
Mathematical Research Letters 11, 563–574 (2004)

A CHARACTERISTIC ZERO HILBERT-KUNZ CRITERION
FOR SOLID CLOSURE IN DIMENSION TWO

Holger Brenner

Abstract. Let I denote a homogeneous R+-primary ideal in a two-dimensional
normal standard-graded domain over an algebraically closed field of characteristic
zero. We show that a homogeneous element f belongs to the solid closure I� if and
only if eHK(I) = eHK((I, f)), where eHK denotes the Hilbert-Kunz multiplicity
of an ideal, introduced here in characteristic zero in the graded dimension two
case. This provides a version in characteristic zero of the well-known Hilbert-
Kunz criterion for tight closure in positive characteristic.

Introduction

Let (R, m) denote a local Noetherian ring or an N-graded algebra of dimension
d of positive characteristic p. Let I denote an m-primary ideal, and set I [q] =
(fq : f ∈ I) for a prime power q = pe. Then the Hilbert-Kunz function of I is
given by

e �−→ λ(R/I [pe]) ,

where λ denotes the length. The Hilbert-Kunz multiplicity of I is defined as the
limit

eHK(I) = lim
e→∞ λ(R/I [pe])/ped .

This limit exists as a positive real number, as shown by Monsky in [9]. It is an
open question whether this number is always rational.

The Hilbert-Kunz multiplicity is related to the theory of tight closure. Recall
that the tight closure of an ideal I in a Noetherian ring of characteristic p is by
definition the ideal

I∗={f ∈ R : ∃c not in any minimal prime : cfq ∈ I [q] for almost all q = pe} .

For an analytically unramified and formally equidimensional local ring R the
equation eHK(I) = eHK(J) holds if and only if I∗ = J∗ holds true for ideals
I ⊆ J (see [6, Theorem 5.4]). Hence f ∈ I∗ if and only if eHK(I) = eHK((I, f)).
This is the Hilbert-Kunz criterion for tight closure in positive characteristic.

The aim of this paper is to give a characteristic zero version of this relation-
ship between Hilbert-Kunz multiplicity and tight closure for R+-primary homo-
geneous ideals in a normal two-dimensional graded domain R. There are several
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notions for tight closure in characteristic zero, defined either by reduction to pos-
itive characteristic or directly. We will work with the notion of solid closure (see
[5]). In dimension two, the containment in the solid closure f ∈ (f1, . . . , fn)	

means that the open subset D(m) ⊂ Spec A is not an affine scheme, where
A = R[T1, . . . , Tn]/(f1T1 + . . . + fnTn + f) is the so-called forcing algebra, see
[1, Proposition 1.3].

The definition of the Hilbert-Kunz multiplicity in positive characteristic does
not suggest at first sight an analogous notion in characteristic zero. However, a
bridge is provided by the following result of [2], which gives an explicit formula
for the Hilbert-Kunz multiplicity and proves its rationality in dimension two
(the rationality of the Hilbert-Kunz multiplicity for the maximal ideal was also
obtained independently in [10]).

Theorem 1. Let R denote a two-dimensional standard-graded normal domain
over an algebraically closed field of positive characteristic, Y = ProjR. Let I =
(f1, . . . , fn) denote a homogeneous R+-primary ideal generated by homogeneous
elements fi of degree di, i = 1, . . . , n. Then the Hilbert-Kunz multiplicity of the
ideal I equals

eHK(I) =
deg(Y )

2
(

t∑

k=1

rkν2
k −

n∑

i=1

d2
i ) .

Here the numbers rk and νk come from the strong Harder-Narasimhan filtra-
tion of the syzygy bundle Syz(fq

1 , . . . , fq
n)(0) given by the short exact sequence

0 −→ Syz(fq
1 , . . . , fq

n)(0) −→
n⊕

i=1

O(−qdi)
fq
1 ,... ,fq

n−→ OY −→ 0 .

This syzygy bundle is a locally free sheaf on the smooth projective curve Y =
ProjR, and its strong Harder-Narasimhan filtration is a filtration S1 ⊂ . . . ⊂
St = Syz(fq

1 , . . . , fq
n)(0) such that the quotients Sk/Sk−1 are strongly semistable,

meaning that every Frobenius pull-back is semistable. Such a filtration exists
for q big enough by a theorem of Langer, [8, Theorem 2.7]. Then we set rk =
rk(Sk/Sk−1) and νk = −µ(Sk/Sk−1)/q deg(Y ), where µ denotes the slope.

