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Abstract. Let τ be the primitive Dirichlet character of conductor 4, let χ be
the primitive even Dirichlet character of conductor 8 and let k be an integer. We
show that the U2 operator acting on cuspidal overconvergent modular forms of
weight 2k − 1 and character τ has slopes in the arithmetic progression
{2, 4, . . . , 2n, . . . }, and the U2 operator acting on cuspidal overconvergent mod-
ular forms of weight k and character χ · τk has slopes in the arithmetic progres-
sion {1, 2, . . . , n, . . . }.

We also show that the characteristic polynomials of the Hecke operators U2

and Tp acting on the space of classical cusp forms of weight k and character

either τ or χ · τk split completely over Q2.

1. Introduction

Definition 1. Let f be a normalised cuspidal modular eigenform with q-expansion
at ∞ given by

∑∞
n=1 anqn. The (p)-slope of f is defined to be the p-valuation

of ap; we normalise the p-valuation of p to be 1. If we do not specify p, then we
mean the 2-slope.

In this paper, we prove the following theorem on the slopes of classical mod-
ular cusp forms:

Theorem 2. Let τ be the nontrivial character of conductor 4, and let k be a
positive integer. The slopes of the U2 operator acting on S2k−1(Γ0(4), τ) are

2, 4, 6, . . . , 2k − 4.

Let χ be the even primitive Dirichlet character of conductor 8. The slopes of
the U2 operator acting on Sk(Γ0(8), χ · τk) are

1, 2, 3, . . . , k − 2.
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As a corollary of this theorem, we also prove the following result about the
field over which cusp forms of weight k and character χ · τk or τ are defined:

Corollary 3. Let k be a positive integer and let S be either S2k−1(Γ0(4), τ) or
Sk(Γ0(8), χ · τk).

The Fourier coefficients of a normalised eigenform in S are elements of Q2.

This corollary gives a partial answer to an extension of Questions 4.3 and 4.4
of Buzzard [2], which give a conjectural bound on the degree of the field of
definition of certain spaces of modular forms over Qp.

2. Previous work

Matthew Emerton determines in his thesis [12] the smallest slope for the
spaces of modular cuspforms Sk(Γ0(2n), θ), where θ is a primitive Dirichlet char-
acter of conductor 2n.

Theorem 4 (Emerton [12], Proposition 5.1). Let m be a positive integer greater
than 1, and let θ be a primitive Dirichlet character of conductor 2m such that θ(−1)
= (−1)k. The smallest slope of the U2 operator acting on cuspforms of weight k
and character θ is 23−m.

If we look at the character of conductor 4 and the odd character of conduc-
tor 8, there is a CM modular form which is defined over the field Q. We quote
a result of Schoeneberg, proved in Ogg [17]:

Theorem 5 (Ogg [17], Theorem VI.22). Let i be the square root of −1, and
let k be an positive integer greater than 1 and congruent to 1 mod 4. Then there
is a normalised cuspidal modular eigenform in Sk(Γ0(4), τ) with q-expansion

fk(q) =
1
4

∑
m,n∈Z

(m + n · i)k−1 · qm2+n2
= q + (−1)

k−1
4 2

k−1
2 q2 + · · ·

Let l be a positive odd integer greater than 1. Then there is a normalised cuspidal
modular eigenform in Sl(Γ0(8), τ · χ) with q-expansion

gl(q) =
1
2

∑
m,n∈Z

(m + 2n · i)l−1 · qm2+2n2
= q + (−1)

l−1
2 2l−1q2 + · · ·

We see by inspection that the slope of fk is (k−1)/2, and that the slope of gl

is l−1. Hence we can, in certain cases, determine the smallest slope and another
classical slope of U2 acting on modular newforms of level Γ1(4) or Γ1(8) using
previously known results.

Lawren Smithline has also proved results about the slopes of classical modular
forms, and the techniques used in [20] are similar to those in this paper.

Theorem 6 (Smithline [20], Corollary 6.1.3.3). Let v be a non-negative integer
and let k = 2 · 3v+1. Then there are exactly 3v classical modular eigenforms of
weight k and level 3 with 3-slope 3v+1 − 1.
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Buzzard and Calegari [4] have proved the following theorem on the slopes of
overconvergent modular cusp forms:

Theorem 7 (Buzzard-Calegari [4], Corollary 1). Let vp be the p-valuation on Qp,
normalised such that vp(p) = 1. The slopes of the U2 operator on the space of
overconvergent cusp forms of weight 0 are given by

1 + 2v2

(
(3n)!
n!

)
.

Jacobs [14] has proved, using similar techniques, the following theorem:

Theorem 8 (Jacobs, [14]). Let k be a positive integer, and let θ be a primitive
Dirichlet character of conductor 9 such that θ(−1) = (−1)k.

