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UNIQUENESS OF JOSEPH IDEAL

Wee Teck Gan and Gordan Savin

1. Introduction

Let g be a simple complex Lie algebra. By the PBW theorem, the universal
enveloping algebra U(g) has a filtration Un−1(g) ⊂ Un(g) so that Un(g)/Un−1(g)
is naturally isomorphic to the n-th symmetric power Sn(g) of g. For any two-
sided ideal J of U(g), we can associate an ideal J = gr(J ) in the symmetric
algebra S(g) = ⊕∞

n=0S
n(g) defined by

J = ⊕∞
n=1Jn/Jn−1

where Jn = J ∩ Un(g). The zero set defined by J in g ∼= g∗ is the associated
variety of J and will be denoted by Ass(J ). If J is primitive, then Ass(J ) is
contained in the nilpotent cone of g.

The Lie algebra g has a unique minimal (non-trivial) nilpotent orbit Omin. If
α is the highest root, and (eα, hα, e−α) is the standard sl(2)-triple corresponding
to α, then Omin is simply the adjoint orbit of eα.

In an important paper [J], Joseph constructed a completely prime 2-sided
primitive ideal J0 whose associated variety is Ōmin. He also derived a number
of properties of J0; for example he computed its infinitesimal character. We
shall refer to J0 as the Joseph ideal. Joseph also proved that, when g is not
of type A, J0 is the unique completely prime two-sided ideal whose associated
variety is the closure of the minimal orbit. However, it was noticed by the second
author [S] that there is a gap in Joseph’s proof, namely in the proof of [J, Lemma
8.8] (see the remark at the end of §2). This is somewhat undesirable, given the
subsequent importance of the Joseph ideal in representation theory, especially
in the theory of minimal representations.

In this paper, we provide a simple proof of the uniqueness of the Joseph ideal.
Our proof is different from the one envisioned in Joseph’s original paper [J]. It
is possible that the uniqueness can be deduced from some other results in the
literature. For example, Braverman and Joseph have informed us that it should
be a consequence of the results of their paper [BJ]. There, they considered a
one-parameter (non-commutative) deformation of the coordinate ring of Ōmin

and showed that there is a unique deformation which gives rise to the Joseph
ideal. This gives an alternative construction of the Joseph ideal. However, to
show uniqueness, one would need to show that given a completely prime ideal
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J with associated variety Ōmin, U(g)/J belongs to the one-parameter family
of deformations considered in [BJ]. This does not seem to be addressed in [BJ],
but could perhaps be shown using Proposition 2.1 below.

2. Joseph Ideal

We assume henceforth that g is not of type A and begin by describing some
results of Kostant and Garfinkle [G].

Let J0 be the prime ideal in the symmetric algebra S(g) corresponding to
the closure of the minimal nilpotent orbit in g∗. Kostant has shown that, as a
g-module,

S(g)/J0 =
∞∑

m=0

V (mα),

and that J0 is generated by a g-submodule V (0) + W in S2(g), such that

S2(g) = V (2α) ⊕ V (0) ⊕ W.

The structure of W was determined by Garfinkle as follows.

Assume first that g is not of type Cn. Let m be the centralizer of hα. It is
a reductive subalgebra whose simple roots are precisely the simple roots of g

perpendicular to α. Write [m,m] = ⊕mi as a direct sum of simple summands.
Let αi be the highest root of the summand mi. Then, if g is not of type Cn

W = ⊕iV (α + αi).

Note that each irreducible g-module V (α+αi) can be considered, in a canonical
fashion, as a submodule of U2(g), as it appears with multiplicity one there.

On the other hand, if g is of type Cn, then [m,m] is simple of type Cn−1, so
that there is a unique α1 (the highest root of [m, m]). In this case,

W = V (α + α1) ⊕ V (
1
2
(α + α1)).

Now we have a crucial proposition:

Proposition 2.1. Let J be a completely prime ideal in U(g) such that Ass(J ) =
Ōmin. Then J contains W and Ω − c, where Ω is the Caismir element of U(g)
and c is a constant.

Proof. If Ass(J ) = Ōmin, then J contains a power of J0. Since Jk
0 is generated

by the symmetric power Sk(V (0) + W ) over S(g), it follows that the g-types of
Jk

0 /Jk+1
0 are contained in

Sk(V (0) + W ) ⊗ (⊕∞
m=0V (mα)).

Thus, the highest weights of g-types in S(g)/J are located on finitely many lines
parallel to α. In particular, for all sufficiently large integers n, V (nα+nαi) does
not appear as a submodule of S(g)/J . Since S(g)/J is isomorphic to U(g)/J as
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a g-module, V (nα + nαi) does not appear as a submodule of U(g)/J for large
n.