To define the Hilbert-Kunz multiplicity in characteristic zero we now take the
right hand side of the above formula as our model.

Definition 1. Let R denote a two-dimensional normal standard-graded
K-domain over an algebraically closed field K of characteristic zero. Let I =
(f1, . . . , fn) be a homogeneous R+-primary ideal given by homogeneous ideal
generators fi of degree di. Let S1 ⊂ . . . ⊂ St = Syz(f1, . . . , fn)(0) denote the
Harder-Narasimhan filtration of the syzygy bundle on Y = ProjR, set µk =
µ(Sk/Sk−1) and rk = rk(Sk/Sk−1). Then the Hilbert-Kunz multiplicity of I is
by definition

eHK(I) =
deg(Y )

2
(

t∑

k=1

rk(
µk

deg(Y )
)2 −

n∑

i=1

d2
i ) =

∑t
k=1 rkµ2

k − deg(Y )2
∑n

i=1 d2
i

2 deg(Y )
.
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It is easy to show that this definition does not depend on the chosen ideal
generators and is therefore an invariant of the ideal, see [2, Proposition 4.9].
With this invariant we can in fact give the following Hilbert-Kunz criterion for
solid closure in characteristic zero in dimension two (see Theorem 3.3):

Theorem 2. Let K denote an algebraically closed field of characteristic zero,
let R denote a standard-graded two-dimensional normal K-domain. Let I be a
homogeneous R+-primary ideal and let f denote a homogeneous element. Then
f is contained in the solid closure, f ∈ I	, if and only if eHK(I) = eHK((I, f)).

To prove this theorem it is convenient to consider more generally for a locally
free sheaf S on a smooth projective curve Y the expression

µHK(S) =
t∑

k=1

rkµ2
k ,

where rk and µk are the ranks and the slopes of the semistable quotient sheaves
in the Harder-Narasimhan filtration of S. We call this number the Hilbert-
Kunz slope of S. With this notion the Hilbert-Kunz multiplicity of an ideal
I = (f1, . . . , fn) is related to the Hilbert-Kunz slope of the syzygy bundle by

eHK((f1, . . . , fn)) =
1

2 deg(Y )
(
µHK(Syz(f1, . . . , fn)(0)) − µHK(

n⊕

i=1

O(−di))
)
.

With this notion we will in fact prove the following theorem, which implies
Theorem 2 (see Theorem 2.6).

Theorem 3. Let Y denote a smooth projective curve over an algebraically
closed field of characteristic 0. Let S denote a locally free sheaf on Y and let
c ∈ H1(Y,S) denote a cohomology class giving rise to the extension 0 → S →
S ′ → OY → 0 and the affine-linear torsor P(S ′∨)−P(S∨). Then P(S ′∨)−P(S∨)
is an affine scheme if and only if µHK(S ′) < µHK(S).

1. The Hilbert-Kunz slope of a vector bundle

We recall briefly some notions for locally free sheaves (or vector bundles),
see [7] or [4]. Let Y denote a smooth projective curve over an algebraically
closed field and let S denote a locally free sheaf of rank r. Then deg(S) =
deg(

∧r S) is called the degree of S and µ(S) = deg(S)/r is called the slope
of S. If µ(T ) ≤ µ(S) holds for every locally free subsheaf T ⊆ S, then S
is called semistable. In general there exists the so-called Harder-Narasimhan
filtration. This is a filtration of locally free subsheaves S1 ⊂ . . . ⊂ St = S
such that the quotient sheaves Sk/Sk−1 are semistable locally free sheaves with
decreasing slopes µ1 > . . . > µt. The Harder-Narasimhan filtration is uniquely
determined by these properties. S1 is called the maximal destabilizing subsheaf,
µ1 = µmax(S) is called the maximal slope of S and µt = µmin(S) is called
the minimal slope of S. If S → T is a non-trivial sheaf homomorphism, then
µmin(S) ≤ µmax(T ).
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We begin with the definition of the Hilbert-Kunz slope of S.

