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A CHARACTERISTIC ZERO HILBERT-KUNZ CRITERION
FOR SOLID CLOSURE IN DIMENSION TWO

HOLGER BRENNER

ABSTRACT. Let I denote a homogeneous R4-primary ideal in a two-dimensional
normal standard-graded domain over an algebraically closed field of characteristic
zero. We show that a homogeneous element f belongs to the solid closure I* if and
only if ey (I) = egr ((1, f)), where e i denotes the Hilbert-Kunz multiplicity
of an ideal, introduced here in characteristic zero in the graded dimension two
case. This provides a version in characteristic zero of the well-known Hilbert-
Kunz criterion for tight closure in positive characteristic.

Introduction

Let (R, m) denote a local Noetherian ring or an N-graded algebra of dimension
d of positive characteristic p. Let I denote an m-primary ideal, and set 119 =
(f1: f €I) for a prime power ¢ = p°. Then the Hilbert-Kunz function of I is
given by

e — A(R/I7T),
where A\ denotes the length. The Hilbert-Kunz multiplicity of I is defined as the
limit
enr(l) = lim A(R/TP)/p.

This limit exists as a positive real number, as shown by Monsky in [9]. It is an
open question whether this number is always rational.

The Hilbert-Kunz multiplicity is related to the theory of tight closure. Recall
that the tight closure of an ideal I in a Noetherian ring of characteristic p is by
definition the ideal

I"={f € R : dc not in any minimal prime : ¢f? € 119 for almost all ¢ = p°}.

For an analytically unramified and formally equidimensional local ring R the
equation ey (I) = ey (J) holds if and only if I* = J* holds true for ideals
I C J (see [6, Theorem 5.4]). Hence f € I* if and only if ey (1) = ey ((, f)).
This is the Hilbert-Kunz criterion for tight closure in positive characteristic.
The aim of this paper is to give a characteristic zero version of this relation-
ship between Hilbert-Kunz multiplicity and tight closure for R -primary homo-
geneous ideals in a normal two-dimensional graded domain R. There are several
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notions for tight closure in characteristic zero, defined either by reduction to pos-
itive characteristic or directly. We will work with the notion of solid closure (see
[5]). In dimension two, the containment in the solid closure f € (f1,...,fn)*
means that the open subset D(m) C Spec A is not an affine scheme, where
A=R[Ty,...,T,)/(fiTh + ...+ fuTn + f) is the so-called forcing algebra, see
[1, Proposition 1.3].

The definition of the Hilbert-Kunz multiplicity in positive characteristic does
not suggest at first sight an analogous notion in characteristic zero. However, a
bridge is provided by the following result of [2], which gives an explicit formula
for the Hilbert-Kunz multiplicity and proves its rationality in dimension two
(the rationality of the Hilbert-Kunz multiplicity for the maximal ideal was also
obtained independently in [10]).

Theorem 1. Let R denote a two-dimensional standard-graded normal domain
over an algebraically closed field of positive characteristic, Y = Proj R. Let [ =
(f1,--., fn) denote a homogeneous R -primary ideal generated by homogeneous
elements f; of degree d;, i = 1,... ,n. Then the Hilbert-Kunz multiplicity of the
ideal I equals

erw(l) = degéy) S =3 d2).
k=1 =1

Here the numbers r; and v, come from the strong Harder-Narasimhan filtra-
tion of the syzygy bundle Syz(f{,..., f4)(0) given by the short exact sequence

0 — Syz(f{,..., fH(0) — @O(—qdi) fivfn Oy — 0.
i=1

This syzygy bundle is a locally free sheaf on the smooth projective curve ¥ =
Proj R, and its strong Harder-Narasimhan filtration is a filtration & C ... C
St = Syz(f{, ..., f1)(0) such that the quotients Sy, /Sy_1 are strongly semistable,
meaning that every Frobenius pull-back is semistable. Such a filtration exists
for ¢ big enough by a theorem of Langer, [8, Theorem 2.7|. Then we set r; =
rk(Sy/Sk—1) and vy, = —p(Sk/Sk—1)/qdeg(Y), where p denotes the slope.

To define the Hilbert-Kunz multiplicity in characteristic zero we now take the
right hand side of the above formula as our model.