The slopes of the operator U3 acting on Sk(Γ0(18), θ)2−new are given by the
arithmetic progression {1/2, 3/2, 5/2, . . . }.

3. Overconvergent modular forms

A famous quote of Jacques Hadamard [13] says that “the shortest and best
way between two truths of the real domain often passes through the imaginary
one.” It seems that often the best way to prove results like Theorem 2 about
classical modular forms is to prove a theorem for the overconvergent modular
forms and then derive the theorem for classical modular forms as a consequence.
We therefore recall the definition of the 2-adic overconvergent modular forms,
first by defining overconvergent modular forms of weight 0, and then by deriving
the definition for forms with weight and character.

Following Katz [15], section 2.1, we recall that, for C an elliptic curve over an
F2-algebra R, there is a mod 2 modular form A(C) called the Hasse invariant,
which has the q-expansion over F2 equal to 1.

We consider the Eisenstein series of weight 4 and tame level 1 defined over Z,
with q-expansion

E4(q) := 1 + 240
∞∑

n=1


 ∑

0<d|n
d3


 · qn.

We see that E4 is a lifting of A(C)4 to characteristic 0, as the reduction of E4

to characteristic 2 has the same q-expansion as A(C)4, and therefore E4 mod 2
and A(C)4 are both modular forms of level 1 and weight 4 defined over F2, with
the same q-expansion.

If C is an elliptic curve defined over Z2, then the value of E4(C) is not a num-
ber, but an element of H0(C,Ω⊗4

C ), the de Rham cohomology over Z2. However,
this module is a free rank one Z2-module, and so the valuation v2(E4(C)) is
well-defined. This will allow us to define the ordinary locus of X0(2m) and cer-
tain neighbourhoods of it. We follow the work of Coleman [9], and first define
structures on the modular curve X1(2m).
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Definition 9 (Coleman [9], page 448). Consider X1(2m)/Q2 as a rigid analytic
space, and let t be a point of X1(2m).

If t is a point of X1(2m) which corresponds to a cusp, then we define the
valuation v(E4(t)) to be 0, following [3], section 4.

If t is a non-cuspidal point, then it corresponds in a moduli-theoretic way to
a pair (C, P ), where C is an elliptic curve defined over a field extension of Q2

and P is a point on C of exact order 2m.
We define the ordinary locus of X1(2m) to be the set of points t of X1(2m)

such that v2(E4(t)) = 0, and define Z1(2m) to be the rigid connected component
of the ordinary locus in X1(2m) which contains the cusp ∞. This is a rigid
analytic space.

In [11], page 36, it is shown that Z1(2m) is an affinoid subdomain of the rigid
space X1(2m)/Q2 .

We will perform calculations in later sections on the modular curve X0(2m).
As our references [9] and [11] both work with X1(2m), we recall the definition
of X0(2m) to show the applicability of their results to our specific situation.

Definition 10. Consider X1(2m) as a modular curve. We see that the group
G := (Z/2mZ)× acts upon the non-cuspidal points of X1(2m), by the following
action: if a ∈ (Z/2mZ)×, then the action of a sends the pair (C, P ) to (C, aP ).
This action extends to the cuspidal points of X1(2m), and it sends cusps to cusps.

We will define the modular curve X0(2m)/Q2 to be the quotient of X1(2m)
by (Z/2mZ)×.

We note that the action of the group G does not change the valuation of E4(E)
for a given elliptic curve E. We define Z0(2m) to be the rigid connected compo-
nent of the ordinary locus in X0(2m) which contains the cusp ∞. It is a rigid
analytic space.

We will now define strict affinoid neighbourhoods of Z0(2m).

Definition 11 (Coleman [9], Section B2). We think of X0(2m) as a rigid space
over Q2, and we let t ∈ X0(2m)(Q2) be a point, corresponding either to an
elliptic curve defined over a finite extension of Q2, or to a cusp. Let w be a
rational number, such that 0 < w < min(22−m/3, 1/4).

We define Z0(2m)(w) to be the connected component of the affinoid

{t ∈ X0(2m) : v2(E4(t)) ≤ 4w}
which contains the cusp ∞.

The condition involves 4w rather than w because we are working with a lifting
of the fourth power of the Hasse invariant. Also, note that as E4 is a lifting of
the mod 2 modular form A4, and that any another lifting of A4 would be of
the form E4 + 2F , where F is a classical modular form, then this valuation is
well-defined if 0 ≤ v(E4(t)) < 1. This corresponds to the condition 0 ≤ w < 1/4
in Definition 11.

We can now define overconvergent modular forms of weight 0.
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Definition 12 (Coleman [8], page 397). Let w be a rational number, such that
0 < w < min(22−m/3, 1/4). Let O be the structure sheaf of Z0(2m)(w). We call
sections of O on Z0(2m)(w) w-overconvergent 2-adic modular forms of weight 0
and level Γ0(2m). If a section f of O is a w-overconvergent modular form, then
we say that f is an overconvergent 2-adic modular form.