Definition 1.1. Let S denote a locally free sheaf on a smooth projective curve
over an algebraically closed field of characteristic 0. Let S1 ⊂ . . . ⊂ St = S
denote the Harder-Narasimhan filtration of S, set rk = rk(Sk/Sk−1) and µk =
µ(Sk/Sk−1). We define the Hilbert-Kunz slope of S by

µHK(S) =
t∑

k=1

rkµ2
k =

t∑

k=1

deg(Sk/Sk−1)2

rk
.

The only justification for considering this number is Theorem 3.3 below. We
gather together some properties of this notion in the following proposition.

Proposition 1.2. Let S denote a locally free sheaf on a smooth projective curve
over an algebraically closed field of characteristic 0. Then the following hold true.

(i) If S is semistable, then µHK(S) = deg(S)2/ rk(S).
(ii) Let T ⊂ S denote a locally free subsheaf occurring in the Harder-Narasimhan

filtration of S. Then µHK(S) = µHK(T ) + µHK(S/T ).
(iii) We have µHK(S ⊕ T ) = µHK(S) + µHK(T ).
(iv) µHK(S) = µHK(S∨).
(v) Let L denote an invertible sheaf. Then

µHK(S ⊗ L) = µHK(S) + 2 deg(S) deg(L) + rk(S) deg(L)2 .

(vi) Let ϕ : Y ′ → Y denote a finite morphism between smooth projective curves
of degree n. Then µHK(ϕ∗(S)) = n2µHK(S).

Proof. (i) and (ii) are clear from the definition. (iii). The maximal destabilizing
subsheaf of S ⊕ T is either S1 ⊕ 0, 0 ⊕ T1 or S1 ⊕ T1. Hence the result follows
from (ii) by induction on the rank of S ⊕ T .

(iv). Let 0 = S0 ⊂ S1 ⊂ . . . ⊂ St = S denote the Harder-Narasimhan
filtration of S. Set Qk = S/Sk. This gives a filtration 0 ⊂ Q∨

t−1 ⊂ . . . ⊂
Q∨

1 ⊂ Q∨
0 = S∨. From 0 → Sk/Sk−1 → S/Sk−1 → S/Sk → 0 we get 0 →

Q∨
k → Q∨

k−1 → Q∨
k−1/Q∨

k
∼= (Sk/Sk−1)∨ → 0. Hence the filtration is the

Harder-Narasimhan filtration of S∨ and the result follows from µ(Q∨
k−1/Q∨

k ) =
−µ(Sk/Sk−1).

(v). The Harder-Narasimhan filtration of S ⊗L is S1 ⊗L ⊂ . . . ⊂ St ⊗L and
µ(Sk ⊗ L/Sk−1 ⊗ L) = µ((Sk/Sk−1) ⊗ L) = µ(Sk/Sk−1) + µ(L). Therefore

µHK(S ⊗ L) =
t∑

k=1

rkµk(S ⊗ L)2

=
t∑

k=1

rk(µk + deg(L))2

=
t∑

k=1

rk(µ2
k + 2µk deg(L) + deg(L)2)
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= µHK(S) + 2 deg(L)
t∑

k=1

rkµk + deg(L2)
t∑

k=1

rk .

This is the stated result, since deg(S) =
∑t

k=1 rkµk and rk(S) =
∑t

k=1 rk.
(vi). The pull-back of a semistable sheaf under a separable morphism is again

semistable, and the pull-back of the Harder-Narasimhan filtration is the Harder-
Narasimhan filtration of ϕ∗(S). Hence the result follows from deg(ϕ∗(S)) =
n deg(S).

Lemma 1.3. The Hilbert-Kunz multiplicity of a locally free sheaf S has the
property that µHK(S) ≥ deg(S)2/ rk(S), and equality holds if and only if S is
semistable.

Proof. We have to show that
t∑

k=1

rkµ2
k ≥ deg(S)2/ rk(S) = (r1µ1 + . . . + rtµt)2/(r1 + . . . + rt)

or equivalently that

(r1 + . . . + rt)(
t∑

k=1

rkµ2
k) ≥ (r1µ1 + . . . + rtµt)2 .

The left hand side is
∑t

k=1 r2
kµ2

k +
∑

i �=k rirkµ2
k (we sum over ordered pairs), and

the right hand side is
∑t

k=1 r2
kµ2

k +
∑

i �=k rirkµiµk. Hence left hand minus right
hand is ∑

i �=k

rirkµ2
k −

∑

i �=k

rirkµiµk

So this follows from 0 ≤ (µi−µk)2 = µ2
i +µ2

k−2µiµk for all pairs i �= k. Equality
holds if and only if µi = µk, but then t = 1 and S is semistable.