Thus, if a is a highest weight vector of an irreducible constituent of W ⊂
U2(g), then an = 0 (modulo J ) for sufficiently large n. Since J is completely
prime, a must be in J , so that the first part holds.

Similarly, since the multiplicity of the trivial g-module in U(g)/J is finite,
P (Ω) is in J for some polynomial P . Since P can be factored into linear factors,
and J is completely prime, it follows that P can be taken to be of degree one.

In [J], Joseph constructed a primitive ideal J which is completely prime with
Ass(J ) = Ōmin, and computed its infinitesimal character. Using Proposition
2.1, we can now give an alternative description of J .

Proposition 2.2. (Garfinkle [G]) The Joseph ideal J is equal to the ideal J0

generated by W and Ω− c0, where c0 is the eigenvalue of Ω for the infinitesimal
character that Joseph obtained.

Proof. Proposition 2.1 implies that the Joseph ideal J contains W . Since Ω−c0

is in J as well, it follows that J ⊇ J0 and, for their graded versions, J ⊇
J0. If J0 
= J , then since J0 is prime, the associated variety of J would be a
proper invariant subvariety of Ōmin. It follows that Ass(J ) = {0}. This is a
contradiction, and thus J = J0, which implies that J = J0. The proposition is
proved.

Remarks: Garfinkle’s proof of this proposition is based on the uniqueness of
the Joseph ideal. The proof of uniqueness, however, has a gap in [J, Lemma
8.8]. More precisely, using the notations of [J], several lines before the end of
the proof, there is an equation

anun + . . . u0 = 0.

Since a is in J0, Joseph concluded that u0 is in J0. This is the mistake. Indeed,
the above equation only holds modulo J . So one can only conclude that u0 is in
J + J0 = U(g), unless J0 ⊇ J , which is what Joseph wanted to prove with this
argument.

3. Uniqueness of J0.

In this section we shall prove the uniqueness of J0 when g is not of type A.

Theorem 3.1. Let g be a simple complex Lie algebra which is not of type A. Let
J be a completely prime two-sided ideal in U(g) such that its associated variety
is Ōmin. Then J is the Joseph ideal J0.

Proof. By Proposition 2.1, J contains W and Ω−c for some constant c. In view
of Garfinkle’s results, to show that J = J0, we need to show that c = c0, where
c0 is the eigenvalue of Ω for J0.
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Now the value of c is determined by the intersection

(g + Ω · g) ∩ J .

Since J contains W , to show that J is equal to J0 (i.e. c = c0), it suffices to
show that

g · W ∩ (g + Ω · g) 
= 0.

Indeed, this will show that c is independent of J . It will be more convenient to
pass to the symmetric algebra S(g), where we need to prove that

g · W ⊃ Ω · g.

To do so, we need to recall some results of Chevalley and Kostant [K] on the
decomposition of S(g) with respect to the adjoint action. Every element x in g

defines a first order differential operator Dx on S(gC) by

Dx(y) = 〈x, y〉
where y is in g = S1(g), and 〈x, y〉 is the Killing form. Let Z be the subring of
invariant polynomials in S(g). Then

Z = C[ω1, . . . , ωn]

where ωi are invariant polynomials of degree di + 1, and di are the exponents of
g. We shall assume that d1 = 1, so that ω1 = Ω is the Casimir operator. Recall
that Ω =

∑
i eie

′
i, where (ei) is any basis of g, and (e′i) the corresponding dual

basis. The following is a reinterpretation of [K]:

Proposition 3.2. Let Z+ be the augmentation ideal in Z. Let ω be in Z+. It
defines an element Aω in Hom(g, U(g)) such that Aω(x) = Dx(ω). Moreover,
ω �→ Aω defines an isomorphism between Z+ and Hom(g, S(g)), decreasing
degree by one.

Now note the following proposition:

Proposition 3.3. Let V be an irreducible constituent of W . Then g ·V ⊆ S3(g)
contains a submodule isomorphic to g.

Proof. Let DΩ be the differential operator corresponding to the Casimir element
Ω. Invariance of Ω implies that DΩ is a homomorphism from S3(g) to S1(g). It
suffices to show that DΩ is non-trivial when restricted to the subspace g · V .

To see this, observe that for any p ∈ S2(g) and x ∈ g,

DΩ(xp) = 2Dx(p).

Thus, given non-zero p, one can always find x such that DΩ(xp) 
= 0. This
proves the proposition.