Let K be a complete subfield of C2, and define Z0(2m)(w)/K to be the affinoid
over K induced from Z0(2m)(w) by base change from Q2. The space

M0(2m, w;K) := O(Z0(2m)(w)/K)

of w-overconvergent modular forms of weight 0 and level Γ0(2m) is a K-Banach
space.

We now use non-cuspidal modular forms of the desired weight and character
to define overconvergent modular forms with non-zero weight, so we recall the
definition of Eisenstein series.

Notation 13. We define τ to be the nontrivial Dirichlet character of conduc-
tor 4 and we define χ to be the nontrivial even Dirichlet character of conductor 8.
We will denote an arbitrary primitive Dirichlet character by θ.

Let N be a positive integer, let θ : (Z/NZ)× → C× be a primitive Dirich-
let character, and let k be an integer such that θ(−1) = (−1)k. Recall from
Washington [22, page 30] that the extended Bernoulli numbers Bk,θ are defined
by

N∑
a=1

θ(a) · t · exp(at)
exp(Nt) − 1

=
∞∑

k=0

Bk,θ · ti

i!

We define the normalised Eisenstein series E∗
k,θ to be the modular form with

q-expansion at infinity given by

E∗
k,θ(q) :=

−Bk,θ

2k
+

∞∑
n=1




∑
0<d|n
(d,p)=1

θ(d) · dk−1


 · qn,

where Bk,θ is the extended Bernoulli number attached to k and θ. This notation
follows that defined in Emerton [12], Proposition 3.11.

There is an operator V on the space of modular forms Sk(Γ0(N), θ), which
injects into Sk(Γ0(2N), θ); its effect on q-expansions is to send q to q2. We
define V ∗

k,θ(q) to be V (E∗
k,θ(q)).

Definition 14. Let w be a real number such that 0 < w < min(22−m/3, 1/4).
Let k be an integer and let θ be a character such that θ(−1) = (−1)k, and let K
be a complete subfield of C2. Let E∗

k,θ be the Eisenstein series of weight k and
character θ. Let M0(2m, w;K) be the vector space of q-expansions of overcon-
vergent 2-adic modular forms of weight 0; this is a subspace of K[[q]].
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The space of overconvergent 2-adic modular forms of weight k and character θ
is given by

Mk,θ(2m, w;K) := E∗
k,θ · M0(2m, w; K).

This is a Banach space over K.

Let p be an odd prime. There are continuous Hecke operators Tp which act
on Mk,θ(2m, w;K); the operator U or U2, which is defined on q-expansions as

U2

( ∞∑
n=0

anqn

)
=

∞∑
n=0

a2nqn(1)

is also compact and therefore has a spectral theory1.
We note that the Eisenstein series E∗

k,θ is an eigenfunction of U2, with eigen-
value 1. We also note that U2(V (E∗

k,θ)) = E∗
k,θ, because the action on q-

expansions is to send q to q2 and then back to q. However, V (U2(E∗
k,θ)) = V ∗

k,θ,
because U2(E∗

k,θ) = E∗
k,θ; this means that the order in which V and U2 are

applied matters.
As a consequence of results of Coleman, we have the following theorem:

Theorem 15 (Coleman [9], Theorem B3.2). Let w be a real number such that
0 < w < min(22−m/3, 1/4), let k be an integer and let θ be a character such
that θ(−1) = (−1)k.

The characteristic polynomial of U2 acting on overconvergent 2-adic modular
forms of weight k and character θ is independent of the choice of w.

This theorem allows us to choose a convenient value of w and prove results
for that w, and guarantees that these results will hold for any w.

The connected component in Definition 11 is hard to work with. We will
therefore rewrite it in terms of modular functions of level greater than 1, to
prove the following theorem:

Theorem 16. Let N = 4 or 8, and define w0 to be N/3. The space of w0-
overconvergent modular forms of weight 0 and level N , with coefficients in
Q2(24/N ), is a Tate algebra in one variable over Q2(24/N ).

Proof. We have given a valuation on the points t of the rigid space X0(2m),
based on the lifting of the Eisenstein series E4. We recall that the modular j-
invariant is defined to be j := E3

4/∆. Therefore, we see that, if the elliptic curve
corresponding to t has good reduction, then ∆(t) has valuation 0, and therefore
that

v2(t) =
1
4
v2(E4(t)) =

1
12

v2((E4)(t)3) =
1
12

v2(j(t)).

1The reference [19] calls these operators “completely continuous.”
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From Lemma 2.3 of Emerton [12], we see that there is a modular function j8
which is a uniformiser on X0(8). It has q-expansion at ∞

j8 =
1

q
∏∞

n=1(1 + qn)4(1 + q2n)2(1 + q4n)4
=

(
∆(q)2∆(q4)
∆(q2)∆(q8)2

)1/12

.

