
Mathematical Research Letters 11, 529–538 (2004)

ON THE FIELDS OF 2-POWER TORSION OF
CERTAIN ELLIPTIC CURVES

C. Rasmussen

Abstract. Let µ2∞ denote the group of 2-power roots of unity. The outer pro-2
Galois representation on the projective line minus three points has a kernel whose
fixed field, Ω2, is a pro-2 extension of Q (µ2∞), unramified away from 2. The fields
of 2-power torsion of elliptic curves defined over Q possessing good reduction away
from 2 are also pro-2 extensions of Q (µ2∞), unramified away from 2. In this paper,
we show that these fields are contained in Ω2. An analogous result is shown for a
certain family of elliptic curves defined over Q (µ2∞).

1. Introduction

For a geometrically connected Q-scheme X, the algebraic fundamental group
is given by π1(X) := lim←−AutX(Xi), where the {Xi} are a collection of finite

étale Galois coverings of X (see [4] for details). Hence, each element of π1(X) is
a consistent choice of X-automorphisms of the Xi, and such an element in fact
determines an X-automorphism of any finite étale covering of X. Conversely,
any deck transformation τ of a covering Z → X can be lifted to an element τ̃ ∈
π1(X). Let � be a fixed prime number. We may define, similarly, the pro-�
fundamental group, π�

1(X), by restricting to only those Galois étale coverings
of X which have degree a power of �.

In the case X is a curve defined over k ⊆ Q̄, the natural correspondence
between morphisms of curves and extensions of function fields provides an alter-
native description for the fundamental group; π1(X) is isomorphic to
Gal

(
K(X)unr/K(X)

)
, where K(X)unr is the maximal unramified extension of

K(X). Similarly,

π�
1 (X) ∼= Gal

(
K(X)unr, pro−�/K(X)

)
,(1)

where K(X)unr, pro−� denotes the maximal pro-� unramified extension of K(X).
Now consider the case where X = P1

Q�{0, 1,∞}, and let X̄ = X⊗Q Q̄. In this
case, the pro-� fundamental group of X̄ is isomorphic to Gal

(
M/Q̄(t)

)
, where M

is the maximal pro-� extension of Q(t) unramified away from t = 0, 1,∞. There
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is an exact sequence of Galois groups

1 �� Gal
(
M/Q̄(t)

)
�� Gal

(
M/Q(t)

)
�� Gal

(
Q̄(t)/Q(t)

)
�� 1

π�
1

(
X̄

)

∼=
��

Gal(Q̄/Q)

∼=
��

,

(2)

which determines an associated Galois representation

ρ� : Gal
(
Q̄/Q

) −→ Out
(
π�

1(X̄)
)
.(3)

The action of ρ� is given as follows. For any σ ∈ Gal
(
Q̄/Q

)
, we may choose a

lift σ̃ ∈ Gal
(
M/Q(t)

)
.Thenconjugation by σ̃ is an automorphism of Gal

(
M/Q̄(t)

)
,

which is well-defined up to the choice of σ̃. But σ̃ is defined up to elements
of Gal

(
M/Q̄(t)

)
, and so this action is defined up to inner automorphism. This

is the action of ρ�.
The kernel of ρ� is a normal subgroup of Gal(Q̄/Q), and we denote its fixed

field by Ω�. Anderson and Ihara have demonstrated that Ω� is the field generated
by the “higher circular �-units” [1]. It is a pro-� extension of Q (µ�∞), unramified
outside of �. Ihara has asked if Ω� is the maximal such extension [3].

In this article, we consider specifically the case � = 2. If Ihara’s question
has an affirmative answer, then any pro-2 extension of Q (µ2∞), unramified away
from 2, will appear as a subfield of Ω2. Such fields occur quite naturally. Let E
be an elliptic curve defined over Q, with good reduction away from 2, satisfying

Q (E[2]) ⊆ Q (µ2∞) .(4)

Then Q (E[2∞]) is a pro-2 extension of Q (µ2∞) unramified away from 2. In fact,
equation (4) holds for all 24 elliptic curves over Q with good reduction away
from 2. Our main result is the following.