Definition 1. Let R denote a two-dimensional normal standard-graded
K-domain over an algebraically closed field K of characteristic zero. Let I =
(f1,-.., fn) be a homogeneous R -primary ideal given by homogeneous ideal
generators f; of degree d;. Let Sy C ... C & = Syz(f1,..., fn)(0) denote the
Harder-Narasimhan filtration of the syzygy bundle on Y = Proj R, set ur =
1(Sk/Sk—1) and rr, = 1k(Sk/Sk—1). Then the Hilbert-Kunz multiplicity of I is
by definition

GHK(I) =

deg(Y) " b repd —deg(Y)2 ST, d2
g2( )(Zrk(degéﬂy))Q_;dlZ) _ Zk—l kuk2deg(g§)) Zz—l ]
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It is easy to show that this definition does not depend on the chosen ideal
generators and is therefore an invariant of the ideal, see [2, Proposition 4.9].
With this invariant we can in fact give the following Hilbert-Kunz criterion for
solid closure in characteristic zero in dimension two (see Theorem 3.3):

Theorem 2. Let K denote an algebraically closed field of characteristic zero,
let R denote a standard-graded two-dimensional normal K-domain. Let I be a
homogeneous R -primary ideal and let f denote a homogeneous element. Then
f is contained in the solid closure, f € I*, if and only if egr(I) = egx ((I, f)).

To prove this theorem it is convenient to consider more generally for a locally

free sheaf S on a smooth projective curve Y the expression
t
pK(S) =Y ik,
k=1

where 1 and py are the ranks and the slopes of the semistable quotient sheaves
in the Harder-Narasimhan filtration of S. We call this number the Hilbert-
Kunz slope of §. With this notion the Hilbert-Kunz multiplicity of an ideal
I=1(f1,...,fn) is related to the Hilbert-Kunz slope of the syzygy bundle by

(e £)) = g (i (Sval s £2)0) = (@D ()

2deg(Y)
With this notion we will in fact prove the following theorem, which implies
Theorem 2 (see Theorem 2.6).

Theorem 3. Let Y denote a smooth projective curve over an algebraically
closed field of characteristic 0. Let S denote a locally free sheaf on Y and let
c € HY(Y,S) denote a cohomology class giving rise to the extension 0 — S —
S’ — Oy — 0 and the affine-linear torsor P(S"V) —P(SY). Then P(S"Y) —P(SY)
is an affine scheme if and only if pyx(S’) < pur(S).

1. The Hilbert-Kunz slope of a vector bundle

We recall briefly some notions for locally free sheaves (or vector bundles),
see [7] or [4]. Let Y denote a smooth projective curve over an algebraically
closed field and let S denote a locally free sheaf of rank r. Then deg(S) =
deg(\" S) is called the degree of S and u(S) = deg(S)/r is called the slope
of S. If u(7) < u(S) holds for every locally free subsheaf 7 C S, then S
is called semistable. In general there exists the so-called Harder-Narasimhan
filtration. This is a filtration of locally free subsheaves S; C ... C & = S
such that the quotient sheaves Si/Sk_1 are semistable locally free sheaves with
decreasing slopes g1 > ... > p;. The Harder-Narasimhan filtration is uniquely
determined by these properties. &7 is called the maximal destabilizing subsheaf,
U1 = Mmax(S) is called the maximal slope of S and p; = pmin(S) is called
the minimal slope of S. If S — 7 is a non-trivial sheaf homomorphism, then

Mmin (S) S ,UlmaX(T)'
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We begin with the definition of the Hilbert-Kunz slope of S.

Definition 1.1. Let S denote a locally free sheaf on a smooth projective curve
over an algebraically closed field of characteristic 0. Let S C ... C & = S
denote the Harder-Narasimhan filtration of S, set 7, = rk(Sk/Sk—1) and px =
1(Sk/Sk—1). We define the Hilbert-Kunz slope of S by

t t
deg(Sk/Sk_1)?
MHK(S)ZE:TkMiZE:M-
k=1

r
k=1 k

The only justification for considering this number is Theorem 3.3 below. We
gather together some properties of this notion in the following proposition.

Proposition 1.2. Let S denote a locally free sheaf on a smooth projective curve
over an algebraically closed field of characteristic 0. Then the following hold true.

(i) If S is semistable, then pp(S) = deg(S)?/ rk(S).

(ii) Let T C S denote a locally free subsheaf occurring in the Harder-Narasimhan

filtration of S. Then upk(S) = pux(T) + par(S/T).