Remarks: In fact, the multiplicity of g in gV is 1. To see this, note that one
has inclusions:

Hom(gV, g) ⊂ Hom(g ⊗ V, g) = Hom(V, g ⊗ g),
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and the latter space has dimension 1, as shown in [BJ, Lemma 4.4].

We can now finish the proof of theorem. Checking out the exponents, Prop.
3.2 implies that

dimHom(g, S3(g)) =




1, if g is exceptional;
2 if g has type Bn, Cn (n ≥ 2) or Dn (n > 4);
3 if g has type D4.

Observe that this number is equal to the number of irreducible constituents of
W .

It follows that for exceptional Lie algebras, Ω · g is the unique summand
in S3(g) isomorphic to g. Proposition 3.3 implies that g · V (α + αi) (now αi

is unique) contains Ω · g and therefore the theorem follows for exceptional Lie
algebras.

The above argument can be adapted to D4 by making use of the group of
outer automorphisms Σ ∼= S3 of D4. The group Σ acts on Hom(g, S3(g)) which
is isomorphic to Z4 by Prop. 3.2. The latter space can be easily decomposed
under the action of Σ. It has a line fixed by Σ, and the two dimensional com-
plement is the irreducible representation r of Σ ∼= S3. Clearly, the fixed line in
Hom(g, S3(g)) corresponds to Ω · g. On the other hand, since Σ permutes the
three simple roots αi, the contribution of

∑
i g · V (α + αi) to Hom(g, S3(g)) is

Σ-invariant. Next, note that DΩ induces a Σ invariant map from Hom(g, S3(g))
to Hom(g, S1(g)). It follows that DΩ annihilates r ⊗ g. On the other hand, DΩ

does not annihilate g · W . It follows that Ω · g is contained in g · W , as desired.

Finally, we are left with the classical cases: Cn (n ≥ 2), Bn (n ≥ 2) and Dn

(n > 4). The argument we provide below is due to N. Wallach. Here, W has
2 irreducible constituents V1 and V2, and we need to show that the two copies
of g in g · V1 and g · V2 are different. By Prop. 3.2, we know that there are 2
invariant polynomials q1 and q2 of degree 4 which give rise to these two copies
of g in S3(g). Thus, we need to show that q1 is not a multiple of q2.

How can one obtain the invariant qi from Vi? Well, the representation Vi

possesses an invariant symmetric bilinear form, and thus there is an invariant
polynomial Qi in S2(Vi). If πi : S2(g) −→ Vi is the projection, then

qi(x) = Qi(πi(x2)) for x ∈ g.

We do not know how to show that qi is non-zero from general considerations.
However, for the cases at hand, this will be shown in the course of the argument
below.

Another description of qi is as follows. If {vj} is a basis of Vi, and Qi =∑
j≤k ajkvjvk is an invariant quadratic form on Vi, then qi is the image of Qi

under the natural map S2(S2(g)) −→ S4(g). In other words, qi is equal to
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Qi regarded as a quartic polynomial on g (by regarding the vj ’s as quadratic
polynomials on g). From this second description, it is clear that if x ∈ g, then

Dx(qi) =
∑
j≤k

ajk · (Dx(vj)vk + vjDx(vk)) ∈ g · Vi.

This shows that qi indeed gives rise to a copy of g in g · Vi (as long as qi is
non-zero).

We are now ready to finish the proof for the classical cases. Let us begin
with an observation. If V is the standard representation of a classical g, so that
V possesses a g-invariant form 〈−,−〉, then Sk(V ) and ∧kV inherit a non-zero
g-invariant form:{

〈a1a2...ak, b1b2....bk〉Sk(V ) =
∑

σ∈Sk

∏
i〈ai, bσ(i)〉

〈a1 ∧ a2... ∧ ak, b1 ∧ b2.... ∧ bk〉∧kV =
∑

σ∈Sk
sign(σ)

∏
i〈ai, bσ(i)〉.

In the following, we shall use these bilinear forms on the symmetric and exterior
algebra.

Now consider the orthogonal case (type B or D). We realize g as the Lie
algebra of n×n skew-symmetric matrices, so that g ∼= ∧2

C
n. Let us write down

the invariant polynomial q1. The map

π′
1(a ⊗ b) =

1
2
(ab + ba), a, b ∈ g

defines an equivariant map from S2(g) onto the space S2(Cn) of n×n symmetric
matrices. Since S2(Cn) ∼= C ⊕ V1, the projection π1 is given by:

π1(a ⊗ b) = π′
1(a ⊗ b) − 1

n
Tr(π′

1(a ⊗ b)) · In

where In is the identity matrix and Tr is the trace map. Since the degree 2
invariant on V1 is simply the map X �→ Tr(X2), we get:

q1(a) = Tr
(
(π1(a ⊗ a))2

)
.