Theorem 1.1. Let E/Q be an elliptic curve with good reduction away from 2.
Then Q (E[2∞]) ⊆ Ω2.

The key to the proof is to demonstrate these elliptic curves provide 2-covers
for X̄. We say a morphism f : Y → Z is an �-cover of Z if f is unramified
and the Galois closure of f has degree a power of �. In particular, an �-cover
is not assumed to be Galois itself. For convenience, we will also call a mor-
phism ϕ : C → P1 an �-cover of X̄ if ϕ can be restricted to an �-cover of X̄.

Once a 2-cover g0 : E → P1 of X̄ has been constructed, one may demonstrate
that a Galois element σ cannot act trivially through ρ2 while acting non-trivially
on E[2∞]. This implies the containment Q(E[2∞]) ⊆ Ω2.

In §2, we will assume the existence of g0 and give the proof of Theorem
1.1. In §3, we will demonstrate the construction of g0 for each of the elliptic
curves in question. In §4 we will extend the result, by demonstrating an infinite
family of elliptic curves which provide 2-covers of X̄, and which therefore satisfy
Q(E[2∞]) ⊆ Ω2.
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2. Proof of Theorem 1.1

We begin the proof of Theorem 1.1 with the following lemma. Let ζ8 be a
primitive 8th root of unity.

Lemma 2.1. Let E/Q be an elliptic curve with good reduction outside 2. Then
1. E has a minimal model of the form y2 = (x − e1)(x − e2)(x − e3), with

e1 ∈ Z, e2, e3 ∈ Z[ζ8],
2. Q(E[2]) ⊆ Q(ζ8),
3. E has a point R of exact order 4 which is Ω2-rational.

Proof. The work is entirely by computation. The only nontrivial calculation is in
the construction of R. To demonstrate R is Ω2-rational, we use the description
of Ω2 as the higher circular 2-units. Anderson and Ihara have shown ([1, §2])
that Ω2 is generated by the sets f−1

({0, 1,∞}) of ramification of all elemen-

tary 2-covers f : P1 → P1 of X̄. For example, to demonstrate the membership

θ =
√

1− i ∈ Ω2,(5)

we note θ �→ 1 under the elementary 2-cover P1 → P1 of X̄ given by x �→ (x2−1)4.
Table 1 demonstrates the results for all 24 elliptic curves over Q with good

reduction away from 2, as enumerated in Cremona’s tables [2]. The first column
gives the designation and equation for the elliptic curve, and the second column
gives the field generated by the 2-torsion of E. The third column gives a rational
point P of E of exact order 2 (hence, determining e1), and the fourth column
gives a point R, of exact order 4, rational over Ω2.

Before proceeding to the proof of Theorem 1.1, we prove the following lemma.

Lemma 2.2. Suppose g0 : E → P1 is a 2-cover of X̄, defined over Q
(
µ2∞

)
.

Then for any n ≥ 1, the morphism gn := g0 ◦ [2n] is also a 2-cover of X̄, defined
over Q

(
µ2∞

)
.

Proof. Let Q̄(t) ↪→ K1 be the inclusion of function fields corresponding to g0.
Let K̃1/K1 be the extension corresponding to the morphism [2n]. Let L be the
Galois closure of K1/Q̄(t), and let L̃ be the Galois closure of K̃1/Q̄(t). We must
show that [L̃ : Q̄(t)] is a power of 2.

Let K̃2, . . . , K̃s be the Galois conjugates of K̃1 in L̃. Since K̃1/K1 is Galois,
there are corresponding Galois extensions K̃i/Ki, for each i, within L̃. Be-
cause L/Q̄(t) is Galois of degree a power of 2, and each of the Ki appear within
L, it follows that L/Ki is Galois with degree a power of 2 also. Hence for each
i, the Galois extensions K̃i/Ki and L/Ki form a compositum LK̃i/Ki which is
Galois and whose degree must also be a power of 2.