(iii) We have ugx(S©T) = pax(S) + pax (7).

(iv) pak(S) = paK(SY).

(v) Let L denote an invertible sheaf. Then

pa (S © L) = pak (S) + 2deg(S) deg(L) + rk(S) deg (L)

(vi) Let ¢ : Y’ =Y denote a finite morphism between smooth projective curves
of degree n. Then pupr(0*(S)) = n?upK(S).

Proof. (i) and (ii) are clear from the definition. (iii). The maximal destabilizing
subsheaf of S @ 7 is either S; &0, 0® 71 or S; ® 7;. Hence the result follows
from (ii) by induction on the rank of S& 7.

(iv). Let 0 = Sy € & C ... € S = S denote the Harder-Narasimhan
filtration of S. Set Qp = S§/Sk. This gives a filtration 0 C QY ; C ... C
QY Cc Qf =8Y. From 0 — 8;/Sk—1 — S§/Sk—1 — S/Sr — 0 we get 0 —
QY — Q) | — Q9 /9¢ = (Sk/Sk-1)" — 0. Hence the filtration is the
Harder-Narasimhan filtration of S¥ and the result follows from p(QY_,/Q)) =
1St/ Sk1).

(v). The Harder-Narasimhan filtration of S® Lis S @ L C ... C & ® L and
/J(Sk & ﬁ/Skfl & ﬁ) = M((Sk/skfﬁ ® ﬁ) = ,U«(Sk/Skfﬂ + M(ﬁ) Therefore

t

pak(S®L) = ZTWIC(S ® L)?

k=1
t

= D il + deg(£))?
k=1

t
= Y rilpi + 2uk deg(L) + deg(£)?)
k=1
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t t
= pak(S)+2deg(L) Z Tk + deg(L?) Z Tk -
k=1 k=1
This is the stated result, since deg(S) = 2221 rrpg and rk(S) = 22:1 Tk
(vi). The pull-back of a semistable sheaf under a separable morphism is again
semistable, and the pull-back of the Harder-Narasimhan filtration is the Harder-

Narasimhan filtration of ¢*(S). Hence the result follows from deg(¢*(S)) =
n deg(S). O

Lemma 1.3. The Hilbert-Kunz multiplicity of a locally free sheaf S has the

property that upi(S) > deg(S)?/1k(S), and equality holds if and only if S is
semistable.

Proof. We have to show that
t

> repi > deg(S)?/1k(S) = (rip + .. A o)/ (r1 + .+ T)
k=1

or equivalently that

(ri+...+ rt)(ZTkpi) > (ripr+ ...+ rtut)2 )
k=1

The left hand side is 3¢ _, 72u3 + 3, 2k TiTk p2 (we sum over ordered pairs), and
the right hand side is 22:1 rEpE 4>, 2 TiTk e Hence left hand minus right

hand is

Z wkui - Z TiTk ik

ik ik
So this follows from 0 < (u; — pux)* = pZ 4 p3 — 2 for all pairs i # k. Equality
holds if and only if p; = ug, but then ¢t =1 and S is semistable. O

Remark 1.4. Lemma 1.3 implies that the number g (S) — drefgf > 0, and
= 0 holds exactly in the semistable case. It follows from Proposition 1.2 (v) that

this number is invariant under tensoring with an invertible sheaf.

Proposition 1.5. Let S and T denote two locally free sheaves on'Y. Then
par (S ®T) =1k(T)unk (S) + k(S)pnk (T) + 2 deg(S) deg(T) .

Proof. Let r;, p;, ¢ € I,and rj, puj, j € J, (I and J disjoint) denote the ranks and
slopes occurring in the Harder-Narasimhan filtration of S and 7 respectively.
It is a non-trivial fact (in characteristic zero!) that the tensor product of two
semistable bundle is again semistable, see [7, Theorem 3.1.4]. From this it follows
that the semistable quotients of the Harder-Narasimhan filtration of S ® 7 are
given as (S;/S;—1) ® (7;/7T;—1) of rank r; - r; and slope p; + p1;. Therefore the
Hilbert-Kunz slope is

par(S®T) = Y (i + )’

(2]
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= ZTZTJMz + ZTZTJM] + 2ZTZT]MZ/"L]
= ZTJ Zrz/% Zrz ZTJMJ )+ 2( Zrzﬂz erﬂj

= Tk(T)MHK(S) + rk(S)MHK(T) + 2deg(S) deg(T)

2. A Hilbert-Kunz criterion for affine torsors

In this section we consider a locally free sheaf S on a smooth projective curve
Y together with a cohomology class ¢ € HY(Y,S) = Ext(Oy,S). Such a class
gives rise to an extension 0 — S — &’ — Oy — 0. Of course deg(S’) = deg(S)
and rk(S") = rk(S) + 1. We shall investigate the relationship between ppx (S)
and ppk(S').