Also, j8(∞) = ∞.
There is another modular function j16 which is a uniformiser on X0(16), with

q-expansion at ∞ given by

j16 =
1

q
∏∞

n=1(1 + qn)2(1 + q2n)(1 + q4n)(1 + q8n)2
=

(
∆(q8)∆(q)2

∆(q16)2∆(q2)

)1/24

.

We see also that j16(∞) = ∞.
By an explicit calculation of q-expansions, using the formulae in Chapter 2

of [12], we see that

j =
(j4

8 + 256j3
8 + 5120j2

8 + 32768j8 + 65536)3

j8
8 · (j2

8 + 16j8 + 64) · (j8 + 4)

and
1
j8

=
1

j16
+

2
j2
16

.

Because we know that j8(∞) = ∞, the connected component of Z0(8) which
contains ∞ is of the form v2(j8) < D for some rational number D. We see that,
if v2(j8) < 2, then v2(j8) = v2(j). This means that we have shown that

Z0(8)(w) = {t ∈ X0(8) : v2(j8(t)) ≤ 12w} for 0 < w < 1/6.

Similarly, we see that the connected component of Z0(16) which contains ∞ is
of the form v2(j8) < D for some rational number D. We see that, if v2(j16) < 1,
then v2(j16) = v2(j8), and therefore that v2(j16) = v2(j). This means that we
have shown that

Z0(16)(w) = {t ∈ X0(8) : v2(j16(t)) ≤ 12w} for 0 < w < 1/12.

We now define another modular function on X0(2m), in terms of Eisenstein
series. Define modular functions on X0(8) and X0(16) by

z4 :=
E∗

1,τ/V ∗
1,τ − 1
2

=
2

j8 + 2
(2)

and

z8 :=
E∗

1,χτ/V ∗
1,χτ − 1√
2

=
√

2
j16 + 2

,(3)

where we choose and fix a square root of 2 in C2.
We also have the identity

z4 =
√

2z8

1 + 2z2
8

.(4)
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These identities can all be verified by explicit calculation. Let w be a rational
number such that 0 < w < 1/6. Then using the formulae above, we see that

Z0(8)(w) = {t ∈ X0(8) : v(z4(t)) ≥ 1 − 12w} .

We now choose w = 1/12, to obtain

Z0(8)(1/12) = {t ∈ X0(8) : v(z4(t)) ≥ 0} .

Now, the rigid functions on the closed disc over Q2 with centre 0 and radius 1
are defined to be power series of the form∑

n∈N

anzn : an ∈ Q2, an → 0.

Therefore, the 1/12-overconvergent modular forms of level Γ0(4) and weight 0
are

Q2〈z4〉,
which is what we wanted to show. We now follow the same procedure for X0(16).
Let w be a rational number such that 0 < w < 1/12. Then using the formulae
above, we see that

Z0(16)(w) = {t ∈ X0(16) : v(z8(t)) ≥ 1/2 − 12w} .

We now choose w = 1/24, to obtain

Z0(16)(1/24) = {t ∈ X0(16) : v(z8(t)) ≥ 0} .

Now, the rigid functions on the closed disc over Q2 with centre 0 and radius 1
are defined to be power series of the form∑

n∈N

anzn : an ∈ Q2(
√

2), an → 0.

Therefore, the 1/24-overconvergent modular forms of level Γ0(8) and weight 0
are

Q2(
√

2)〈z8〉,
so we have shown that these spaces of modular forms are Tate algebras in one
variable.

We now show that the odd powers of zN are sent to 0 under the U2 operator.

Lemma 17. Let N = 4 or 8 and let i be a non-negative integer. Then

U2(z2i+1
N ) = 0, and U2(z2i

N ) =
(
U2(z2

N )
)i

.(5)

Proof. For this proof, we will take θ to be a primitive Dirichlet character of
conductor N , such that θ(−1) = (−1)k.



SLOPES OF 2-ADIC OVERCONVERGENT MODULAR FORMS 731

We recall from the discussion after equation (1) that the Eisenstein series E∗
k,θ

is an eigenfunction with eigenvalue 1 for U2, and that U2(V (E∗
k,θ)) = E∗

k,θ. Then
we see that we have (for µ = 2 or

√
2):

U2(zN ) = U2

(
E∗

k,θ/V ∗
k,θ − 1

µ

)
=

1
µ
· U2

(
E∗

k,θ − V ∗
k,θ

V ∗
k,θ

)

=
1

µE∗
k,θ

· U2(E∗
k,θ − V ∗

k,θ) =
1

µE∗
k,θ

· (E∗
k,θ − E∗

k,θ) = 0.

Hence we see that zN has only odd power q-expansion coefficients, and that
therefore z2

N has only even power q-expansion coefficients. Let i be a non-
negative integer. Then z2i+1

N has only odd power q-coefficients. Hence for all i,
we see that

U2

(
z2i+1
N

)
= 0.