Remark 1.4. Lemma 1.3 implies that the number µHK(S) − deg(S)2

rk(S) ≥ 0, and
= 0 holds exactly in the semistable case. It follows from Proposition 1.2 (v) that
this number is invariant under tensoring with an invertible sheaf.

Proposition 1.5. Let S and T denote two locally free sheaves on Y . Then

µHK(S ⊗ T ) = rk(T )µHK(S) + rk(S)µHK(T ) + 2 deg(S) deg(T ) .

Proof. Let ri, µi, i ∈ I, and rj , µj , j ∈ J , (I and J disjoint) denote the ranks and
slopes occurring in the Harder-Narasimhan filtration of S and T respectively.
It is a non-trivial fact (in characteristic zero!) that the tensor product of two
semistable bundle is again semistable, see [7, Theorem 3.1.4]. From this it follows
that the semistable quotients of the Harder-Narasimhan filtration of S ⊗ T are
given as (Si/Si−1) ⊗ (Tj/Tj−1) of rank ri · rj and slope µi + µj . Therefore the
Hilbert-Kunz slope is

µHK(S ⊗ T ) =
∑

i,j

rirj(µi + µj)2
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=
∑

i,j

rirjµ
2
i +

∑

i,j

rirjµ
2
j + 2

∑

i,j

rirjµiµj

= (
∑

j

rj)(
∑

i

riµ
2
i ) + (

∑

i

ri)(
∑

j

rjµ
2
j ) + 2(

∑

i

riµi)(
∑

j

rjµj)

= rk(T )µHK(S) + rk(S)µHK(T ) + 2 deg(S) deg(T )

2. A Hilbert-Kunz criterion for affine torsors

In this section we consider a locally free sheaf S on a smooth projective curve
Y together with a cohomology class c ∈ H1(Y,S) ∼= Ext(OY ,S). Such a class
gives rise to an extension 0 → S → S ′ → OY → 0. Of course deg(S ′) = deg(S)
and rk(S ′) = rk(S) + 1. We shall investigate the relationship between µHK(S)
and µHK(S ′).

Lemma 2.1. Let Y denote a smooth projective curve over an algebraically closed
field. Let S, T and Q denote locally free sheaves on Y . Then the following hold.

(i) Let ϕ : T → S denote a sheaf homomorphism, c ∈ H1(Y, T ) with cor-
responding extension T ′, let S ′ denote the extension of S corresponding
to ϕ(c) ∈ H1(Y,S). Then there is a sheaf homomorphism ϕ′ : T ′ → S ′

extending ϕ.
(ii) Suppose that 0 → T → S → Q → 0 is a short exact sequence, and

c ∈ H1(Y, T ). Then T ′ ⊆ S ′ and S ′/T ′ ∼= S/T .
(iii) Suppose that 0 → T → S → Q → 0 is a short exact sequence, and

c ∈ H1(Y,S). Then S ′ → Q′ → 0 and Q′ ∼= S ′/T .
(iv) If S is semistable of degree 0 and c ∈ H1(Y,S), then also S ′ is semistable.

Proof. The cohomology class c is represented by the Čech cocycle č ∈ H0(U1 ∩
U2,S), where Y = U1 ∪ U2 is an affine covering. Then S ′ arises from S ′

1 =
S|U1 ⊕ O and S ′

2 = S|U2 ⊕ O by glueing S ′
1|U1 ∩ U2

∼= S ′
2|U1 ∩ U2 via (s, t) �→

(s+ tč, t). The natural mappings T ′
i → S ′

i, i = 1, 2, glue together to a morphism
T ′ → S ′. The injectivity and surjectivity transfer from ϕ to ϕ′, since these are
local properties. (ii) and (iii) then follow from suitable diagrams.

(iv). Suppose that F ⊆ S ′ is a semistable subsheaf of positive slope. Then
the induced mapping F → O is trivial and therefore F ⊆ S, which contradicts
the semistability of S.

