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AN EXAMPLE OF NECKPINCHING FOR RICCI FLOW ON
Sn+1

Sigurd Angenent and Dan Knopf

Abstract. We give an example of a class of metrics on Sn+1 that evolve under the
Ricci Flow into a “neckpinch.” We show that the solution has a Type I singularity,
and that the length of the neck, i.e. the region where |Rm| ∼ (T−t)−1, is bounded

from below by c
√

(T − t)| log(T − t)| for some c > 0.

1. Preamble

This paper is the first of two in which we study singularity formation in the
Ricci flow. As motivation, consider a solution of the flow

∂tg = −2 Rc (g)(1a)

g (0) = g0(1b)

starting from an arbitrary Riemannian manifold (Mm, g0). One should not be
surprised if (1) becomes singular in finite time. Indeed, the simple estimate

∂tR = ∆R + 2 |Rc|2 ≥ ∆R +
2
m

R2

for the evolution of the scalar curvature implies by the parabolic maximum
principle that a finite-time singularity is inevitable if the curvature ever becomes
everywhere positive.

In this context, it is very surprising indeed that no explicit examples of finite-
time singularities were known until recently, except for trivial cases where the
manifold is a product of constant-curvature factors, one of which vanishes all at
once. The first rigorous examples [13] of finite-time singularities which occur on
proper (compact) subsets of a manifold were constructed by Miles Simon. Here
the manifold is a noncompact warped product R×f Sn. These examples were
obtained using upper barriers. Another family of examples was constructed in
[4]. Here the manifold is the holomorphic line bundle L−k over CPn−1 with
twisting number k ∈ {1, . . . , n− 1}, and the metric g(t) is a complete U (n)-
invariant shrinking gradient Kähler–Ricci soliton. As t ↗ T < ∞, the CPn−1

which constitutes the zero-section of the bundle disappears, while the metric
g(t) converges to a Kähler cone on the set (Cn\ {0})/Zk which constitutes the
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remainder of the bundle. No rigorous constructions of nontrivial finite-time
singularitites on compact manifolds have yet appeared in the literature.

In sharp contrast to the scarcity of explicit examples, there is a substantial
body of well-informed conjecture about the nature of Ricci flow singularities
on compact manifolds. (See for instance Section 3 of [10].) In particular, it is
strongly conjectured that curvature neckpinches should develop in finite time,
where we use the following provisional definition of a neck pinch: A solution(
Mn+1, g(t)

)
to the Ricci flow which becomes singular at time T < ∞ has a

neck pinch if there exist diffeomorphisms φt : R × Sn → N(t) where N(t) is
some proper open subset of Mn+1 such that the metric g(t) remains regular on
Mn+1\N(t), and such that the pullback metric φ∗t (g(t)) approaches a “shrinking
cylinder” metric

ds2 + r (t)2 · gcan

in C∞loc on the cylinder R×Sn as t↗ T , where gcan is the round metric of radius
1 on Sn and limt↗T r(t) = 0.

Except for a sphere shrinking to a round point, the neckpinch is topologically
the simplest singularity which the Ricci flow can encounter. Arguably, it is also
the most important, at least with respect to the goal of obtaining topological
information from the Ricci flow. Indeed, much effort has been exerted to un-
derstand singularity formation (especially in dimensions three and four) by the
strategy of forming sequences of parabolic dilations at a developing singularity.
Such sequences

(
Mn+1, gj (t)

)
are defined by

gj(t) := λjg(tj +
t

λj
), −λjtj ≤ t < λj(T − tj),

where tj ↗ T and λj ↗∞. In order to obtain information from the Ricci flow
about the geometry of the original manifold near the singularity and just prior
to its formation, one studies the properties of limits of these dilations. (See for
example [10, 11] and the recent articles [14, 15].)

The present paper and its successor are not directly relevant to topological
applications of the Ricci flow, however. Rather, they are inspired by the long
tradition of singularity analysis for nonlinear pde and geometric evolution equa-
tions.

In this paper, we demonstrate the existence of neckpinch singularities on
compact Riemannian manifolds, in particular for an open set of rotationally-
symmetric initial metrics on topological spheres Sn+1. Our main result is the
following:

Theorem 1.1. If n ≥ 2, there exists an open subset of the family of metrics on
Sn+1 possessing SO(n + 1) symmetries such that the Ricci flow starting at any
metric in this set develops a neckpinch at some time T <∞. The singularity is
rapidly-forming (Type I), and any sequence of parabolic dilations formed at the
developing singularity converges to a shrinking cylinder soliton

ds⊗ ds + 2(n− 1)(T − t)gcan.
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This convergence takes place uniformly in any ball of radius

o

(√
(T − t) log

1
T − t

)

centered at the neck.
Furthermore, there exist constants 0 < δ, C <∞ such that the radius ψ of the

sphere at distance σ from the neck pinch is bounded from above by

ψ ≤
√

2(n− 1)(T − t) +
Cσ2

− log(T − t)
√

T − t
(2)

for |σ| ≤ 2
√−(T − t) log(T − t), and

ψ ≤ C
σ√− log(T − t)

√
log

σ√−(T − t) log(T − t)
(3)

for 2
√−(T − t) log(T − t) ≤ σ ≤ (T − t)

1
2−δ.

The class of initial metrics for which we establish “neck pinching” is essentially
described by three conditions: (i) the initial metric should have positive scalar
curvature, (ii) the sectional curvature of the initial metric should be positive
on planes tangential to the spheres {x} × Sn, and (iii) the initial metric should
be “sufficiently pinched.” See Section 8 for details. One difference between our
approach and Simon’s [13], is that Simon assumes that the Ricci curvature of
the meridians R × {p} (p ∈ Sn) is negative, which can happen if the manifold
Mn+1 is a cylinder R× Sn, but not if Mn+1 is a sphere Sn+1.

Finally, in Section 10, we consider the special case of a reflection-symmetric
metric with one neck. In this situation we prove that the singularity occurs only
on the totally geodesic Sn which constitutes the equator, provided the diameter
of

(
Mn+1, g(t)

)
remains bounded as t ↗ T . It is not clear to us that this

diameter must indeed always remain bounded. However, a more detailed analysis
of the asymptotics of the neckpinch, which we present in a subsequent paper,
does show that this hypothesis is met for a subset of the solutions considered
here.

