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ON THE REFINED CLASS NUMBER FORMULA FOR
GLOBAL FUNCTION FIELDS

Joongul Lee

Abstract. We investigate a conjecture of Gross regarding a congruence relation
of the Stickelberger element. We consider the case when k is a global function field
of characteristic p and Gal(K/k) is an abelian l-group where l is a prime number
different from p. Under the additional assumption that k does not contain a
primitive l-th root of unity and that the divisor class number of k is prime to l,
we prove that the conjecture of Gross holds. This result generalizes the author’s
previous result on the elementary abelian case (cf. [6]).

1. Introduction

We describe the conjecture briefly, and refer the reader to [5] for details.
Let K/k be a finite abelian extension of global fields with Galois group G.

Let S be a finite non-empty set of places of k which contains all archimedean
places and all places ramified in K. Furthermore, let T be a finite non-empty
set of places of k which is disjoint from S, such that the (S, T )-unit group US,T

is torsion-free. Let n = |S| − 1 and let Ĝ be the group of complex characters of
G.

The Stickelberger element θG is the unique element in Z[G] which satisfies

χ(θG) = LS,T (χ, 0)

for all χ ∈ Ĝ, where LS,T is the S-truncated, T -modified Dirichlet L-function.
Gross has conjectured a congruence relation which bears striking resemblance to
the analytic class number formula. In order to describe the conjecture we need
to introduce some further notation.

Choose an ordered basis {u1, . . . , un} of US,T . Pick a place v0 ∈ S, and for
each vi ∈ S \ {v0}, we let fi : k∗ → G denote the homomorphism induced from
local artin map for vi. We set

detG λ := det1≤i,j≤n(fi(uj) − 1).
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The conjecture of Gross states that

θG ≡ m · detG λ (mod In+1).(1)

Here I is the augmentation ideal of Z[G] and the integer m = ±hS,T is the
T -modified class number of the S-integers of k whose sign is determined by the
(S, T )-version of the analytic class number formula.

Let Gr(K/k ,S ,T ) denote the congruence relation (1). For the reader’s conve-
nience, we list (without proofs) some of the basic facts regarding this conjecture.
Consult [1] or [8] for details.

Proposition 1. (a) If v �∈ S ∪T and S′ = S ∪{v}, then Gr(K/k ,S ,T ) implies
Gr(K/k ,S ′,T ).
(b) Suppose H is a subgroup of G. The natural map Z[G] → Z[G/H] maps θG

and detG λ to θG/H and detG/H λ respectively, and
Gr(K/k ,S ,T ) implies Gr(KH /k ,S ,T ).
(c) If n = 0 then Gr(K/k ,S ,T ) holds, being equivalent to the analytic class
number formula.

We also note that the conjecture has been verified for numerous cases [1, 3,
4, 6, 7].

2. The Main Result

Let G = G0×G1×· · ·×Gm, and set X = {0, . . . , m}. For each i ∈ X , we have
Z[Gi] ∼= Z ⊕ Ii as a direct sum of abelian groups. Here Ii is the augmentation
ideal of Z[Gi].

As Gi is a subgroup of G, Z[Gi] is naturally embedded in Z[G], and so is Ii.
For each non-empty subset A of X , we define IA :=

∏
i∈A Ii ⊂ Z[G], and we

define I∅ := Z. Then we have

Z[G] ∼=
⊗
i∈X

Z[Gi] ∼=
⊗
i∈X

(Z ⊕ Ii) ∼=
⊕
A⊂X

IA.

We observe that IA · IB ⊂ IA∪B. Therefore Z[G] is a graded ring with respect
to the monoid of subsets of X with union as monoid operation. Also, we have

I =
⊕

∅�=A⊂X
IA,

therefore I is a homogeneous ideal of Z[G] and so is In for n ≥ 1.

Lemma 2. For each i ∈ X , let Hi = G0 × · · ·×Gi−1 ×Gi+1 × · · ·×Gm and let
φi : Z[G] −→ Z[Hi] be the map induced by natural projection. Pick an integer r
with 0 ≤ r ≤ m. If α is an element of Z[G] with φi(α) ∈ Ir+1

Hi
for i = 0, . . . , r,

then α ∈ Ir+1.

Proof. Write α =
∑

A⊂X αA. We need to show that αB ∈ Ir+1 for all B ⊂ X .
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If {0, . . . , r} ⊂ B, then by the definition of IB it follows that αB ∈ Ir+1.
Suppose i �∈ B for some 0 ≤ i ≤ r. It is straightforward to verify that

φi :
⊕
A⊂X

IA −→
⊕

A⊂X\{i}
IA

is the projection onto the A-components with i �∈ A. As i �∈ B, αB = φi(αB)
is the B-component of φi(α). Since φi(α) ∈ Ir+1

Hi
by assumption and Ir+1

Hi
is a

homogeneous ideal of Z[Hi], αB ∈ Ir+1
Hi

as well. If we view Hi as a subgroup of
G, we have IHi

⊂ I and hence Ir+1
Hi

⊂ Ir+1. Therefore αB ∈ Ir+1.