Further, each LK̃i contains K̃i, and so the compositum of the LK̃i must con-
tain L̃. But the compositum of the Galois extensions LK̃i/Q̄(t) must have a
degree dividing the product of the degrees of the extensions. Hence this com-
positum, as well as the sub-extension L̃, has degree a power of 2 over Q̄(t).
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Table 1. Data for the Proof of Lemma 2.1

Let u = −1 +
√

2, β = 1 + i, and let ζ be a primitive 8th root of unity.

E Q (E[2]) P ∈ E[2] R∈E[4]

32A1 : y2 = x3 + 4x Q (
√−2)

(
0 , 0

) (
2 , 4

)

32A2 : y2 = x3 − x Q
(
0 , 0

) (
i , 2β−1

)

32A3 : y2 = x3 − 11x− 14 Q (
√

2)
(−2 , 0

) (−1 , 2i
)

32A4 : y2 = x3 − 11x + 14 Q (
√

2)
(
2 , 0

) (
1 , 2

)

64A1 : y2 = x3 − 4x Q
(
0 , 0

) (
2i , 25/2β−1

)

64A2 : y2 = x3 − 44x− 112 Q (
√

2)
(−4 , 0

) (−6 , 8i
)

64A3 : y2 = x3 − 44x + 112 Q (
√

2)
(
4 , 0

) (
6 , 8

)

64A4 : y2 = x3 + x Q (i)
(
0 , 0

) (
1 , 21/2

)

128A1 : y2 = x3 + x2 + x + 1 Q (i)
(−1 , 0

) (
u , 2u1/2

)

128A2 : y2 = x3 + x2 − 9x + 7 Q (
√

2)
(
1 , 0

) (
1 + 2i , 4iβ1/2

)

128B1 : y2 = x3 + x2 + 3x− 5 Q (
√−2)

(
1 , 0

) (
1 + 2

√
2 , 25/2u−1/2

)

128B2 : y2 = x3 + x2 − 2x− 2 Q (
√

2)
(−1 , 0

) (−2β−1 , 2β−1/2
)

128C1 : y2 = x3 − x2 + x− 1 Q (i)
(
1 , 0

) (
u−1 , 2u−1/2

)

128C2 : y2 = x3 − x2 − 9x− 7 Q (
√

2)
(−1 , 0

) (−1 + 2i , 25/2β−1/2
)

128D1 : y2 = x3 − x2 + 3x + 5 Q (
√−2)

(−1 , 0
) (−1 + 2

√
2 , 25/2u1/2

)

128D2 : y2 = x3 − x2 − 2x + 2 Q (
√

2)
(
1 , 0

) (
β , i21/2β1/2

)

256A1 : y2 = x3 + x2 − 3x + 1 Q (
√

2)
(
1 , 0

) (
u−1 , 25/4u−1/2

)

256A2 : y2 = x3 + x2 − 13x− 21 Q (
√

2)
(−3 , 0

) (−u2 , i211/4u1/2
)

256B1 : y2 = x3 − 2x Q (
√

2)
(
0 , 0

) (
i21/2 , ζ325/4

)

256B2 : y2 = x3 + 8x Q (
√−2)

(
0 , 0

) (
23/2 , 211/4

)

256C1 : y2 = x3 + 2x Q (
√−2)

(
0 , 0

) (
21/2 , 25/4

)

256C2 : y2 = x3 − 8x Q (
√

2)
(
0 , 0

) (
i23/2 , ζ3211/4

)

256D1 : y2 = x3 − x2 − 3x− 1 Q (
√

2)
(−1 , 0

) (
u , i25/4u1/2

)

256D2 : y2 = x3 − x2 − 13x + 21 Q (
√

2)
(
3 , 0

) (
u−2 , 211/4u−1/2

)

Finally, we note that for an elliptic curve E defined over Q, the morphism
[2] is also defined over Q. Hence, the morphism gn is defined over Q

(
µ2∞

)
if g0

is.