The results obtained in the present paper strongly resemble familiar theorems
for the rotationally symmetric mean curvature flow. There is a vast body of work
on singularity formation for that flow. A pioneering paper in the rotationally
symmetric case is [12], and a more general approach to such singularities is
considered in [2]. Aspects of the argument for the Ricci flow are significantly
more difficult than the corresponding arguments for the mean curvature flow,
however, in part because one must work much harder in the present case to
control the solution on the “polar caps.” (See Section 5.4.)

In the successor to this paper, we will remove the hypothesis of rotational sym-
metry and thereby derive formal matched asymptotics for fully general neckpinch
singularities. We will also develop more detailed asymptotics for the rotationally-
symmetric case.
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These extend and generalize the results obtained in Section 9 below, and
indicate that the error bounds in Lemma 9.4 are sharp. Examples of this sort
of analysis for the semilinear reaction-diffusion equation ut = ∆u + up can be
found in [6, 7, 8] and [5]. Rigorous matched asymptotics for slowly-forming
singularities of the mean curvature flow were developed in [3].

Acknowledgement. The authors wish to express their gratitude for the
hospitality and partial support provided by the National Center for Theoretical
Sciences in Hsinchu, Taiwan. It was during their 2002 summer Workshop on
Geometric Evolution Equations that the original observations in this paper were
made. The authors also wish to thank Miles Simon for several stimulating
conversations in Hsinchu.

2. The equations

We consider metrics on Sn+1 given by

g = ϕ(x)2dx⊗ dx + ψ(x)2ĝ,(4)

in which ĝ ≡ gcan is the metric of constant curvature 1 on Sn. We have punctured
the sphere Sn+1 at its north and south poles P±, and identified the remaining
manifold with (−1, 1) × Sn(1), with x the coordinate on (−1, 1) and Sn(1) the
unit sphere.

2.1. Coordinates. The coordinate x is ungeometric: a more geometric quan-
tity is the distance s to the equator given by

s(x) =
∫ x

0

ϕ(x)dx.(5)

One could introduce s as a new coordinate, but for logical consistency we will
adopt the following convention: in this paper all functions (tensors, forms, etc.)
defined on Sn+1 \ {north & south poles} will be functions of the x variable.
Whenever we write a relation of the type f = f(s), it is to be understood as
shorthand for f = f(s(x)) (or f = f(s(x, t)) for evolving metrics).

The “derivative with respect to s” is given by

∂

∂s
=

1
ϕ(x)

∂

∂x
.(6)

We also define

ds = ϕ(x)dx

even when the metric evolves, in which case standard notation would have sug-
gested ds(x, t) = sxdx + stdt instead.

With this notation the metric is

g = (ds)2 + ψ2ĝ.
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2.2. Curvature tensors. The Riemann tensor is completely determined by
the sectional curvatures of the 2-planes perpendicular to the spheres {x} × Sn,
and the 2-planes tangential to these spheres. These curvatures are (respectively)

K0 = −ψss

ψ
, K1 =

1− ψ2
s

ψ2
.(7)

In the ungeometric coordinate x the Ricci tensor of the metric g given by (4) is

Rc = n

{
−ψxx

ψ
+

ϕxψx

ψϕ

} (
dx

)2 +
{
−ψψxx

ϕ2
− (n− 1)ψ2

x

ϕ2
+

ψϕxψx

ϕ3
+ n− 1

}
ĝ.

In the geometric coordinate this simplifies to

Rc = nK0(ds)2 + [K0 + (n− 1)K1]ψ2ĝ(8)

= −n
ψss

ψ
(ds)2 +

{−ψψss − (n− 1)ψ2
s + n− 1

}
ĝ.

The scalar curvature is given by

R = gjkRjk(9a)

= nK0 + n [K0 + (n− 1)K1](9b)

= 2nK0 + n(n− 1)K1(9c)

= n

{
−2

ψss

ψ
+ (n− 1)

1− ψ2
s

ψ2

}
.(9d)

2.3. Evolution equations. Suppose we have a time dependent family of met-
rics g(·, t) which evolves by the Ricci flow (1). Then the “radius” ψ(x, t) will
satisfy

∂tψ = ψss − (n− 1)
1− ψ2

s

ψ
.(10)

The quantity ϕ(x, t) evolves by

∂tϕ = n

{
ψxx

ϕψ
− ϕxψx

ψϕ2

}
= n

ψss

ψ
ϕ.(11)

The equations (7)–(11) can also be found in [13] (Propositions 2.1 and 4.1).

3. Derived equations

3.1. Equations for powers of ψ. Various powers of ψ satisfy equations similar
to (10). If we set u = ψk for any k �= 0, then

ut = kψk−1ψt

= kψk−1ψss + (n− 1)kψk−2ψ2
s − (n− 1)kψk−2

= uss +
n− k

k

u2
s

u
− (n− 1)ku1− 2

k .

(12)
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In particular, for k = n we get

ut = uss − n(n− 1)u1− 2
n .(13)

For k = 2 we get

ut = uss +
n− 2

2
u2

s

u
− 2(n− 1).(14)

3.2. Equations for derivatives of ψ. The partial derivatives ∂t and ∂x com-
mute, but ∂t and ∂s do not. To commute them, we must use the following
identity

[∂t, ∂s] = [∂t,
1

ϕ(x, t)
∂x] =

−ϕt

ϕ2
∂x = −n

ψss

ψ
∂s.(15)

Thus we find

∂t(ψs) = ∂s(ψt) + [∂t, ∂s]ψ

= ∂sssψ + (n− 2)
ψsψss

ψ
+ (n− 1)

1− ψ2
s

ψ2
ψs;

that is, the quantity v = ψs satisfies the heat equation

∂tv = vss +
n− 2

ψ
vvs +

n− 1
ψ2

(1− v2)v.(16)

For w = ψss we find after a similar computation

∂tw = wss + (n− 2)
ψs

ψ
ws − 2

w2

ψ
− (4n− 5)

ψ2
s

ψ2
w +

n− 1
ψ2

w

− 2(n− 1)
ψ2

s(1− ψ2
s)

ψ3
,

(17)

i.e.

