curve D1 ∈ |KX + D| is
irreducible with pa(D1) < pa(D). If pa(D1) = 0, again we proved the claim.

If pa(D1) > 0 notice that, since D1 is orthogonal to L and D2
1 > 0, we can

show as in Claim 4.2.2 that KX + D1 ≡ 2KX + D is nef. So, by Lemma 2.3,
pa(D1) ≥ 2 and, as in the previous paragraph, by Proposition 2.4, either we find
a linear system as in the claim or the general curve D2 ∈ |KX +D1| is irreducible
and satisfies 0 < pa(D2) < pa(D1) < pa(D).

It is clear that by iterating this procedure we eventually find a linear system
as in the claim.

Now we can finish our proof of this case, and therefore of the theorem.
Consider the positive dimensional linear system |M |, whose existence is proved

in Claim 4.2.3, and let M be a general curve of |M |.
If M2 = 0, then |M | is a base-point-free pencil. Then by [DMP], as re-

called in the introduction, the pencil |M | is as in the statement of Theorem 1.1,
contradicting our assumption.

If M2 > 0, we also have a contradiction. Indeed, since M is rational and
smooth, L is trivial on M and thus, if π : Y → X is the double cover branched
on N1 + · · ·+ N4, one has π∗(M) = M1 + M2, where M1M2 = 0 and M2

i = M2.
Since M2 > 0, this contradicts the index theorem.
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