Lemma 2.1. LetY denote a smooth projective curve over an algebraically closed
field. Let S, T and Q denote locally free sheaves on'Y . Then the following hold.

(i) Let ¢ : T — S denote a sheaf homomorphism, ¢ € HY(Y,T) with cor-
responding extension T', let 8" denote the extension of S corresponding
to ¢(c) € HY(Y,S). Then there is a sheaf homomorphism @' : T' — &’
extending .

(ii) Suppose that 0 — 7T — & — Q — 0 is a short eract sequence, and
ce HW(Y,T). ThenT' C S and §'/T' = S/T.

(iii) Suppose that 0 — T — S — Q — 0 is a short exact sequence, and
ce HY(Y,S). Then 8’ — Q' — 0 and Q' = S8'/T.
(iv) If S is semistable of degree 0 and ¢ € H*(Y,S), then also S’ is semistable.

Proof. The cohomology class ¢ is represented by the Cech cocycle ¢ € H(U; N
Us,S), where Y = Uy U U, is an affine covering. Then S’ arises from S| =
S|y, ® O and S = S|y, ® O by glueing S| |U; N Uy = 84Uy NUs via (s,t) —
(s+té,t). The natural mappings 7, — S/, i = 1,2, glue together to a morphism
7' — §'. The injectivity and surjectivity transfer from ¢ to ¢’, since these are
local properties. (ii) and (iii) then follow from suitable diagrams.

(iv). Suppose that F C &’ is a semistable subsheaf of positive slope. Then
the induced mapping F — QO is trivial and therefore 7 C S, which contradicts
the semistability of S. O

Let §; € ... C & = S denote the Harder-Narasimhan filtration of & and
c € HY(Y,S). If the image of ¢ in H'(Y,8/S;_1) is zero, then c¢ stems from a
class ¢;_1 € HY(Y,S;_1). So we find inductively a class ¢, € H'(Y,S,,) mapping
to ¢ and such that the image in H'(Y,S,,/S,—1) is not zero (or c itself is 0).
This yields extensions Sj, of Sj for & > n. It is crucial for the behavior of &’
whether u(S,,/Sn—1) > 0 or < 0. The following Proposition deals with the case
(Sn/Sn-1) > 0.
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Proposition 2.2. Let S C ... C & = S be the Harder-Narasimhan filtration
of S and let c € HY(Y,S). Let n be such that the image of ¢ in H (Y, Sk/Sk_1)
is 0 for k > n but such that the image in H(Y,S,,/Sn—1) is # 0. Suppose that
w(Sn/Sn-1) is > 0. Let i be the biggest number such that (S;/Si—1) > 0 (hence
n <i).

(i) Suppose that p; > 0. Then the Harder Narasimhan filtration of S is

S$ic...cScScS,c...cs.
(ii) Suppose that p; = 0. Then the Harder-Narasimhan filtration of S’ is
Sic...cS1cScS,c...cS.

Proof. (i). The quotients of the filtration are Sy /Sk—1, k < ¢, which have positive
slope, S;/S; = Oy, and S;,/S;,_; = Sk/Sk—1 (Lemma 2.1(ii)) for k > i, which
have negative slope. These quotients are all semistable and the slope numbers
are decreasing.

(i1). The quotients Si/Sk_1 are semistable with decreasing positive slopes
for k = 1,...,i — 1. The quotients S;/ S},_; = Si/Sk—1 are semistable with

decreasing negative slopes for k =i+ 1,... ,t. The quotient S;/S,_1 is isomor-
phic to (S;/Si-1)" by Lemma 2.1(iii), hence semistable of degree 0 by Lemma
2.1(iv). O

In the rest of this section we study the remaining case, that u(S,,/S,-1) < 0.
In this case it is not possible to describe the Harder-Narasimhan filtration of S’
explicitly. However we shall see that in this case the Hilbert-Kunz slope of &’ is
smaller than the Hilbert-Kunz slope of S. We need the following two lemmata.