Because we have just shown that zN has only odd power q-coefficients, we see
that

zN = qF (q2) = qV (F (q)),

for some power series F (q). Therefore we have

U2(z2i
N ) = U2(q2iV (F (q)2i)) = U2(V (qiF (q)2i)),

and hence we see that

U2(z2i
N ) = qiF (q)2i =

(
qF (q)2

)i
= U2(z2

N )i,

which proves the Lemma.

We have written down the overconvergent modular forms as an explicit Ba-
nach space. This means that we can write down its Banach basis: the set{
z4, z

2
4 , z3

4 , . . .
}

forms a Banach basis for the overconvergent modular forms of
weight 0 and level Γ0(4) and the functions

{
z8, z

2
8 , z3

8 , . . .
}

form a Banach basis
for the overconvergent modular forms of weight 0 and level Γ0(8). These Ba-
nach bases are composed of weight 0 modular functions — we want to be able
to consider the action of the U2 operator on overconvergent modular forms with
non-zero “weight-character” (k, θ) (here, as in the Lemma, θ has conductor 4
or 8 and θ(−1) = (−1)k). Using an observation from the work of Coleman [9], we
will be able to move between weight-character (0, 1) and weight-character (k, θ)
via multiplication by a suitable quotient of modular forms.

Let F be an overconvergent modular form of weight-character (k, θ) which
has nonzero constant term, and let z be an overconvergent modular function
of weight 0. In particular, we note that F may have negative weight. From
the discussion in Coleman [9, page 450] we see that the pullback U2 of the U2

operator acting on overconvergent modular forms of weight-character (k, θ) to
weight 0 is 1/F · U2(z · F ).
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Now by equation 3.3 of [10] we have that U2(z · V (F )) = U2(z) · F . We
therefore consider the modular form H = V (G), and substitute H for F in the
formula we have just derived for U2(z · V (F )), to obtain:

U2(z · V (G)) =
1

V (G)
· U2(z · V (G)) =

G

V (G)
· U2(z).

We now let k be an integer, and s be either 0 or 1.
We now choose G = (E∗

1,χτ )k · (E∗
1,τ )s, so the characteristic power series of U2

acting on overconvergent modular forms of weight-character (k + s, χk · τk+s) is
the same as the composition of multiplication by (E∗

1,χτ/V ∗
1,χτ )k · (E∗

1,τ/V ∗
1,τ )s

with U2 acting on overconvergent modular forms of weight-character 0. We
record this as the following Definition.

Definition 18 (The twisted U2 operator). Let k be an integer, and s be either 0
or 1.

The twisted U2 operator acting on forms of weight-character (k + s, χk · τk+s)
is defined to be the composition of multiplication by (E∗

1,χτ/V ∗
1,χτ )k · (E∗

1,τ/V ∗
1,τ )s

with U2 acting on overconvergent modular forms of weight-character 0.

We can consider the action of this twisted U2 operator on these spaces of
overconvergent modular forms.

Definition 19 (The matrix of the twisted U2 operator). Let k be an integer and
let s be 0 or 1.

Let M = (mi,j) be the infinite compact matrix of the twisted U2 operator
acting on overconvergent modular forms of weight-character (k + s, χk · τk+s),
where mi,j is defined to be the coefficient of zi

N in the zN -expansion of

U2(z
j
N ) · (E∗

1,χτ/V ∗
1,χτ )k · (E∗

1,τ/V ∗
1,τ )s.

We note that the entries of M are functions of k, s, τ, and χ.
We know that U2 is a compact operator, so we can show that the trace,

determinant and characteristic power series of M are all well-defined. We will
use a theorem of Serre to prove our theorem on the slopes of U2 acting on M .

Theorem 20 (Serre [19], Proposition 7). 1. Let Mn be an n × n matrix de-
fined over a finite extension of Q2. Let det(1− tMn) =

∑n
i=0 cit

i. Let Mm

be the matrix formed by the first m rows and columns of Mn.
Assume that there exists a constant r ∈ Q× such that

(a) For all positive integers m such that 1≤m≤n, the valuation of det(Mm)
is r · m(m+1)

2 .
(b) The valuation of elements in column j is at least r · j.

Then we have that, for all positive integers m such that 1 ≤ m ≤ n,
v2(cm) = r · m(m+1)

2 .
2. Let M∞ be a compact infinite matrix (that is, the matrix of a compact

operator). If Mm is a series of finite matrices which tend to M∞, then
the finite characteristic power series det(1− tMm) converge coefficientwise
to det(1 − tM∞), as m → ∞.
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We now quote a result of Coleman that tells us that overconvergent modular
forms of small slope are in fact classical modular forms:

Theorem 21 (Coleman [8], Theorem 1.1). Let k be a non-negative integer. Ev-
ery 2-adic overconvergent modular eigenform of weight k with slope strictly less
than k − 1 is a classical modular form.