Let S1 ⊂ . . . ⊂ St = S denote the Harder-Narasimhan filtration of S and
c ∈ H1(Y,S). If the image of c in H1(Y,S/St−1) is zero, then c stems from a
class ct−1 ∈ H1(Y,St−1). So we find inductively a class cn ∈ H1(Y,Sn) mapping
to c and such that the image in H1(Y,Sn/Sn−1) is not zero (or c itself is 0).
This yields extensions S ′

k of Sk for k ≥ n. It is crucial for the behavior of S ′

whether µ(Sn/Sn−1) ≥ 0 or < 0. The following Proposition deals with the case
µ(Sn/Sn−1) ≥ 0.
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Proposition 2.2. Let S1 ⊂ . . . ⊂ St = S be the Harder-Narasimhan filtration
of S and let c ∈ H1(Y,S). Let n be such that the image of c in H1(Y,Sk/Sk−1)
is 0 for k > n but such that the image in H1(Y,Sn/Sn−1) is �= 0. Suppose that
µ(Sn/Sn−1) is ≥ 0. Let i be the biggest number such that µ(Si/Si−1) ≥ 0 (hence
n ≤ i).

(i) Suppose that µi > 0. Then the Harder Narasimhan filtration of S ′ is

S1 ⊂ . . . ⊂ Si ⊂ S ′
i ⊂ S ′

i+1 ⊂ . . . ⊂ S ′ .

(ii) Suppose that µi = 0. Then the Harder-Narasimhan filtration of S ′ is

S1 ⊂ . . . ⊂ Si−1 ⊂ S ′
i ⊂ S ′

i+1 ⊂ . . . ⊂ S ′ .

Proof. (i). The quotients of the filtration are Sk/Sk−1, k ≤ i, which have positive
slope, S ′

i/Si
∼= OY , and S ′

k/S ′
k−1

∼= Sk/Sk−1 (Lemma 2.1(ii)) for k > i, which
have negative slope. These quotients are all semistable and the slope numbers
are decreasing.

(ii). The quotients Sk/Sk−1 are semistable with decreasing positive slopes
for k = 1, . . . , i − 1. The quotients S ′

k/ S ′
k−1

∼= Sk/Sk−1 are semistable with
decreasing negative slopes for k = i + 1, . . . , t. The quotient S ′

i/Si−1 is isomor-
phic to (Si/Si−1)′ by Lemma 2.1(iii), hence semistable of degree 0 by Lemma
2.1(iv).

In the rest of this section we study the remaining case, that µ(Sn/Sn−1) < 0.
In this case it is not possible to describe the Harder-Narasimhan filtration of S′

explicitly. However we shall see that in this case the Hilbert-Kunz slope of S ′ is
smaller than the Hilbert-Kunz slope of S. We need the following two lemmata.

Lemma 2.3. Let T denote a locally free sheaf on Y with Harder-Narasimhan
filtration Tk, µk = µ(Tk/Tk−1) and rk = rk(Tk/Tk−1). Let

(τi) = (µ1, . . . , µ1, µ2, . . . , µ2, µ3, . . . , µt−1, µt, . . . , µt)

denote the slopes where each µk occurs rk-times. Let S ⊆ T denote a locally free
subsheaf of rank r and let σi, i = 1, . . . , r denote the corresponding numbers for
S. Then σi ≤ τi for i = 1, . . . , r.

Moreover, if S is saturated (meaning that the quotient sheaf is locally free)
and if no subsheaf Sj of the Harder-Narasimhan filtration of S occurs in the
Harder-Narasimhan filtration of T , then σi ≤ τi+1 for i = 1, . . . , r.

Proof. Let i, i = 1, . . . , r be given and let j be such that rk(Sj−1) < i ≤ rk(Sj),
hence σi = µj(S) = µ(Sj/Sj−1). We may assume that i = rk(Sj). Let k be such
that rk(Tk−1) < i ≤ rk(Tk). Therefore Sj �⊆ Tk−1, and the induced morphism
Sj → T /Tk−1 is not trivial. Hence σi = µj(S) = µmin(Sj) ≤ µmax(T /Tk−1) =
µk(T ) = τi.

Now suppose that σi > τi+1. Then necessarily σi > σi+1 and τi > τi+1 by
what we have already proven. Therefore i = rk(Sj) = rk(Tk). If Sj ⊆ Tk, then
they are equal, since both sheaves are saturated of the same rank, but this is
excluded by the assumptions. Hence Sj �⊆ Tk and Sj → T /Tk is non-trivial.
Therefore σi = µmin(Sj) ≤ µmax(T /Tk) = µk+1(T ) = τi+1.
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Remark 2.4. If the numbers τi are given as in the previous lemma, then deg(T )
=

∑
i τi and µHK(T ) =

∑
i τ2

i .