Theorem 3. Let K/k be a finite abelian extension with Galois group G = G0 ×
G1 × · · · × Gm and let S = {v0, . . . , vn}. Suppose that for each 0 ≤ i ≤ n, its
inertia group Ivi of vi is contained in Gi. Then Gr(K/k ,S ,T ) holds.

Proof. We prove the theorem by induction on n. When n = 0,
Gr(K/k ,S ,T ) holds as noted in Proposition 1(c).

In the general case, we apply Lemma 2 to (θG − m · detG λ). As vi is un-
ramified in the subextension KGi/k, the induction hypothesis together with
Proposition 1(a) implies that the hypothesis of Lemma 2 is satisfied. Hence we
conclude that Gr(K/k ,S ,T ) holds.

Corollary 4. Fix a prime number l. For a global function field k, let p be its
characteristic, h be its divisor class number and w be the number of roots of unity
in k. If l does not divide phw, then Gr(K/k ,S ,T ) holds whenever Gal(K/k) is
an abelian l-group.

Proof. For each positive integer e ≥ 1, let kS,e be the maximal abelian extension
of k unramified outside of S whose Galois group has exponent le. Thanks to
Proposition 1 (b), we may assume K = kS,e. Theorem 5 of the next section
ensures that the hypothesis of Theorem 3 is satisfied in this case.

3. Some Class Field Theory

In this section we use the results from class field theory, and study the struc-
ture of G using ideles. The reader may consult [2] for example.

We keep the assumptions of Corollary 4. Let Fq be the exact field of constants
of k, and for each place v of k let Fv be its residue field. For each finite nonempty
set S of places of k and for each integer e ≥ 1, let GS,e := Gal(kS,e/k).

Theorem 5. GS,e
∼= ∏

v∈S Iv × Z/leZ.

Proof. For each place v of k, let kv be the completion of k at v, Uv the set of
local units in kv, and U1

v ⊂ Uv the local units which are congruent to 1 (mod v).
Also let U :=

∏
v Uv and let US :=

∏
v/∈S Uv · ∏v∈S U1

v .
There is an exact sequence

0 → U/F
∗
q · US → J/k∗ · US → J/k∗ · U → 0.
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We note that the profinite completion of J/k∗ ·US is Gal(kS/k) where kS is the
maximal abelian extension of k unramified outside of S and tamely ramified in
S. Similarly, the profinite completion of J/k∗ · U is Gal(kunr/k) where kunr is
the maximal unramified abelian extension of k.

Let J0 be the group of ideles of k of degree 0. Then J is isomorphic to J0×〈c〉,
where c is an idele of degree 1. Therefore we may rewrite the above sequence as

0 → (
∏
v∈S

F
∗
v)/F

∗
q → (J0/k∗ · US) × Z → (J0/k∗ · U) × Z → 0.(2)

Note that for each v ∈ S, the inertia group of v is the image of F
∗
v in the first

term of the sequence (2).
As we assume that the order of J0/k∗ ·U (which is canonically isomorphic to

the divisor class group of k) is not divisible by l, we have (J0/k∗ ·U×Z)⊗Z/leZ =
Z/leZ and Tor(J0/k∗ · U × Z, Z/leZ) = 0. Hence tensoring the exact sequence
with Z/leZ preserves the exactness;

0 → (
∏
v∈S

F
∗
v/F

∗
v

le)/F̃∗
q → (J0/J le

0 · k∗ · US) × Z/leZ → Z/leZ → 0,

where F̃∗
q is the image of F

∗
q in

∏
v∈S F

∗
v/F

∗
v

le . Therefore GS,e, the middle term
of the above exact sequence, is isomorphic to (

∏
v∈S F

∗
v/F

∗
v

le)/F̃∗
q × Z/leZ.

As we assume that k does not contain a primitive l-th root of unity, F̃∗
q = {1},

and hence GS,e
∼= ∏

v∈S F
∗
v/F

∗
v

le × Z/leZ ∼= ∏
v∈S Iv × Z/leZ.

Remark. If we assume that k contains an l-th root of unity, one can prove that
GS,e is isomorphic to

∏
v∈S′ Iv ×H ′ where S′ = S \ {v0} for a suitable choice of

v0 ∈ S. Therefore, one may apply Lemma 2 to θG to conclude that θG ∈ In.
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