In the next section, we will construct a 2-cover g0 : E → P1 of X̄, defined
over Q

(
µ2∞

)
, for each of the 24 curves. The following proposition finishes the

proof of Theorem 1.1. See also [1, Prop. 3.8.1] for a more general result regarding
when the Jacobian of a curve appearing as an �-cover of X̄ has �-power torsion
rational over Ω�.

Proposition 2.3. Let E/Q be an elliptic curve with good reduction away from 2.
Suppose there exists g0 : E → P1, a 2-cover of X̄, defined over Q

(
µ2∞

)
. Let σ ∈

Gal(Q̄/Q) be such that σ acts non-trivially on E[2∞]. Then σ /∈ ker ρ2.

Proof. By assumption, there exists n ≥ 1 and P ∈ E[2n] such that Pσ �= P .
We have demonstrated above that the morphism gn : E → P1 is a 2-cover of X̄,
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defined over Q
(
µ2∞

)
. Let C be the Galois closure of (E, gn). Let tP denote the

deck transformation of gn given by translation-by-P . It is an X̄-automorphism
of (E, gn), and necessarily extends to some X̄-automorphism t̃P of C.

If σ does not fix Q
(
µ2∞

)
, then σ cannot fix Ω2, and so σ /∈ ker ρ2. Hence,

we may assume σ fixes Q
(
µ2∞

)
, and so gσ

n = gn. Let Q̄(t, y) be the function
field of (E, gn). We choose a lift σ̃ ∈ Gal

(
M/Q(t)

)
such that under σ̃, t �→ t

and y �→ y. Suppose that σ ∈ ker ρ2. Then there exists ϕ ∈ π2
1(X̄) such that for

every η ∈ π2
1(X̄),

ρ(σ)(η) = ησ̃ = ϕηϕ−1.(6)

That is to say, σ̃ must act as some inner automorphism of π2
1(X̄) ∼= Gal

(
M/Q̄(t)

)
.

Further, this equality holds for deck transformations of C; in particular, it holds
for t̃P .

Lemma 2.4. Under these assumptions, ϕ(E) = E.

Proof. To see this, let τ ∈ Gal(C/E). We also denote by τ its lift to an element
of Gal

(
M/Q̄(t)

)
. Our choice of σ̃ satisfies σ̃−1

(
Q̄(E)

) ⊆ Q̄(E), as σ̃ fixes t and
y. Hence, σ̃−1(s) ∈ Q̄(E) for any s ∈ Q̄(E), and so σ̃−1(s) is necessarily fixed
by τ . Then

τ
(
ϕ−1(s)

)
= ϕ−1

(
ϕ

(
τ

(
ϕ−1(s)

)))

= ϕ−1
(
σ̃

(
τ

(
σ̃−1(s)

)))

= ϕ−1
(
σ̃

(
σ̃−1(s)

))
= ϕ−1(s).

(7)

So ϕ−1(s) is fixed by all τ ∈ Gal(C/E). Hence, ϕ−1(s) ∈ Q̄(E) for every
s ∈ Q̄(E), and so ϕ(E) = E.

In particular, for t̃P we have t̃σ̃P = ϕt̃P ϕ−1. Since σ̃(E) = E,

t̃σ̃P
∣
∣
E

= σ̃ ◦ t̃P ◦ σ̃−1
∣
∣
E

= σ̃ ◦ t̃P
∣
∣
E
◦ σ̃−1

∣
∣
E

= σ̃tP σ̃−1
∣
∣
E

.
(8)

Similarly, ϕt̃P ϕ−1
∣
∣
E

= ϕtP ϕ−1
∣
∣
E

. Hence, the action of σ̃ on t̃P descends, and
we know that on E,

tσ̃P = ϕtP ϕ−1.(9)

Then ϕ cannot be the identity morphism on E, since for an arbitrary T ∈ E,

tσ̃P (T ) = σ̃
(
tP

(
σ̃−1(T )

))
= tP (T σ−1

)σ

= (P + T σ−1
)σ = Pσ + T �= P + T = tP (T ).