Lemma 2.5. Let α1 ≤ . . . ≤ αr and β1 ≤ . . . ≤ βr+1 denote non-negative real
numbers such that αi ≥ βi+1 for i = 1, . . . , r and

∑r
i=1 αi =

∑r+1
i=1 βi. Then∑r+1

i=1 β2
i ≤ ∑r

i=1 α2
i and equality holds if and only if αi = βi+1.

Proof. Let αi = βi+1 + δi, δi ≥ 0. From
∑r

i=1 αi =
∑r

i=1 δi +
∑r

i=1 βi+1 =∑r+1
i=1 βi we get β1 =

∑r
i=1 δi (≤ β2). The quadratic sums are

r∑

i=1

α2
i =

r+1∑

i=2

β2
i +

r∑

i=1

δ2
i + 2

r∑

i=1

δiβi+1

and
r+1∑

i=1

β2
i = (

r∑

i=1

δi)2 +
r+1∑

i=2

β2
i = 2

∑

i<j

δiδj +
r∑

i=1

δ2
i +

r+1∑

i=2

β2
i .

So we have to show that
∑

i<j δiδj ≤ ∑r
j=1 δiβi+1. But this is clear from∑

i<j δj ≤ ∑r
j=1 δj ≤ β2 ≤ βi+1 for all i = 1, . . . , r. Equality holds if and only

if δi = 0.

A cohomology class H1(Y,S) corresponds to a geometric S-torsor T → Y .
This is an affine-linear bundle on which S acts transitively. A geometric real-
ization is given as T = P(S ′∨) − P(S∨). The global cohomological properties of
this torsor are related to the Hilbert-Kunz slope in the following way.

Theorem 2.6. Let Y denote a smooth projective curve over an algebraically
closed field of characteristic 0. Let S denote a locally free sheaf on Y and let
c ∈ H1(Y,S) denote a cohomology class given rise to the extension 0 → S →
S ′ → OY → 0 and the affine-linear torsor P(S ′∨) − P(S∨). Then the following
are equivalent.

(i) There exists a locally free quotient ϕ : S → Q → 0 such that µmax(Q) < 0
and the image ϕ(c) ∈ H1(Y,Q) is non-trivial.

(ii) The torsor P(S ′∨) − P(S∨) is an affine scheme.
(iii) The Hilbert-Kunz slope drops, that is µHK(S ′) < µHK(S).

Proof. The equivalence (i) ⇔ (ii) was shown in [3, Theorem 2.3]. The implication
(iii) ⇒ (i) follows from Proposition 2.2: for if (i) does not hold, then we are in the
situation of Proposition 2.2 that µ(Sn/Sn−1) ≥ 0. The explicit description of the
Harder-Narasimhan filtration of S ′ gives in both cases that µHK(S ′) = µHK(S).

So suppose that (i) holds. This means that there exists a subsheaf Sn ⊆
S occurring in the Harder-Narasimhan filtration of S such that c stems from
cn ∈ H1(Y,Sn) and such that its image in H1(Y,S/Sn−1) is non-trivial with
µmax(S/Sn−1) = µ(Sn/Sn−1) = µn < 0.

Let T1 ⊂ . . . ⊂ Tt = S ′ denote the Harder-Narasimhan filtration of S ′ with
slopes µk = µ(Tk/Tk−1) and ranks rk = rk(Tk/Tk−1). Suppose that the maximal
slope µ(T1) is positive. Then the induced mapping T1 → S ′/S ∼= OY is trivial,
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and T1 ⊆ S. This is then also the maximal destabilizing subsheaf of S, since
µmax(S) ≤ µmax(S ′) = µ(T1). Therefore µHK(S) = µHK(T1) + µHK(S/T1) and
µHK(S ′) = µHK(T1) + µHK(S ′/T1) by Proposition 1.2(ii). Since S ′/T1 is the
extension of S/T1 defined by the image of the cohomology class in H1(Y,S/T1)
(Lemma 2.1(iii)), we may mod out T1. Note that this does not change the
condition in (i). Hence we may assume inductively that µmax(S) ≤ 0 and
µmax(S ′) ≤ 0.