∂t(ψss) =
(
ψss

)
ss

+ (n− 2)
ψs

ψ

(
ψss

)
s

− 2
ψ2

ss

ψ
− (4n− 5)

ψ2
s

ψ2
ψss +

n− 1
ψ2

ψss

− 2(n− 1)
ψ2

s(1− ψ2
s)

ψ3
.

(18)

We also have equations for ψt and K = ψss/ψ(= −K0), namely

∂t (ψt) = (ψt)ss + (n− 2)
ψs

ψ
(ψt)s

− 2n

ψ
ψ2

t + (2n− 1)2
ψ2

s

ψ2
ψt − (4n− 1) (n− 1)

ψ2
ψt

− 2n (n− 1)
1− ψ2

s

ψ3

[
(n− 1)

(
1− ψ2

s

)
+ ψ2

s

]
(19)
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and

∂tK =Kss + n
ψs

ψ
Ks − 2K2

− 4(n− 1)
ψ2

s

ψ2
K +

2(n− 1)
ψ2

K − 2(n− 1)
ψ2

s

ψ4

(
1− ψ2

s

)
.

(20)

Another way of deriving these equations is based on the observation that the
Ricci tensor is given by

Rc = −n
ψss

ψ
(ds)2 − ψψtĝ,

so that the two quantities −nK and −ψψt are the eigenvalues of the Ricci tensor.
Under Ricci flow, this tensor evolves by

∂t(Rc)jk = (∆Rc)jk + 2(Rm)pjkq(Rc)pq − 2(Rc)p
j (Rc)pk,(21)

where all contractions are done with respect to the evolving metric g. (See
Section 5.4 below.)

3.3. Curvature Pinching. Consider

a = ψψss − ψ2
s + 1 = ψ2(K1 −K0).

This quantity provides a scale invariant measure for the difference of the two
sectional curvatures K0 and K1.

Lemma 3.1. The quantity a evolves by

at = ass + (n− 4)
ψs

ψ
as − 4 (n− 1)

ψ2
s

ψ2
a.

Proof. Note that

a = ψw − v2 + 1,

where v = ψs and w = ψss are defined above in Section 3.2. One computes that

as = ψsw + ψws − 2vvs = ψws − vw

and

ass = ψsws + ψwss − vsw − vws = ψwss − w2.
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Then recalling equation (10) for the evolution of ψ , equation (16) for the evo-
lution of v, and equation (17) for the evolution of w, one derives the equation

at = wψt + ψwt − 2vvt

= w

[
w − (n− 1)

1− v2

ψ

]

+ψ

[
wss + (n− 2)vws

ψ − 2w2

ψ − (4n− 5)v2w
ψ2

+(n− 1) w
ψ2 − 2(n− 1)v2(1−v2)

ψ3

]

−2v

[
ws + (n− 2)

vw

ψ
+ (n− 1)

v(1− v2)
ψ2

]

= ψwss − w2 + (n− 4) vws − (5n− 8)
v2w

ψ
− 4(n− 1)

v2
(
1− v2

)
ψ2

= ass + (n− 4)
v

ψ
as − 4(n− 1)

v2

ψ2
a.

Applying the maximum principle immediately yields the following estimate.

Corollary 3.2. sup |a (·, t)| ≤ sup |a (·, 0)|.
3.4. Curvature Splitting. The following evolution equations will be useful
when we consider the asymptotics of a neck pinch. We recall that we earlier
defined K = −K0 = ψss/ψ, and we now write L = K1. With this notation, one
can write the evolution equation (20) for K as

Kt = ∆K + 2 (n− 1)KL− 2K2 − 2 (n− 1)
ψ2

s

ψ2
(K + L) ,(22)

since the Laplacian of a radially symmetric function is given by

∆f =
∂2f

∂s2
+ n

ψs

ψ

∂f

∂s
.

For L we have:

Proposition 3.3. If g(·, t) = ϕ2(dx)2 +ψ2ĝ is a solution to the Ricci flow, then
L evolves by

Lt = ∆L + 2
ψs

ψ
Ls + 2

[
K2 + (n− 1)L2

]
(23a)

= ∆L− 4
ψ2

s

ψ2
(K + L) + 2

[
K2 + (n− 1)L2

]
.(23b)

Proof. Using equations (10) and (16), one computes that

Lt = −2
ψs

ψ2
(ψs)t − 2

L

ψ
ψt

= −2
ψψsss

ψ2
− 2 (n− 1)

ψ2
s

ψ2
(K + L) + 2

(
ψ2

s

ψ2
− L

)
K + 2 (n− 1)L2.
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Then observing that

Ls = −2
ψs

ψ
(K + L) ,

one calculates

Lss = −2
ψψsss

ψ2
+ 6

ψ2
s

ψ2
(K + L) + 2

(
ψ2

s

ψ2
− L

)
K − 2K2.

Combining these equations yields

Lt = Lss − 2 (n + 2)
ψ2

s

ψ2
(K + L) + 2

[
K2 + (n− 1)L2

]
,

whence the result follows.

Corollary 3.4. Lmin(t) is nondecreasing; and whenever Lmin(0) �= 0, one has

Lmin(t) ≥ 1
Lmin(0)−1 − 2 (n− 1) t

.(24)

Now consider

F =
K

L
log L.(25)

Then using equations (22) and (23a), one computes the following for F .

Proposition 3.5. If g(·, t) = ϕ2(dx)2 + ψ2ĝ is a solution to the Ricci flow with
L > 1, then F evolves by

(26) Ft = ∆F + 2
(

log L− 1
L log L

)
LsFs +

(
2− log L

log L

)
KL2

s

L3

− 2P

(
ψs

ψ

)2
K + L

L
+ 2QK,

where

P = (n− 1) log L− 2
K

L
(log L− 1)

and

Q = n− 1− K2

L2
(log L− 1)− F.