(10)

So ϕ|E is a nontrivial X̄-automorphism of E. But any curve automorphism
of E must be a composition of a translation and a group isomorphism, so we
may write ϕ = tQ ◦ ϕ′. One quickly sees that ϕtP ϕ−1 = ϕ′tP ϕ′−1, and so
without loss of generality, we may assume that ϕ is a group isomorphism of E.
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However, ϕ also represents an element of Gal(E/X̄), which by assumption
has order a power of 2. So as an element of Aut(E), ϕ must have order a power
of 2. Since we are in characteristic 0, the only possibilities are that ϕ or ϕ2 is
the automorphism −1 ∈ Aut(E) ([6, pg. 103]). We consider the two possible
cases.

Case I: ϕ = −1. In this case, we note

Pσ = σtP σ−1(O) = ϕtP ϕ−1(O) = ϕ(P ) = −P.(11)

But this must hold for any P ∈ E[2∞] not fixed by σ. Hence, Pσ = ±P for
every P ∈ E[2∞]. However, this is only possible if Pσ = −P for every P ,
or if σ acts trivially on E[2∞]. Indeed, if P, Q ∈ E[2∞] � E[2] are such that
Pσ = P, Qσ = −Q, then (P + Q)σ �= ±(P + Q).

Since σ does not fix all of E[2∞], we know Pσ = −P for every P ∈ E[2∞].
But by Lemma 2.1, there is an R ∈ E[4] rational over Ω2, and so Rσ = R! This
is a contradiction, and so σ /∈ ker ρ2.

Case II: ϕ2 = −1. In this case, ϕ is given by

(x, y) �→ (ζ2x, ζ3y), ζ ∈ µ4.(12)

Since σ fixes Ω2, ζσ = ζ, and so ϕ and σ commute in their action on the points
of E. As in Case I, we see that Pσ = ϕ(P ) for every P ∈ E[2∞] not fixed by σ.
Hence, Pσ2

= ϕ2(P ) = −P or Pσ2
= P for every P ∈ E[2∞]. It follows that σ2

must act as −1 on all of E[2∞]. The existence of R ∈ E[4] fixed by σ2 again
provides a contradiction, and so σ /∈ ker ρ2.

Corollary 2.5. For every elliptic curve E/Q which has good reduction away
from 2, Q(E[2∞]) ⊆ Ω2.

Proof. Proposition 2.3 shows that if σ does not fix Q(E[2∞]), then σ does not
fix Ω2. This is equivalent to saying that every σ fixing Ω2 also fixes Q(E[2∞]),
or equivalently, that Q(E[2∞]) ⊆ Ω2.

3. Construction of the 2-Cover g0

We now demonstrate that for each of the 24 elliptic curves E/Q with good
reduction away from 2, there exists a 2-cover g0 : E → P1 of X̄, defined over
Q

(
µ2∞

)
. That is, we will construct a morphism g0 : E → P1, unramified away

from {0, 1,∞}, whose Galois closure has degree a power of 2. In fact, the cover
g0 that we construct will be a composition of degree 2 morphisms. In this case,
the degree of the Galois closure will automatically be a power of 2. We remind
the reader of the proof.

Lemma 3.1. Let F = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K be a tower of quadratic field
extensions. Then the Galois closure of K/F has degree a power of 2.