Lemma 2.3. Let T denote a locally free sheaf on Y with Harder-Narasimhan
filtration Ty, py = pw(7x/Ti—1) and v, = rk(7/T—1). Let

(Ti) == (,ulv-" s M1, U2y e oo s U2y 3y e oy hp—T1y [ty e o - 7Ht)

denote the slopes where each py, occurs ri-times. Let S C T denote a locally free
subsheaf of rank r and let o;, 1 = 1,... ,r denote the corresponding numbers for
S. Theno; <7 fori=1,...,r.

Moreover, if S is saturated (meaning that the quotient sheaf is locally free)
and if no subsheaf S; of the Harder-Narasimhan filtration of S occurs in the
Harder-Narasimhan filtration of T, then o; < 1341 fori=1,... 7.

Proof. Let i,i=1,...,r be given and let j be such that rk(S;_1) < i < rk(S;),
hence o; = 11;(S) = pu(S;/Sj-1). We may assume that i = rk(S;). Let k be such
that 1k(7;x—1) < ¢ < rk(7y). Therefore S; € 751, and the induced morphism
S; — T /Tj—1 is not trivial. Hence 0; = 1;i(S) = pmin(Sj) < pmax (7 /Ti—1) =
pe(T) = i

Now suppose that o; > 7;1.1. Then necessarily o; > 0,41 and 7; > 7,41 by
what we have already proven. Therefore i = rk(S;) = rk(7). If S; C 7y, then
they are equal, since both sheaves are saturated of the same rank, but this is
excluded by the assumptions. Hence S; € 7, and S; — 7 /7}, is non-trivial.
Therefore 0; = fimin(S;) < pmax(T/Ti) = pre+1(T) = Tit1. O
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Remark 2.4. If the numbers 7; are given as in the previous lemma, then deg(7")
=Y miand pugr(T) =3, 77

Lemma 2.5. Let oy < ... < a, and f1 < ... < G411 denote non-negative real
numbers such that az > Bip1 fori=1,...,r and >;_ a; = ZTH B;. Then
ETH B2 < S0 a2 and equality holds if and only if a; = Biy1-

Proof. Let a; = Bix1 + 85, §; > 0. From > i o = > 10 + > iy Biv1 =
ZTH B; we get B1 =>.._, 6; (< B2). The quadratic sums are
r+1

Za _Zﬁ2+252+225@+1

and
r+1 r+1 r+1

Zﬂz 25 +Zﬂ2 =2 00, +Z52 +252
1<J
So we have to show that qu o< ijl (5iﬁi+1. But thls is clear from
Zi<j 0; < ijl 0; < B2 < Bigq for all i =1,...,r. Equality holds if and only
if §; = 0. O

A cohomology class H!(Y,S) corresponds to a geometric S-torsor 7' — Y.
This is an affine-linear bundle on which § acts transitively. A geometric real-
ization is given as T' = P(S8"V) — P(SY). The global cohomological properties of
this torsor are related to the Hilbert-Kunz slope in the following way.

Theorem 2.6. Let Y denote a smooth projective curve over an algebraically
closed field of characteristic 0. Let S denote a locally free sheaf on' Y and let
c € HY(Y,S) denote a cohomology class given rise to the extension 0 — S —
S’ — Oy — 0 and the affine-linear torsor P(S'V) — P(SY). Then the following
are equivalent.

(i) There exists a locally free quotient ¢ : S — Q — 0 such that pmax(Q) <0
and the image ¢(c) € H (Y, Q) is non-trivial.
(ii) The torsor P(S"Y) —P(S8Y) is an affine scheme.
(iii) The Hilbert-Kunz slope drops, that is ppr(S") < puuk(S).

Proof. The equivalence (i) < (ii) was shown in [3, Theorem 2.3]. The implication
(iii) = (i) follows from Proposition 2.2: for if (i) does not hold, then we are in the
situation of Proposition 2.2 that u(S,,/Sn,—1) > 0. The explicit description of the
Harder-Narasimhan filtration of 8" gives in both cases that pr i (S") = puk (S).