We will now state the theorem on the slopes of overconvergent modular forms
of weight-character (2k − 1, τ) and weight-character (k, χ · τk). This, combined
with Theorem 21 and a knowledge of the dimensions of spaces of classical cusp
forms, will suffice to prove Theorem 2 and Corollary 3.

Theorem 22. Let k be an integer, let τ be the primitive Dirichlet character of
conductor 4 and let χ be the even primitive Dirichlet character of conductor 8.

1. The slopes of overconvergent 2-adic cuspidal eigenforms of weight 2k − 1
and character τ are {2, 4, 6, . . . , 2n, . . . }.

2. The slopes of overconvergent 2-adic cuspidal eigenforms of weight k and
character χ · τk are {1, 2, 3, . . . , n, . . . }.

We now recall without proof a theorem of Cohen and Oesterlé:

Theorem 23 (Cohen-Oesterlé [7], Théorème 1). Let θ be a primitive Dirichlet
character of conductor 2m > 2, and let k be a positive integer. We assume
that θ(−1) = (−1)k.

The dimension of the space of cuspidal modular forms of weight-character (k, θ)
is

2m−3(k − 1) − 1.

Proof of Theorem 2. We see that, for m = 2 or 3, the slopes of the first 2m−3(k−
1) − 1 overconvergent modular forms of level Γ0(2m) and primitive Dirichlet
character of conductor 2m are

23−m, 24−m, . . . , k − 1 − 23−m.

Using Theorem 21, we see that all of these slopes are classical, because k − 1 −
23−m < k − 1.

We will now recall a fact from Ribet [18], page 21, to prove Corollary 3.

Proof of Corollary 3. Let f be a (nonzero) normalised classical modular eigen-
form of integer weight k, level Γ0(4) or Γ0(8) with (primitive Dirichlet) char-
acter θ of conductor 4 or 8 respectively. Let σ be an element of Gal(Q2/Q2).
Then we have that

σ(f) :=
∞∑

n=1

σ(an)qn

is a classical cuspidal modular eigenform of weight-character (k, θ), because θ
takes values in Q2, and hence is invariant under conjugation.
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We see that the valuation of σ(a2) is the same as that of a2, because the
characteristic polynomial of a2 is stable under conjugation by σ. Therefore, σ(f)
is an eigenform of weight-character (k, θ) with the same slope as f . Hence σ(f) =
f , because there is only one classical eigenform of weight-character (k, θ) which
has any given slope, by Theorem 21 and Theorem 22. This means that σ(f) = f
for all σ. Therefore an ∈ Q2 for all positive integers n.

4. Proving that Theorem 20 can be applied to the matrix M of
the U2 operator

Proof of Theorem 22. For this section, θ will be a primitive Dirichlet character
of conductor N = 4 or 8. We will define k to be either an odd integer, if N = 4,
or an arbitrary integer if N = 8. We define s to be 1 if k is even, and 0 if k is odd.
We recall that we have defined τ to be the primitive odd Dirichlet character of
conductor 4, and χ to be the primitive even Dirichlet character of conductor 8.

We would like to apply Theorem 20 to prove Theorem 22 on the slopes of
the U2 operator on forms of weight-character (k, θ). The matrix M which we
defined earlier (Definition 19) is the matrix of the twisted U2 operator of weight-
character (k, θ), which we defined in Definition 18.

As the calculations which will show this are quite complicated, we will give a
plan for the proof here.

Plan for the proof of Theorem 22. In this section, we will show that we can
apply Theorem 20, which will prove Theorem 22. First we fix an arbitrary posi-
tive integer n, an integer k and a primitive Dirichlet character θ of conductor N
such that θ(−1) = (−1)k.

We will begin with the matrix M2n; the matrix formed by the first 2n rows
and 2n columns of M , the matrix of the twisted U2 operator acting on forms of
weight-character (k, θ) defined in Definition 18. The proof will then proceed in
the following way:

1. Define the matrix (On)i,j := (M2n)2i,2j; this matrix consists of the ele-
ments of M2n in even numbered columns and even-numbered rows.

2. Let α be 2 if N = 4, and a square root
√

2 of 2 if N = 8. Define the
matrix D(β) to be the diagonal matrix with βi in the ith row and the ith
column. We define the matrix O′

n := D(α−1) · On · D(α).
3. We then show that the valuation of elements in the ith column of O′

n

are 8i/N ; this verifies condition (b) of Theorem 20, with r = 8/N .
4. We finally show that O′

n has determinant of valuation 8/N · n(n + 1)/2,
by considering the matrix Pn := D(α−2) · O′

n. By showing that Pn has
determinant of valuation 0, it can be seen that the valuation of the de-
terminant of O′

n is the valuation of the determinant of D(α2), which
is 8/N · n(n + 1)/2. This will verify condition (a) of Theorem 20, again
with r = 8/N .