Proof. We proceed by induction. The base case n = 1 is trivial. Suppose that
the Galois closure of Kn−1/F , Kg

n−1, has degree a power of 2 over F . We label
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by Kn = K1
n, . . . , Kk

n the Galois conjugates of Kn. Each Ki
n contains a Galois

conjugate of Kn−1, denoted Ki
n−1.

Since Kg
n−1 and K1

n are both Galois over Kn−1, the compositum K1
nKg

n−1

is Galois over Kn−1 also, and has degree a power of 2 over Kn−1. But this
compositum contains the field K2

n−1, and so must be Galois and degree a power
of 2 over K2

n−1. Hence, the compositum K2
nK1

nKg
n−1 is likewise Galois and

degree a power of 2 over Kg
n−1. Continuing in this fashion, we see that the

compositum Kk
n · · ·K1

nKg
n−1 is Galois and has degree a power of 2 over Kg

n−1.
But this compositum clearly contains all the Galois conjugates of Kn, and so
also contains Kg

n, the Galois closure of Kn. Thus, the Galois closure of Kn also
has degree a power of 2 over F .

We now set out to construct the covers g0. We begin by selecting a degree 2
morphism f : E → P1, which necessarily branches over a 4-point set. We will
then use the arithmetic properties of E to prove that f may be extended by
degree 2 morphisms P1 → P1 that collapses the branching to the set {0, 1,∞}.

Let E be one of the 24 elliptic curves over Q with good reduction away from 2.
We note that Q(ζ8) has class number 1, and in its ring of integers, there is a
unique prime ideal over 2, generated by π = 1 − ζ8. We will use the minimal
model of E, together with the properties noted in Lemma 2.1, to construct g0.
We note the discriminant of E,

∆ = 24(e1 − e2)2(e1 − e3)2(e2 − e3)2,(13)

must have the form ∆ = u ·πk, for some unit u ∈ Z[ζ8]×. For any ℘ � 2, v℘(∆) =
0. Since the ei− ej are all algebraic integers, it follows that v℘(ei− ej) = 0 also.

Now of the quantities ei − ej , any one can be written as a difference of the
other two. Hence, at least two of the valuations vπ(ei − ej) must be equal. Let
us relabel the ei such that

vπ(e1 − e2) = vπ(e1 − e3).(14)

Now the morphism f : E → P1 given by

f(x, y) =
x− e1

e2 − e1
(15)

has degree 2 and branches over the set {0, 1,∞, α}, where

α =
e3 − e1

e2 − e1
.(16)

By (14) and the reduction type of E, α has valuation 0 with respect to every
prime ideal inQ(ζ8). Hence, α is a unit in the ring of integers ofQ(E[2]) ⊆ Q(ζ8).
For 10 of the curves in the table, the field generated by E[2] has a unit group
with rank 0, and so α must be a root of unity. Those curves are 32A1, 32A2,
64A1, 64A4, 128A1, 128B1, 128C1, 128D1, 256B2, and 256C1. For any of these
curves, then, the composition

g0 = (x �→ x2k

) ◦ f, k ≤ 2,(17)
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gives a morphism g0 : E → P1, ramified only over {0, 1,∞}, which is a composi-
tion of degree 2 morphisms. This is a 2-cover of X̄, defined over Q.

The remaining curves have 2-torsion which generates a field with a unit group
of positive rank. However, for two of these curves, 256B1 and 256C2, computa-
tion shows α = −1, and so the morphism g0 = (x �→ x2) ◦ f provides a 2-cover
E → P1 of X̄, defined over Q.