So suppose that (i) holds. This means that there exists a subsheaf S, C
S occurring in the Harder-Narasimhan filtration of & such that ¢ stems from
¢, € HY(Y,S,) and such that its image in H'(Y,S/S,,_1) is non-trivial with
fmax(S/Sp-1) = p(Sn/Sn—1) = pn < 0.

Let 71 C ... C T, = 8’ denote the Harder-Narasimhan filtration of S’ with
slopes px = (7 /7i—1) and ranks rp = rk(7y/7;—1). Suppose that the maximal
slope u(77) is positive. Then the induced mapping 73 — S§’/S = Oy is trivial,
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and 77 € S. This is then also the maximal destabilizing subsheaf of S, since
fmax(S) < pmax(S") = (7). Therefore pyr(S) = par (1) + pux(S/T1) and
pak(S") = par(Ti) + puk(S’'/71) by Proposition 1.2(ii). Since §’/7; is the
extension of S/7; defined by the image of the cohomology class in H!(Y,S/T;)
(Lemma 2.1(iii)), we may mod out 7;. Note that this does not change the
condition in (i). Hence we may assume inductively that pmax(S) < 0 and
,umax(S/) <0.

Now suppose that 7; has degree 0. Again, if 77 C S, then this is also the
maximal destabilizing subsheaf of S, and we can mod out 7; as before. So
suppose that 77 — Oy is non-trivial. Then this mapping is surjective, let K C S
denote the kernel. This means that the extension defined by ¢ € H(Y,S) comes
from the extension given by 0 — K — 7; — Oy — 0, and ¢ € HY(Y,K). K is
semistable, since its degree is 0 and fiyax(S) < 0. But then the image of ¢ is 0
in every quotient sheaf of S with negative maximal slope, which contradicts the
assumptions. Therefore we may assume that pmax(S’) < 0.

We want to apply Lemma 2.3 to § € & = 7. Assume that S and &’
have a common subsheaf occuring in both Harder-Narasimhan filtrations. Then
they have the same maximal destabilizing subsheaf F = &; = 77, which has
negative degree. If ¢ comes from ¢ € H'(Y,F), then F C 7/ C & and u(F) =
deg(F)/rk(F) < deg(F)/(rk(F)+1) = pu(F’), which contradicts the maximality
of F. Hence the image of ¢ in H*(Y,S/F) is not zero and we can mod out F as
before.

Therefore we may assume that S and S” do not have any common subsheaf in
their Harder-Narasimhan filtrations. Then Lemma 2.3 yields that o; < 7,41, and
all these numbers are < 0 and moreover 7; < 0. Lemma 2.5 applied to a; = —0;
and 3; = —7; yields that Y_;_, 02 > Z:;rll 72, and > holds since 71 # 0. O

Remark 2.7. Suppose that § is a semistable locally free sheaf of negative de-
gree, and let ¢ € HY(Y,S) with corresponding extension &’. Then Theorem 2.6
together with Lemma 1.3 yield the inequalities

deg(S)?

deg(é )2 /
< SHhH< ——=—~_.
1 = ,UHK( ) >~

If S’ is also semistable, then we have equality on the left.

3. A Hilbert-Kunz criterion for solid closure

We come now back to our original setting of interest, that of a two-dimen-
sional normal standard-graded domain R over an algebraically closed field K. A
homogeneous R -primary ideal I = (f1,..., f) gives rise to the syzygy bundle
Syz(f1,..., fn)(0) on Y = Proj R defined by the presenting sequence

0 — Syz(fi,- , fu)(m) — @D Oy (m — di) "5 Oy (m) — 0.

i=1
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Another homogeneous element f of degree m yields an extension

0 — Syz(f1,..., fn)(m) — Syz(f1,..., fn, [)(m) — Oy — 0

which corresponds to the cohomology class §(f) € HY(Y,Syz(fi,..., fn)(m))
coming from the presenting sequence via the connecting homomorphism

§: H'(Y,Oy(m)) = Ry, — HY(Y,Syz(f1,..., fu)(m)).

The Hilbert-Kunz multiplicities of the ideals and the Hilbert-Kunz slopes of the
syzygy bundles are related in the following way.

Lemma 3.1. Let K denote an algebraically closed field of characteristic 0. Let
R denote a standard-graded two-dimensional normal K-domain, ¥ = Proj R.
Let I be a homogeneous R -primary ideal and let f denote a homogeneous ele-
ment of degree m. Then the Hilbert-Kunz multiplicities egi(I) = egx ((1, f))
are equal if and only if the Hilbert-Kunz slopes of the corresponding syzygies

bundles uric (Sy2(fr, - s a)(m)) = sric(Sya(fr, - s fs £)(m)) are equal.