Now suppose that T1 has degree 0. Again, if T1 ⊆ S, then this is also the
maximal destabilizing subsheaf of S, and we can mod out T1 as before. So
suppose that T1 → OY is non-trivial. Then this mapping is surjective, let K ⊂ S
denote the kernel. This means that the extension defined by c ∈ H1(Y,S) comes
from the extension given by 0 → K → T1 → OY → 0, and c̃ ∈ H1(Y,K). K is
semistable, since its degree is 0 and µmax(S) ≤ 0. But then the image of c is 0
in every quotient sheaf of S with negative maximal slope, which contradicts the
assumptions. Therefore we may assume that µmax(S ′) < 0.

We want to apply Lemma 2.3 to S ⊂ S ′ = T . Assume that S and S ′

have a common subsheaf occuring in both Harder-Narasimhan filtrations. Then
they have the same maximal destabilizing subsheaf F = S1 = T1, which has
negative degree. If c comes from c̃ ∈ H1(Y,F), then F ⊂ F ′ ⊆ S ′ and µ(F) =
deg(F)/ rk(F) < deg(F)/(rk(F)+1) = µ(F ′), which contradicts the maximality
of F . Hence the image of c in H1(Y,S/F) is not zero and we can mod out F as
before.

Therefore we may assume that S and S ′ do not have any common subsheaf in
their Harder-Narasimhan filtrations. Then Lemma 2.3 yields that σi ≤ τi+1, and
all these numbers are ≤ 0 and moreover τi < 0. Lemma 2.5 applied to αi = −σi

and βi = −τi yields that
∑r

i=1 σ2
i ≥ ∑r+1

i=1 τ2
i , and > holds since τ1 �= 0.

Remark 2.7. Suppose that S is a semistable locally free sheaf of negative de-
gree, and let c ∈ H1(Y,S) with corresponding extension S ′. Then Theorem 2.6
together with Lemma 1.3 yield the inequalities

deg(S)2

r + 1
≤ µHK(S ′) ≤ deg(S)2

r
.

If S ′ is also semistable, then we have equality on the left.

3. A Hilbert-Kunz criterion for solid closure

We come now back to our original setting of interest, that of a two-dimen-
sional normal standard-graded domain R over an algebraically closed field K. A
homogeneous R+-primary ideal I = (f1, . . . , fn) gives rise to the syzygy bundle
Syz(f1, . . . , fn)(0) on Y = ProjR defined by the presenting sequence

0 −→ Syz(f1, . . . , fn)(m) −→
n⊕

i=1

OY (m − di)
f1,... ,fn−→ OY (m) −→ 0 .
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Another homogeneous element f of degree m yields an extension

0 −→ Syz(f1, . . . , fn)(m) −→ Syz(f1, . . . , fn, f)(m) −→ OY −→ 0

which corresponds to the cohomology class δ(f) ∈ H1(Y,Syz(f1, . . . , fn)(m))
coming from the presenting sequence via the connecting homomorphism

δ : H0(Y,OY (m)) = Rm → H1(Y,Syz(f1, . . . , fn)(m)) .

The Hilbert-Kunz multiplicities of the ideals and the Hilbert-Kunz slopes of the
syzygy bundles are related in the following way.

Lemma 3.1. Let K denote an algebraically closed field of characteristic 0. Let
R denote a standard-graded two-dimensional normal K-domain, Y = ProjR.
Let I be a homogeneous R+-primary ideal and let f denote a homogeneous ele-
ment of degree m. Then the Hilbert-Kunz multiplicities eHK(I) = eHK((I, f))
are equal if and only if the Hilbert-Kunz slopes of the corresponding syzygies
bundles µHK(Syz(f1, . . . , fn)(m)) = µHK(Syz(f1, . . . , fn, f)(m)) are equal.

Proof. Let µk and rk (µ̃k and r̃k) denote the ranks and the slopes in the
Harder-Narasimhan filtration of Syz(f1, . . . , fn)(0) (of Syz(f1, . . . , fn, f)(0) re-
spectively). For the Hilbert-Kunz multiplicities of the ideals (f1, . . . , fn) and
(f1, . . . , fn, f) we have to compare

eHK(I) =
1

2 deg(Y )
( t∑

k=1

rkµ2
k − deg(Y )2

n∑

i=1

d2
i

)

and

eHK((I, f)) =
1

2 deg(Y )
( t̃∑

k=1

r̃kµ̃2
k − deg(Y )2(m2 +

n∑

i=1

d2
i )

)
.