The hypothesis L > 1 is needed here to keep log L positive, and in particular
nonzero.
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4. Boundary conditions

All quantities considered here are defined for −1 < x < 1. The “radius”
ψ(x, t) must vanish at x = ±1, for otherwise the manifold would fail to be a
sphere. At these endpoints the derivative of ψ is also prescribed.

Proposition 4.1. Let g = ϕ(x)2(dx)2+ψ(x)2ĝ be a smooth Riemannian metric
on (−1, 1)× Sn which extends to a smooth metric on Sn+1. Then

lim
x→±1

ψs = ∓1.

Write s̄ =
∫ 1

0
ϕ(x)dx for the distance from the equator x = 0 to the north pole

x = 1. Then ψ/(s̄− s) extends to a smooth even function of s̄− s, so that

ψ = (s̄− s) + A3(s̄− s)3 + · · ·+ A2m+1(s̄− s)2m+1 + · · · .
Proof. The quantity s̄ − s is the distance from any point on {x} × Sn to the
north pole. Thus the expression g = (ds)2+ψ2ĝ is a representation of the metric
g in geodesic polar coordinates, with s̄ − s being the radius. In this light, the
proposition is a standard result from Riemannian geometry.

5. The shape of the solution

5.1. Derivative estimates.

Proposition 5.1. Assume g(·, t) = ϕ2(dx)2+ψ2ĝ is a solution to the Ricci flow
for 0 ≤ t < T . Then

1 ≤ sup |∂sψ(·, t)| ≤ sup |∂sψ(·, 0)|.
Proof. One applies the maximum principle to (16). This equation says that at
any maximum of ψs which exceeds 1, one has

∂tψs ≤ n− 1
ψ2

(1− ψ2
s)ψs < 0.

Similarly, at any minimum of ψs with ψs < −1, one has ∂tψs > 0. The result
follows once we observe that by Proposition 4.1, g extends to a smooth metric
on Sn+1 only if sup |∂sψ(·, 0)| ≥ 1.

Proposition 5.2. Assume g(·, t) = ϕ2(dx)2+ψ2ĝ is a solution to the Ricci flow
for 0 ≤ t < T with |ψs| ≤ 1 and initially positive scalar curvature. Then R > 0
and ∂tψ < 0 on Sn+1 × [0, T ).

Proof. The scalar curvature satisfies Rt = ∆R + 2|Rc|2 ≥ ∆R, so positivity of
R is preserved.

Our assumption |ψs| ≤ 1 forces the sectional curvature K1 = ψ−2(1 − ψ2
s)

to be nonnegative everywhere. If at any point one has ψss ≤ 0, then K0 =
−ψss/ψ ≥ 0, and hence ψt = ψss − (n− 1)(1−ψ2

s)/ψ < 0. If on the other hand
ψss > 0, then K0 = −ψss/ψ < 0, so that

−ψt = ψ(K0 + (n− 1)K1) = ψ(
R

n
−K0) > 0,
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as claimed.

Proposition 5.3. If |ψs| ≤ 1, then |∂t(ψ2)| ≤ 2n + 2 sup |a(·, 0)|, where a =
ψψss − ψ2

s + 1, as in §3.3.
Proof. We showed in Corollary 3.2 that |a| ≤ sup |a(·, 0)|. By definition one has
ψss = (a + ψ2

s − 1)/ψ, so that

ψt = ψss − (n− 1)(1− ψ2
s)/ψ =

a− n(1− ψ2
s)

ψ
,

from which the proposition immediately follows.

5.2. The limit at t = T .

Proposition 5.4. Assume g = ϕ(x, t)2(dx)2 + ψ(x, t)2ĝ is a solution of the
Ricci flow which at t = 0 satisfies |ψs| ≤ 1. Then ψ(x, T ) := limt↗T ψ(x, t)
exists.

Proof. The condition |ψs| ≤ 1 is preserved by Ricci flow. Hence by Proposi-
tion 5.3, ψ(x, t)2 is a uniformly Lipschitz continuous function of time. The limit
limt↗T ψ(x, t) must therefore exist for each x ∈ [−1, 1].

5.3. Necks and Bumps. The derivative v = ψs satisfies (16), which we can
write as a linear parabolic equation

∂tv = vss + Q v

with

Q = (n− 2)
ψss

ψ
+ (n− 1)

1− ψ2
s

ψ
.

Using ∂s = ϕ−1∂x, one can write this equation as

∂tv = ϕ−1
(
ϕ−1vx

)
x

+ Q(x, t)v = A(x, t)vxx + B(x, t)vx + C(x, t)v

for suitable coefficients A, B, and C. Furthermore, at the extremes x = ±1 we
have seen that ψs → ∓1. The Sturmian theorem [1] therefore applies, and we
conclude the following.

Lemma 5.5. At any time t ∈ (0, T ), the derivative v = ψs(·, t) has a finite
number of zeroes, as a function of x ∈ (−1, 1). This number of zeroes is non-
increasing in time, and at any moment t0 ∈ (0, T ) that ψ(·, t) has a multiple
zero (i.e. a point at which ψs = ψss = 0 simultaneously) the number of zeroes of
ψs(·, t) drops.

We will refer to local maxima of x �→ ψ(x, t) as bumps, and local minima as
necks. The lemma says that during any evolution by the Ricci flow of g(t) =
ϕ2(dx)2 + ψ2ĝ, the number of necks cannot increase with time, while all necks
and bumps must be nondegenerate maxima/minima, except when one or more
bumps and necks come together and annihilate each other. In particular, if the
number of necks does not change, then all necks and bumps are nondegenerate.
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x
* 
(t)

x
-1 1

Figure 1. A Genetically Modified Peanut

5.4. Preserving the polar caps. In this section, we prove that the curvature
remains positive on the polar caps if it is so initially. Let x∗ (t) ∈ (0, 1) denote
the location of the right-most bump, namely the largest x ∈ (−1, 1) at which
ψx(x, t) = 0. Then the “polar cap” of Sn+1 is the set ((x∗(t), 1)× Sn(1))∪{P+}.
Lemma 5.6. If ψss(x, 0) ≤ 0 for x∗(0) < x < 1, then ψss(x, t) ≤ 0 for x∗(t) <
x < 1 and all 0 < t < T .