Proof. Let pp and 7, (fix and 7) denote the ranks and the slopes in the

Harder-Narasimhan filtration of Syz(fi, ..., f»)(0) (of Syz(fi,..., fn, f)(0) re-
spectively). For the Hilbert-Kunz multiplicities of the ideals (f1,...,f,) and
(f1,--- s fn, f) we have to compare

2deg ZTkMk deg(Y)? ;d)

eHK(I

and

enx((1,1) = 3 deg Zmi deg(Y m+2d2

The extension defined by ¢ = §(f) € H1 (Y, Syz(f1,..., fn)(m)) is
0— 8 =Syz(f1,... . fa)(m) — 8" =Syz(f1,..., fn, [)(m) — Oy —0

and the Hilbert-Kunz slopes of these sheaves are due to Proposition 1.2 (v) (since
deg(Syz(f1, ..., fn)(0)) = —deg(Y) 35;_, di)
t

pak(S) = repi +2(= > d;deg(Y))mdeg(Y) + (n — 1)m? deg(Y)?
k=1 =

and ppr(S) =

Ky + 2(—(2 d; +m) deg(Y))m deg(Y) + nm? deg(Y)?
= Pl — 2(2 di)mdeg(Y)? + (n — 1)m? deg(Y)? — m? deg(Y)?.
i=1

I
i
St
Rl

|
—

=
Il
—
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So the difference is in both cases (up to the factor 1/2deg(Y"))

t t
> Fwfiy = repp —m® deg(Y)?
k=1

k=1
Therefore ey i (I) = egr ((1, f)) if and only if

MHK(SYZ(fh 7fn)(m)) ::U’HK(SyZ(fla 7fn7f)(m))
U

Remark 3.2. Let 0 — § — 7 — O — 0 denote a short exact sequence
of locally free sheaves. Then the alternating sum of the Hilbert-Kunz slopes,
that ist pgr(S) — prx(7T) + pyx(Q) does not change when we tensor the
sequence with an invertible sheaf. This follows from Proposition 1.2(v). For
an extension 0 — § — & — Oy — 0 this number is > 0 by Theorem 2.6,
and we suspect that this is true in general. From the presenting sequence
0 — Syz(fi,--., fa)(0) = D, O(—d;) — Oy — 0 it follows via ey (I) =
ﬁg(y)(pH;{(Syz(ﬁ, e fa)(0) — paK (B, O(—d;)) that the Hilbert-Kunz
multiplicity of an ideal is always nonnegative. In fact I = R is the only ideal
with eg g (1) = 0. This follows from Theorem 3.3 below, since 1 ¢ I* for I # R.

We come now to the main result of this paper. Recall that the solid closure
of an m-primary ideal I = (f1,..., fn) in a two-dimensional normal excellent
domain R is given by the condition that f € (fi,..., f,)* if and only D(m) C
Spec R[Ty,...,T,)/(fiTh + ...+ fuT + f) is not an affine scheme. In positive
characteristic this is the same as tight closure, see [5, Theorem 8.6]. In the case of
an R -primary homogeneous ideal in a standard-graded normal K-domain this is
equivalent to the property that the torsor P(S’Y)—P(SV) over the corresponding
curve Y = Proj R is not affine (see [1, Proposition 3.9]). This relates solid closure
to the setting of the previous section.

Theorem 3.3. Let K denote an algebraically closed field. Let R denote a
standard-graded two-dimensional normal K-domain. Let I be a homogeneous
Ry -primary ideal and let f denote a homogeneous element. Then f € I* if and

only if epx(I) = ear ((L, f)).

Proof. If the characteristic is positive then this is a standard result from tight
closure theory as mentioned in the introduction. So suppose that the character-
istic is 0. Let I = (f1,..., fn) be generated by homogeneous elements, and set
m = deg(f). The containment in the solid closure, f € (f1,..., fn)*, is equiv-
alent with the non-affineness of the torsor P(S"") — P(SV) [1, Proposition 3.9],
where § = Syz(f1,..., fn)(m) and S’ is the extension given by the cohomology
class §(f). Hence the result follows from Theorem 2.6 and Lemma 3.1. O
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