The extension defined by c = δ(f) ∈ H1(Y,Syz(f1, . . . , fn)(m)) is

0 −→ S = Syz(f1, . . . , fn)(m) −→ S ′ = Syz(f1, . . . , fn, f)(m) −→ OY −→ 0

and the Hilbert-Kunz slopes of these sheaves are due to Proposition 1.2 (v) (since
deg(Syz(f1, . . . , fn)(0)) = −deg(Y )

∑n
i=1 di)

µHK(S) =
t∑

k=1

rkµ2
k + 2(−

n∑

i=1

di deg(Y ))m deg(Y ) + (n − 1)m2 deg(Y )2

and µHK(S ′) =

=
t̃∑

k=1

r̃kµ̃2
k + 2(−(

n∑

i=1

di + m) deg(Y ))m deg(Y ) + nm2 deg(Y )2

=
t̃∑

k=1

r̃kµ̃2
k − 2(

n∑

i=1

di)m deg(Y )2 + (n − 1)m2 deg(Y )2 − m2 deg(Y )2 .
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So the difference is in both cases (up to the factor 1/2 deg(Y ))

t̃∑

k=1

r̃kµ̃2
k −

t∑

k=1

rkµ2
k − m2 deg(Y )2 .

Therefore eHK(I) = eHK((I, f)) if and only if

µHK(Syz(f1, . . . , fn)(m)) = µHK(Syz(f1, . . . , fn, f)(m)) .

Remark 3.2. Let 0 → S → T → Q → 0 denote a short exact sequence
of locally free sheaves. Then the alternating sum of the Hilbert-Kunz slopes,
that ist µHK(S) − µHK(T ) + µHK(Q) does not change when we tensor the
sequence with an invertible sheaf. This follows from Proposition 1.2(v). For
an extension 0 → S → S ′ → OY → 0 this number is ≥ 0 by Theorem 2.6,
and we suspect that this is true in general. From the presenting sequence
0 → Syz(f1, . . . , fn)(0) → ⊕n

i=1 O(−di) → OY → 0 it follows via eHK(I) =
1

2 deg(Y ) (µHK(Syz(f1, . . . , fn)(0)) − µHK(
⊕n

i=1 O(−di)) that the Hilbert-Kunz
multiplicity of an ideal is always nonnegative. In fact I = R is the only ideal
with eHK(I) = 0. This follows from Theorem 3.3 below, since 1 �∈ I	 for I �= R.

We come now to the main result of this paper. Recall that the solid closure
of an m-primary ideal I = (f1, . . . , fn) in a two-dimensional normal excellent
domain R is given by the condition that f ∈ (f1, . . . , fn)	 if and only D(m) ⊂
Spec R[T1, . . . , Tn]/(f1T1 + . . . + fnTn + f) is not an affine scheme. In positive
characteristic this is the same as tight closure, see [5, Theorem 8.6]. In the case of
an R+-primary homogeneous ideal in a standard-graded normal K-domain this is
equivalent to the property that the torsor P(S ′∨)−P(S∨) over the corresponding
curve Y = ProjR is not affine (see [1, Proposition 3.9]). This relates solid closure
to the setting of the previous section.

Theorem 3.3. Let K denote an algebraically closed field. Let R denote a
standard-graded two-dimensional normal K-domain. Let I be a homogeneous
R+-primary ideal and let f denote a homogeneous element. Then f ∈ I	 if and
only if eHK(I) = eHK((I, f)).

Proof. If the characteristic is positive then this is a standard result from tight
closure theory as mentioned in the introduction. So suppose that the character-
istic is 0. Let I = (f1, . . . , fn) be generated by homogeneous elements, and set
m = deg(f). The containment in the solid closure, f ∈ (f1, . . . , fn)	, is equiv-
alent with the non-affineness of the torsor P(S ′∨) − P(S∨) [1, Proposition 3.9],
where S = Syz(f1, . . . , fn)(m) and S′ is the extension given by the cohomology
class δ(f). Hence the result follows from Theorem 2.6 and Lemma 3.1.
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