To prove the lemma, we shall use the following slight modification of the
tensor maximum principle introduced in [9].

Proposition 5.7. Let {Nt, ∂Nt, g (t) : 0 ≤ t < T} be a smooth 1-parameter fam-
ily of compact Riemannian manifolds with boundary. Let S and F be symmetric
(2, 0)-tensor fields on Nt such that S evolves by

∂

∂t
S ≥ ∆S + F ∗ S,

where F∗S denotes the symmetrized product (F ∗ S)ij = F k
i Skj+Sk

i Fkj. Suppose
that infp∈Nt S (p, 0) ≥ 0 and that S(q, t) ≥ 0 for all points q ∈ ∂Nt and times
t ∈ [0, T ). If (F ∗ S) (V, ·) ≥ 0 whenever S (V, ·) = 0, then

inf
p∈Nt, t∈[0,T )

S(p, t) ≥ 0.

If all inequalities are strict then the proof is entirely standard, once we note
that the hypotheses imply that S can first attain a zero eigenvalue only at an
interior point of Nt. To reduce the general case to the case of strict inequalities
one considers S̃ij = Sij + εeλtgij(t) for large enough λ > 0 and arbitrary small
ε > 0.

Proof of Lemma 5.6. First we show that the Ricci tensor satisfies

∂

∂t
Rc = ∆Rc + F ∗ Rc,(27)

where F is the (2,0) tensor given by

F = (K1 −K0)
[
(n− 1)(ds)2 + ψ2ĝ

]
.
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To verify (27) at any given point (x, P ) ∈ (−1, 1) × Sn we choose coordinates
{y1, . . . , yn} near P on Sn in which the standard metric ĝ has components
ĝαβ = δαβ at P .

We set y0 = s so that {y0, y1, . . . , yn} is a coordinate system near (x, P ) on
(−1, 1)× Sn, and adopt the convention that Roman indices belong to {0, . . . n}
while Greek indices belong to {1, . . . , n}. The only nonvanishing components
of the metric g in these coordinates are g00 = 1 and gαα = ψ2ĝαα. Observe
that all components of the Riemann tensor Rm = (Rijk�) vanish in these coor-
dinates except Rα00α = ψ2K0 and Rαββα = ψ4K1 (α �= β). Similarly, all
components of the Ricci tensor Rc = (Rij) vanish except R00 = nK0 and
Rαα = ψ2 [K0 + (n− 1)K1]. The evolution equation (27) now follows from (21).

We have established (27) on the punctured sphere (−1, 1)×Sn. By continuity
it remains valid at the poles {±1} × Sn.

To apply Proposition 5.7, let Nt denote the topological (n + 1)-ball

Nt = {(x, p) : x ≥ x∗ (t) , p ∈ Sn}
endowed with the metric g (t). Observe that K0 and K1 are strictly positive on

∂Nt = {x∗ (t)} × Sn,

because ψ has a local maximum at x∗ (t), and ψs has a simple zero there by
Lemma 5.5. So Rc > 0 on ∂Nt. If ψ (·, 0) is strictly convex for all x ≥ x∗ (0),
then Rc (·, 0) > 0 on Nt. So if Rc ever acquires a zero eigenvalue, it must do
so at some point p ∈ intNt and time t ∈ (0, T ). If Rc (V, V )|(p,t) = 0 for some
vector V ∈ TpNt, then (F ∗ Rc) (V, V ) = 0, because F and Rc commute. Hence
Proposition 5.7 implies that Rc ≥ 0 on Nt for as long as g (t) exists. Lemma 5.6
follows immediately.

6. Shrinking rate of a neck

In this section we consider a solution g(t) = (ds)2 + ψ(x, t)2ĝ of Ricci flow,
and we define

rmin(t) = min{ψ(x, t) | ψx(x, t) = 0};(28)

i.e., rmin(t) is the radius of the smallest neck of the solution at time t. If the
solution has no necks, then rmin(t) will be undefined.

Lemma 6.1. Let g(t) = (ds)2+ψ(x, t)2ĝ be a solution of Ricci flow with R ≥ 0.
Then

(n− 1)(T − t) ≤ rmin(t)2 ≤ 2(n− 1)(T − t)

An important direct consequence of this Lemma is that any initial metric
generates a solution which must either become singular at or before

T =
rmin(0)2

n− 1
,

or else lose all its necks before this time so that rmin(t) becomes undefined.
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Proof. For all but a finite number of times ψ(·, t) will be a Morse function, and
its critical values will be smooth functions of time. The smallest critical value,
i.e. rmin(t), is therefore a Lipschitz continuous function of time. We will show
that

− n− 1
rmin(t)

≤ r′min(t) ≤ − n− 1
2rmin(t)

,(29)

holds for almost all t. After integration this implies the Lemma.
Suppose that at some time t0 the function ψ(·, t0) is a Morse function, and

let its smallest critical value be attained at x(t0). Then by the Implicit Func-
tion Theorem there is a smooth function x(·) defined near t = t0, such that
ψx(x(t), t) = 0. One has

dψ(x(t), t)
dt

= ψt(x(t), t) + ψx(x(t), t)x′(t)

= ψt(x(t), t)

= ψss(x(t), t)− n− 1
rmin(t)

.

(30)

The first inequality in (29) follows immediately from (30) once one realizes that
at a neck one has ψss ≥ 0.

To get the other inequality we recall that the scalar curvature satisfies R =
2nK0 + n(n− 1)K1, where K0 = −ψss/ψ and K1 = (1−ψ2

s)/ψ2. At a neck, we
therefore have

ψss = −ψK0 =
n− 1
2ψ

− R

2n
ψ

Since R > 0 holds on our solution, we find
dψ(x(t), t)

dt
≤ −n− 1

2ψ
,

whence the second inequality in (29).

We note that the hypothesis R > 0 is not really necessary in this Lemma. If
one assumes R ≥ −C for some constant (which is always the case, since Rmin is
nondecreasing in time) then one finds

− n− 1
rmin(t)

≤ r′min(t) ≤ − n− 1
2rmin(t)

+
C

2n
rmin(t)

From this one deduces ε(T − t) ≤ rmin(t)2 ≤ 2(n− 1)(T − t).