At each step of this plan, we must show that the characteristic polynomial of
the new matrix defined is the same as that of Mn. In the last step, we will show
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that Pn has unit determinant by reducing it modulo a prime ideal above 2 and
showing that this reduction has determinant 1. This means that we must prove
that Pn has coefficients which are in the ring Z2[α].

4.1. Defining On. We first note that the odd-numbered columns of the ma-
trix M are identically zero, because we have shown that U2(z2a+1

N ) = 0, where a
is a non-negative integer, and the columns of M are defined to be the coefficients
of zN in the zN power series expression of

U2(z2a+1
4 ) · (E∗

1,τ/V ∗
1,τ )k or U2(z2a+1

8 ) · (E∗
1,χτ/V ∗

1,χτ )k(6)

if N = 4 or N = 8 and k is odd, or

U2(z2a+1
N ) · (E∗

1,χτ/V ∗
1,χτ )k−1 · E∗

1,τ/V ∗
1,τ(7)

if N = 8 and k is even. Therefore, we will fix a positive integer n and de-
fine another matrix which has the same characteristic power series as the finite
matrix Mn. We will then apply Theorem 20 to this new matrix.

In equation (7), we choose this particular multiplier when k is even and N = 8
so that the modular form (E∗

1,χτ )k−1E∗
1,τ has character of conductor exactly 8.

This would not be the case if we used (E∗
1,χτ )k. We also note that

E∗
1,τ/V ∗

1,τ = 1 +
2
√

2z8

1 + 2z2
8

;

this follows from identity (4). Using this identity, we can compute the z8-
expansion of the product in equation (7).

We consider the matrix On, defined by

(On)i,j := (M2n)2i,2j , where 1 ≤ i, j ≤ n.

This has the same characteristic power series as M2n because M2n only has en-
tries on the even-numbered columns; we consider the finite characteristic power
series of On because we will apply the theorem of Serre (Theorem 20) to use
information about the finite truncations M2n to prove results about the infi-
nite characteristic power series of M . We now show that the matrices On have
determinant of valuation 8/N ·n(n+1)/2, in order to be able to use Theorem 20.

4.2. Defining O′
n. To do this we will pre- and post-multiply the matrix On

by diagonal matrices to obtain a matrix O′ which has elements of valuation at
least 8i/N in column i. Let D(α) be the diagonal matrix with αi in the ith row
and ith column. We let α be 2 if N = 4 and a square root of 2 if N = 8, and we
define

O′
n = D(α−1) · On · D(α).

We see by the definition of characteristic power series that the characteristic
power series of On and of O′

n are the same.
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4.3. Checking the valuation of elements in the ith column. We will now
show that the valuation of the elements in the ith column of O′ is at least 8i/N ,
by considering the power series that gives the ith column. There are identities
of modular functions

U2(z2
4) =

2z4

(1 + 2z4)2
and U2(z2

8) =
√

2z8

1 + 2z2
8

,

where we have chosen and fixed a square root of 2 in Q2(
√

2).
The ith element of the (2j)th column of the matrix M of the twisted U2

operator on overconvergent modular forms of weight-character (k + s, χk+sτ s) is
given by the coefficient of zi

4 in

f(z4) := U2(z
2j
4 ) · (E∗

1,τ/V ∗
1,τ )k =

(
2z4

(1 + 2z4)2

)j

· (1 + 2z4)k if N = 4

—this follows from Lemma 17 and equation (6) — or the coefficient of z8 in

g(z8) := U2(z
2j
8 ) · (E∗

1,χτ/V ∗
1,χτ )k−s · (E∗

1,τ/V ∗
1,τ )s

=

( √
2z8

1 + 2z2
8

)j

· (1 +
√

2z8)k−s ·
(

1 +
2
√

2z8

1 + 2z2
8

)s

if N = 8;

— this follows from Lemma 17 and equation (7).
The definition of the matrix On when N = 4 (the i, jth entry of On is

the 2i, 2jth entry of M2n) means that the i, jth entry of On is given by the
coefficient of z2i

4 in f(z4).
The i, jth entry of On is also given by the coefficient of z2i

4 in 1/2(f(z4) +
f(−z4)); we note that this sum has only even powers of z4 appearing in it. This
sum is

f(z4) + f(−z4)
2

=
1
2
(2z4)j ·

(
(1 + 2z4)k

(1 + 2z4)2j
− (1 − 2z4)k

(1 − 2z4)2j

)
Similarly, the definition of the matrix On when N = 8 means that the i, jth

entry of On is given by the coefficient of z2i
8 in g(z8).