For the eight curves 128A2, 128B2, 128C2, 128D2, 256A1, 256A2, 256D1,
and 256D2, computation reveals α = ±u2, where u is a unit which generates the
torsion-free part of the unit group of Q(E[2]) = Q(

√
2). Hence, the morphism

1
u · f ramifies over the set {0,∞, 1

u , u} or {0,∞, 1
u ,−u}, where u = 1 +

√
2 or

u = −1 +
√

2. We note the following degree 2 morphisms are unramified:

A1 : P1 � {0,∞,±1 +
√

2} −→ P1 � {0, 1, 2,∞} x �→ (x−
√

2)2

A2 : P1 � {0,∞,±1−
√

2} −→ P1 � {0, 1, 2,∞} x �→ (x +
√

2)2

A3 : P1 � {0,∞,−1±
√

2} −→ P1 � {0, 1, 2,∞} x �→ (x + 1)2

A4 : P1 � {0,∞, 1±
√

2} −→ P1 � {0, 1, 2,∞} x �→ (x− 1)2

B : P1 � {0, 1, 2,∞} −→ P1 � {0, 1,∞} x �→ 2x− x2

(18)

Hence, for these eight curves, a composition of the form B ◦ Ai ◦ 1
uf gives a

2-cover g0 : E → P1 of X̄, defined over Q(ζ8).
Unfortunately, for the remaining four curves, the unit α is the fourth power

of a fundamental unit in Q(
√

2), and the author could not find a composition of
degree 2 morphisms that could extend f to an appropriate 2-cover in these cases.
However, the situation is quickly remedied by considering a different morphism
E → P1 to start. The morphism h : E → P1 given by

h(x, y) =
y

x− e1
(19)

is of degree 2. One calculates its branch set to be {δ2 ± δ3,−δ2 ± δ3}, where

δi =
√

e1 − ei.(20)

For the four remaining curves, 32A3, 32A4, 64A2, 64A3, one sees that δ2, δ3 are
algebraic integers in Q(ζ8), and for these curves, the set of branch points of h

has the form {±γ,±γ
√

2}, for some γ ∈ Q(ζ8). Hence, the composition

g0 = B ◦ (x �→ x2) ◦ 1
γ

h(21)

gives a 2-cover g0 : E → P1 of X̄, defined over Q(ζ8). This completes the con-
struction of g0 for each of the 24 elliptic curves, and we conclude the following.

Proposition 3.2. For every elliptic curve E/Q with good reduction away from 2,
there exists a 2-cover g0 : E → P1 of X̄, defined over Q

(
µ2∞

)
.
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4. Curves Over Q(µ2∞)

We finish this article with an extension of the main theorem, and an example
of an infinite family of elliptic curves defined over Q(µ2∞) whose 2-power torsion
is Ω2-rational.

Theorem 4.1. Let ζ be a primitive 2n-th root of unity, and suppose that E is
an elliptic curve defined over Q(ζ), with a minimal model of the form

y2 = (x− e1)(x− e2)(x− e3), ei ∈ Z[ζ].(22)

Further, suppose that E has good reduction away from (π) = (1− ζ), and that E
possesses a point R of exact order 4 which is Ω2-rational. If there exists a 2-
cover g0 : E → P1 of X̄, defined over Q

(
µ2∞

)
, then Q (E[2∞]) ⊆ Ω2.

Proof. Under these hypotheses, we may follow the proof of Theorem 1.1 directly,
and so Q(E[2∞]) ⊆ Ω2.

Now, for any 2n-th root of unity ζ, let Eζ be the elliptic curve given by

y2 = x(x + ζ)(x− π), π = 1− ζ.(23)

We check with Tate’s algorithm (see [5] or [7]) that this equation gives a global
minimal model for Eζ over Q(ζ). The discriminant is ∆ = 16ζ2π2, and so Eζ

has good reduction away from (π). Let η be a root of unity satisfying ζ = η2.
Then the point R =

(
η − η2, i(η − η2)

)
has exact order 4, and clearly is rational

over Ω2. We note that f : E → P1, given by f(x, y) = x + ζ, branches over the
set {0, 1,∞, ζ}, and so

g0 = (x �→ x2n

) ◦ f(24)

gives a 2-cover E → P1 of X̄, defined over Q
(
µ2∞

)
. Applying Theorem 4.1, we

have Q (Eζ [2∞]) ⊆ Ω2.
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