7. The caps stay smooth

In this section, we prove that no singularity occurs on the polar caps (i.e.,
they don’t melt).

Lemma 7.1. There is a constant C, depending on the solution g(t) such that

|Rm| ≤ C

ψ2
.
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Simon [13, Lemma 2.3] reached the same conlusion in his setting.

Proof. We note first that by Proposition 3.2 the quantity a = ψ2(K1 − K0)
remains uniformly bounded.

Since ψs is bounded, the quantity ψ2K0 = 1 − ψ2
s must remain bounded.

Hence ψ2K1 = ψ2K0 + a clearly also remains bounded. The lemma follows via
|Rm|2 = n(n− 1)K2

1 + 2nK2
0 .

We now consider a solution g(t) = (ds)2 + ψ(x, t)2ĝ of Ricci flow and we
let x∗(t) be the right-most bump (i.e. x∗(t) = max{x | ψx(x, t) = 0}). By
Proposition 5.3 we may assume that |(ψ2)t| ≤ C0 for some constant C0 < ∞.
Since

d

dt
ψ(x∗(t), t)2 =

(
ψ2

)
t
(x∗(t), t) + 2ψψx

dx∗(t)
dt

=
(
ψ2

)
t
(x∗(t), t)

is also bounded by C0 we conclude that

D = lim
t↗T

ψ(x∗(t), t)

exists.

Lemma 7.2. If D > 0, no singularity occurs on the cap ((x∗(t), 1)× Sn(1)) ∪
{P+}.
Proof. By Proposition 5.3, we may let C0 be an upper bound for |(ψ2)t|. We
choose t1 ∈ (0, T ) so that C0(T − t1) < D2/8. Then we have

ψ(x∗(t), t)2 ≥ D2 − C0(T − t) >
7
8
D2

for all t ∈ [t1, T ). Next, let x1 be the unique solution of ψ(x1, t1)2 = 3
4D2 in the

interval [x∗(t1), 1]. Our bound on (ψ2)t implies for all t ∈ [t1, T ) that

ψ(x1, t)2 ≤ 3
4
D2 + C0(t− t1) <

7
8
D2 < ψ(x∗(t), t)2.

Thus we have x∗(t) < x1 < 1 for all t ∈ [t1, T ), and consequently ψs < 0 and
ψss < 0 on the interval [x1, 1] for all t ∈ [t1, T ). It follows that the distance

d1(t) = s(1, t)− s(x1, t)

from (x1, t) to the pole P+ is decreasing in time. Indeed,

d′1(t) =
∫ 1

x1

nψss

ψ
ds < 0.

Next let x2 ∈ (x1, 1) be defined by ψ(x2, t1)2 = 3
8D2. Then for t ∈ [t1, T ) we

have

ψ(x2, t)2 ≤ 3
8
D2 + C0(T − t1) <

1
2
D2,

and

ψ(x1, t)2 ≥ 3
4
D2 − C0(T − t1) >

5
8
D2.
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Thus ψ(x1, t)2 − ψ(x2, t)2 ≥ D2/8, and hence, crudely estimating ψ(x1, t) +
ψ(x2, t) from below by

ψ(x2, t) ≥
√

3
8
D2 − C0(T − t1) ≥

√
D2/4 = D/2,

we have

ψ(x1, t)− ψ(x2, t) ≥ D2/8
D/2

= D/4.

Concavity (i.e. ψss < 0) implies that for x ∈ [x2, 1) one has

−ψs >
ψ(x1, t)− ψ(x, t)
s(x1, t)− s(x, t)

>
D/4

s(x1, t1)− s(1, t1)
≡ δ.

At this point we once again consider the quantity a = ψψss − ψ2
s + 1 from

§3.3. We found that L(a) = 0, where L is the differential operator

L = ∂t − ∂2
s − (n− 4)

ψs

ψ
∂s + 4(n− 1)

ψ2
s

ψ2
.

We also found that the quantity u = ψκ satisfies

L(u) = (4− κ)
ψs

ψ
us +

n− 1
ψ2

(4ψ2
s − κ)u = (4− κ)ψκ−2ψ2

s +
n− 1
ψ2

(4ψ2
s − κ)u.

In the region Q2 = [x2, 1)× [t1, T ) we have |ψs| ≥ δ. If we choose κ < 4δ2 < 4,
then we have L(u) > 0 in Q2.

By the maximum principle we then have |a| ≤ Cu in Q2, for some constant
C < ∞. Indeed, the quantity |a|/u must attain its maximum (C) on the para-
bolic boundary of Q2. At the left end (x = x2) we have u = ψκ ≥ (D/64)κ, while
|a| is bounded by sup |a(·, 0)| (Corollary 3.2). At the other vertical side of Q2,
i.e. at x = 1, we have a = 0. Since a is smooth, this implies a = O(s(1, t)−s(x, t)).
On the other hand u = ψκ with ψs = −1 at x = 1 implies that limx↗1 |a/u| = 0
holds for all t < T . Finally, at t = t1 the quantity |a|/u is continuous for
x2 ≤ x < 1, while we have just verified that |a|/u → 0 as x ↗ 1. Thus |a|/u is
bounded on the parabolic boundary of Q2, and hence bounded on Q2.

We now go through a blow-up argument. Let B2 denote the portion of our
manifold Sn+1 where x ≥ x2. Then we have a solution g(t) to Ricci flow on B2,
defined for t ∈ [t1, T ). This solution has Rc ≥ 0.

Because of spherical symmetry B2 is a geodesic ball in (Sn+1, g(t)). Its radius
is bounded from above by d1(t). Since ψ = ψ(x2, t) ≥ D/2 on the boundary
of B2, it follows from |ψs| ≤ 1 that the radius of B2 is bounded from below by
D/2.