The i, jth entry of On is also given by the coefficient of z2i
8 in 1/2(g(z8) +

g(−z8)); again, we note that this sum has only even powers of z8 appearing in
it. This sum is given by

(
√

2z8)j

2

(
(1 +

√
2z8)k−s

(1 + 2z2
8)j

·
(

1 +
2
√

2z8

1 + 2z2
8

)s

− (1 −√
2z8)k−s

(1 + 2z2
8)j

·
(

1 − 2
√

2z8

1 + 2z2
8

)s)
.

The effect of the conjugation of On by the matrices D(α) and D(α−1) is that
the ith element of the jth column of the matrix O′

n = D(α−1) ·On ·D(α) is given
by the coefficient of z2i

N in either

4j ·
(

z4

(1 + z4)2

)j

· (1 + z4)k(8)
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or

(4z4)j

2
·
(

(1 + z4)k

(1 + z4)2i
− (1 − z4)k

(1 − z4)2i

)
(9)

if N = 4 or the coefficient of z2i
N in either

2j ·
(

z8

1 + z2
8

)j

· (1 + z8)k−s ·
(

1 +
2z8

1 + z2
8

)s

(10)

or

(2z8)j

2

(
(1 + z8)k−s

(1 + z2
8)i

·
(

1 +
2z8

1 + z2
8

)s

− (1 − z8)k−s

(1 + z2
8)i

·
(

1 − 2z8

1 + z2
8

)s)
,(11)

if N = 8.
We see from the formulae (8) and (10) that all of the elements of the ith

column of O′
n have valuation at least 8i/N , because there is a multiplier of the

correct valuation in front of the rational function of zN . Therefore we have
shown that assumption (b) of Theorem 20 is satisfied.

We will show that the matrix O′
n has determinant with valuation 8/N ·n(n+

1)/2 — assumption (a) of Theorem 20 — by showing that it is the product of
two matrices, one of which is the diagonal matrix D(α2), and one of which is
the matrix Pn defined in the Plan. We now define Pn and show that it has unit
determinant.

4.4. Defining Pn. We define the matrix Pn to be D(α2)−1 · O′
n. The entries

of Pn are given by Pi,j = α−2i · O′
i,j and are therefore elements of the ring of

integers of Q2(
√

2), because the valuation of elements in the ith column of O′
n is

at least i. Therefore, we can define the matrix P ′ by reducing the entries of Pn

modulo a prime above 2; if P ′
n has determinant 1 in F2 then O′ has determinant

of valuation 8/N · n(n + 1)/2.
In fact, the elements of Pn can be obtained easily from the elements of Mn.

Let α be 2 if N = 4 and a square root of 2 if N = 8; the formula for an element
of Pn in terms of an element of M2n is

(Pn)i,j = α−2i · (M2n)2i,2j .

We see from the formulae (9) and (11) for the columns of O′
n that the ith

element of the (2l + 1)th column of the mod 2 matrix Pn in weight k is given by
the coefficient of x in

c2l+1 =
xl+1y2l+1 · (1 + x)(k−1−s)/2

(1 + x)2l+1
,

and the ith element of the (2l)th column of the matrix Pn in weight k is given
by the coefficient of x in

c2l =
xly2l · (1 + x)(k−1−s)/2

(1 + x)2l
.
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We obtain these formulae by considering the formulae given before for the
columns of the matrix O′

n, and noticing that, if a is a non-negative integer,
we can write (1 + zN )2a+1 = (1 + zN ) · (1 + z2

N )a in characteristic 2. This allows
us to work out what the even-indexed entries of the matrix M2n are. Notice also
that the part of g(z8) which is raised to the power s reduces to 1 modulo 2, as
it has numerator 2z8. This is why there is a −s in the power of (1 + x) in the
numerator.

4.5. Showing that Pn has unit determinant. I would like to thank Robin
Chapman [6] for the idea behind the following proof. To show that the n ×
n mod 2 matrix has determinant 1, we will show that the elements C :={
c′1 = c1 · (1 + x)N , . . . , c′N = cN · (1 + x)N

}
are a basis of the F2-algebra

F2[x]/(xN+1). Because (1 + x) is a unit in the ring, we may multiply each ci

by (1+x)N−i to make the calculations easier. We see that there are exactly the
right number of elements, so we must check that they are linearly independent.

We write
∑N

i=1 λic
′
i = 0. We will show that all of the λi = 0, so that the

columns are linearly independent. We see that the element c′1 = x(1 + x)N−1 is
the only element of the set C which has an xN term. Therefore λ1 = 0. Also,
we see that c′2 = x(1 + x)N−2 is now the only nonzero term with an x term, so
therefore λ2 = 0.

By continuing this process, we show that each λi must be zero. Therefore the
set C is composed of linearly independent elements and hence it is a basis. So
the determinant of the mod 2 matrix is 1. Hence we have proved assumption (a)
of Theorem 20 and therefore Theorem 22.
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