In particular, if a0 = e1 ∧ e2 ∈ ∧2
C

n, a simple computation shows that

q1(a0) =
2
n
· (n − 2) 
= 0.

On the other hand, the representation V2 is isomorphic to ∧4
C

n (this is irre-
ducible if n = 5, 7 or n > 8), and the projection π2 : S2(g) −→ ∧4

C
n is given

by:

π2(a ⊗ b) = a ∧ b for a, b ∈ g.

Since π2(a0 ⊗ a0) = 0, we deduce that

q2(a0) = Q2(π2(a0 ⊗ a0)) = 0.

Now to see that q2 is non-zero, note that for x ∈ g = ∧2
C

n, we have

q2(x) = 〈x ∧ x, x ∧ x〉∧4Cn ,
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and a short computation gives:

q2(e1 ∧ e2 + e3 ∧ e4) = 1.

We thus conclude that q1 and q2 are non-zero and linearly independent, as
desired.

Finally, we come to the case Cn (n ≥ 2), which is somewhat more complicated.
Let {e1, e2, .., en, e−1, e−2, ..., e−n} be the standard basis for C

2n, equipped with
the skew-symmetric form ω defined by ω(ei, e−j) = δij and ω(ei, ej) = ω(e−i, e−j)
= 0. We identify g with the space S2(C2n) of 2n × 2n symmetric matrices.

Let V1 = V (α + α1) and V2 = V ( 1
2 (α + α1)). Note that ∧2

C
2n = Cω ⊕ V2

where

ω =
n∑

i=1

ei ∧ e−i.

Thus, we have

S2(∧2
C

2n) ∼= Cω2 ⊕ ω · V2 ⊕ S2(V2).

In particular, S2(∧2
C

2n) contains V1 with multiplicity one but does not contain
V (2α).

Now consider the equivariant map

φ : S2(g) = S2(S2
C

2n) −→ S2(∧2
C

2n)

given by

(a · b) ⊗ (c · d) �→ (a ∧ c) · (b ∧ d) + (a ∧ d) · (b ∧ c).

We claim that the image of φ is isomorphic to C ⊕ V1 ⊕ V2. Indeed, V1 is in the
image of φ, since

φ((e1 · e2) ⊗ (e1 · e2)) = −(e1 ∧ e2)2

is a highest weight vector of weight α + α1. On the other hand, if

π : S2(∧2
C

2n) −→ ∧2
C

2n

is given by:

(a ∧ b) · (c ∧ d) �→ ω(a, b) · (c ∧ d) + ω(c, d) · (a ∧ b),

then one easily checks that π ◦ φ is a surjective equivariant map from S2(g) to
Cω ⊕ V2.

Now let

a =
n∑

i=1

e2
i +

n∑
i=1

e2
−i ∈ S2(C2n) = g.

Then a short computation shows that

π ◦ φ(a2) = 8ω
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Thus, if π2 : S2(g) → V2 is the projection map, then π2(a2) = 0 so that q2(a) = 0.
It is not difficult to check that q2 
= 0 by evaluating at the element e1e−1 say.
Indeed, one has:

π ◦ φ((e1e−1)2) = −2e1 ∧ e−1 ∈ ∧2
C

2n

and so

π2((e1e−1)2) = −2e1 ∧ e−1 +
2
n

ω.

Then a short computation gives:

q2(e1e−1) =
4
n
· (n − 1) 
= 0.

It remains to show that q1(a) 
= 0. Let q ∈ S2(g) correspond to the g-invariant
form 〈−,−〉S2(C2n), so that q is a multiple of the Killing form. We have:

q =
n∑

i=1

e2
i · e2

−i + 2
∑
i<j

(eiej) · (e−ie−j) −
n∑

i=1

(eie−i)2 −
∑
i �=j

(eie−j)(e−iej).

One checks that

π ◦ φ(q) = (4n + 2)ω

and thus the element

π1(a2) = φ(a2) − 4
2n + 1

φ(q)

lies in V1 ⊂ Image(φ). Now if 〈−,−〉 denotes the standard invariant symmetric
bilinear form on S2(∧2

C
2n), then a somewhat messy computation, best sup-

pressed here, gives:

q1(a) = 〈π1(a2), π1(a2)〉 
= 0.

This shows that q1 and q2 are linearly independent, as desired.

Theorem 3.1 is proved completely.
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