Assume that the sectional curvatures of the metrics g(t) on B2 are not bounded
as t↗ T . Then there is a sequence Pk ∈ B2, tk ∈ [t2, T ) with |Rm(Pk, tk)| → ∞
as k →∞. We may choose this sequence so that

sup
Q∈B2

|Rm(Q, t)| = |Rm(Pk, tk)|
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holds for t ≤ tk. Writing xk for the x coordinate of Pk we note that ψ(xk, tk)→ 0,
and from |ψs| ≥ δ we conclude

lim
k→∞

dtk
(Pk, P+) = 0,

where dt is the distance measured with the metric g(t).
Define εk = |Rm(Pk, tk)|−1/2, and introduce rescaled metrics

gk(t) =
1
ε2k

g(tk + ε2kt).

Let C1 be the constant from Lemma 7.1 for which |Rm| ≤ C1ψ
−2 holds. Then

we have

ψ(xk, tk) ≤
√

C1εk.

and, using |ψs| ≥ δ again,

dtk
(Pk, P+) ≤ C1

δ
εk.

The distance from Pk to the pole P+ measured in the rescaled metric gk(0) =
ε−2
k g(tk) is therefore at most C1/δ. In particular, this distance is uniformly

bounded.
Translating to the rescaled metric we find that gk(t) is a solution of Ricci flow

defined for t ∈ (−ε−2
k tk, 0] on the region B2. The Riemann curvature of gk is

uniformly bounded by |Rm| ≤ 1, with equality attained at Pk at t = 0. One may
then extract a convergent subsequence whose limit is an “ancient solution” g∞(t)
of the Ricci flow on Rn+1×(−∞, 0] with uniformly bounded sectional curvatures,
and nonzero sectional curvature at t = 0 and at some point P∗ whose distance
to the origin is at most C1/δ.

We introduce the radial coordinate r = r(x, tk) = ε−1
k (s(1, tk)−s(x, tk)). The

metric gk(0) = ε−2
k g(tk) seen through the exponential map at P+ is given by

gk(0) = (dr)2 + Ψk(r)2ĝ, with Ψk(r) = ε−1
k ψ(s(1, tk)− εkr, tk).

The metrics gk converge in C∞ on regions r ≤ R for any finite R, and the func-
tions Ψk hence also converge in C∞ on any interval [0, R]. The scale invariant
quantity a is given by a = ψψss − ψ2

s + 1 = ΨΨrr − Ψ2
r + 1, and it satisfies

|a| ≤ Cψκ ≤ Cεκk Ψκk . Thus we find that the limit Ψ∞ = lim Ψk satisfies

ΨΨrr −Ψ2
r + 1 = 0.

Hence for some λ, µ one has

Ψ(r;λ, µ) =

{
1
λ sin λ(r − µ), λ <∞
r − µ λ =∞

Since −Ψr = −ψs ∈ [δ, 1] cannot vanish, the only valid solution is the one with
λ = ∞, µ = 0, i.e. Ψ∞(r) = r. But then the limiting metric g∞ = lim gk(0) is
(dr)2 + r2ĝ, i.e. g∞ is the flat Euclidean metric. This is again impossible.
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8. Construction of the initial metric

In this section we construct a metric g0 = (ds)2 + Ψ(s)2ĝ which satisfies
|Ψ′(s)| ≤ 1, R > 0, and which extends to a smooth metric on Sn+1. We will show
that the solution of Ricci flow starting at g0 has a neck pinch, i.e. rmin(t) → 0,
but the diameter of (Sn+1, g(t)) does not shrink to zero.

The particular metric we construct here is obtained from the standard unit
sphere Sn+1 whose metric is g̃ = (ds)2 + (cos s)2ĝ, by removing a (large) neigh-
borhood of the equator and replacing it with a narrow neck.

8.1. A neck with positive curvature.

Lemma 8.1. Consider the function

W (s) =
√

A + Bs2,

where A > 0 and we require 0 < B < 1 for n ≥ 3 and 0 < B < 1/2 for n = 2.
Then the scalar curvature of the metric

G = (ds)2 + W (s)2ĝ

on R× Sn is positive.
The scale invariant measure of curvature pinching, a = W (s)W ′′(s)−W ′(s)2+

1, is bounded by

1−B < a < 1 + B.

Proof. A simple computation shows

W (s)2

n
·R = −2W (s)W ′′(s) + (n− 1){1−W ′(s)2}

= n− 1− 2B + (3− n)
B2s2

W
(s)2.

Since Bs2 < A + Bs2 = W (s)2 we find for n ≥ 3

W (s)2

n
·R ≥ n− 1− 2B + 3− n = 2(1−B).

For n = 2 we get

W (s)2

n
·R ≥ n− 1− 2B = 1− 2B.

To estimate a we write a = WWss−W 2
s +1 = 1

2 (W 2)ss−2W 2
s +1, which yields

a = B − 2
B2s2

A + Bs2
+ 1.

This implies 1−B < a < 1 + B.
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8.2. An initial metric leading to a neck pinch. For any A > 0, B ∈ (0, 1)
(or B ∈ (0, 1/2) when n = 2) we define

ψ̂(s) = min {W (s), cos s} =

{
W (s) |s| ≤ sA,B

cos s sA,B < |s| ≤ π/2,

where sA,B is the unique positive solution of cos s =
√

A + Bs2. This piecewise
smooth function clearly satisfies |ψ̂′(s)| ≤ 1 and R > 0 for all s �= ±sA,B .

We now smooth out the corner which ψ̂ has at sA,B . First we construct a new
function ψ̆ which coincides with ψ̂ outside a small interval Iε = (sA,B−ε, sA,B+ε)
and has ψ̆ss constant in Iε. The value of the constant is determined by requiring
ψ̆ to be a C1 function. Since ψ̂ switches from increasing to decreasing at sA,B ,
we will have ψ̆ss < 0 in Iε. Moreover, we will also have |ψ̆s| < 1 in Iε, and hence
the metric (ds)2 + ψ̆2ĝ will have R > 0 everywhere.

The function ψ̆ is C1, and its second derivative ψ̆ss has simple jump discon-
tinuities at sA,B ± ε so we may smooth it in an arbitrarily small neighborhood
of sA,B ± ε in such a way that the smoothed (C∞) function, which we will call
ψA,B(s), satisfies R > 0 everywhere and coincides with ψ̂ outside of I2ε.

It is not hard to see that there is some small α > 0 for which one can execute
the smoothing of the ψ̂ = ψ̂A,B for all A ∈ (0, α) in such a way that the ψA,B

coincide with ψ̂ in the interval |s| ≤ α, and such that the derivatives ψ′′A,B(s)
are bounded for |s| ≥ α, uniformly in A ∈ (0, α). If this is done, then we obtain
a family of initial metrics gA,B = (ds)2 + ψA,B(s)2ĝ

• with positive scalar curvature,
• which satisfy |ψs| ≤ 1,
• which have a neck of radius rmin(0) =

√
A,

• which have a bump of height at least ψ̂A,B(α) >
√

Bα,
• for which |a| ≤ C for some constant C < ∞ which does not depend on

A ∈ (0, α).

Lemma 6.1 implies that the solution to Ricci flow starting from gA,B must lose
its neck before t∗ = rmin(0)2/(n − 1) = A/(n − 1). On the other hand, the
solution will have a bump at some x∗(t); and since |a| is uniformly bounded on
all solutions under consideration, the height of this bump will be bounded from
below by

ψ(x∗(t), t)2 ≥ α
√

B − Ct ≥ α
√

B − CA/(n− 1).

If A is small enough, then the neck must disappear before the bump can vanish,
and thus rmin(t)→ 0.

9. Cylindrical Asymptotics

In this section we consider a maximal solution g(·, t) = (ds)2 + ψ2ĝ to the
Ricci flow, defined for 0 ≤ t < T .
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We will assume that |ψs| ≤ 1 and R ≥ 0 hold initially and hence for all time.
We will also assume that the solution always has at least one neck. Let x−(t)
and x+(t) be the left- and right-most bumps, respectively, and write W(t) =
[x−(t), x+(t)].

For each t ∈ [0, T ) and x ∈W(t) one has ψ(x, t) ≥ rmin(t) so that the sectional
curvature L = K1 = (1− ψ2

s)/ψ2 is bounded from above on W(t) by rmin(t)−2.
By the strong maximum principle we may assume that supW(t) |ψs(·, t)| < 1

so that L is also bounded from below. Define

Lmin(t) = inf
x∈W(t)

L(x, t).

The evolution equation (23a) implies that Lmin(t) is nondecreasing.
Recall that in equation (25) in Section 3.4, we introduced F = K

L log L, which
evolves according to (26).

Lemma 9.1. For all t ∈ [0, T ), x ∈W(t) the scaling-invariant quantity

F̂ (x, t) =
K(x, t)
L(x, t)

(log L(x, t) + 2− log Lmin(0))

satisfies

sup
W(t)

F̂ (·, t) ≤ max

{
n− 1, sup

W(0)

F̂ (·, 0)

}
.(31)

We note that F̂ is invariant under simultaneous rescaling of the metric g �→ λg
and time t �→ λt.

Proof. We first deal with the case in which Lmin(0) ≥ e2. Since Lmin(t) is
nondecreasing we also have Lmin(t) ≥ 2 in this case.

Our proof will proceed by applying the maximum principle to equation (26)
which F satisfies. We will apply the maximum principle in the region where
F ≥ n−1. Since we are currently assuming L ≥ e2 > 1, F and K have the same
sign, so that F ≥ n− 1 implies K ≥ 0.

We use our assumption of positivity of the scalar curvature to conclude 0 ≤
R = n[−2K + (n− 1)L] and hence

K ≤ n− 1
2

L.

Using L > e2 > e, we conclude that the coefficient P in (26) satisfies

P ≥ (n− 1) log L− (n− 1)(log L− 1) = n− 1.

Thus when K > 0 and L > e2, (26) implies the differential inequality

Ft ≤ ∆F + 2
(

log L− 1
L log L

)
LsFs + 2QK.

But if F ≥ n− 1, then we have

Q ≤ −K2

L2
(log L− 1) ≤ 0
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and hence

Ft ≤ ∆F + 2
(

log L− 1
L log L

)
LsFs.

We conclude that if Lmin(0) ≥ e2 then supF (·, t) cannot increase whenever it
exceeds n− 1.

To complete the proof we must deal with possibility that Lmin(0) < e2. Should
this occur, then we rescale both time and the metric, i.e. we consider g̃(t) =
λg(t/λ) which again satisfies the Ricci flow equation. Denoting its sectional
curvatures by K̃ and L̃ we have L̃min = λ−1Lmin, K̃ = λ−1K. Thus if we choose
λ = e−2Lmin(0), then L̃(0) ≥ e2, and the preceding arguments apply to the
metric g̃. Hence max{n− 1, F̃} is nonincreasing. In terms of the original metric
we have found that

max
{

n− 1,
K

L
log

(
e2

Lmin(0)
L

)}
does not increase with time, as claimed.

9.1. Convergence to a cylinder. For t ∈ [0, T ) close to T , we choose x0(t) ∈
W(t) so that ψ(x0(t), t) = rmin(t). Let

σ = s(x, t)− s(x0(t), t).

We will now prove

Lemma 9.2. There are constants δ > 0 and C <∞ such that for t sufficiently
close to T one has

1 ≤ ψ(x, t)
r

≤ 1 +
C

− log r

(σ

r

)2

(32)

for |σ| ≤ 2r
√− log r, and

ψ(x, t)
r

≤ C
σ

r
√− log r

log
σ

r
√− log r

(33)

for 2r
√− log r ≤ σ ≤ r1−δ. Here we have written r = rmin(t), for short.

Proof. Choose a small number β > 0.
We regard t as fixed, and consider the neighborhood of the neck x0(t) in

which ψ ≤ β and |ψs| < β. In this region one always has L ≥ (1 − β2)/β2, so
that |2− log Lmin(0)| ≤ CL for some constant C <∞. By Lemma 9.1, we may
assume that K

L log L ≤ C for some C <∞. In terms of ψ, this means

ψss

ψ
≤ 1− ψ2

s

ψ2
· C

log 1−ψ2
s

ψ2

,

and thus

ψψss ≤ C
1− ψ2

s

log(1− ψ2
s)− 2 log ψ

,



514 SIGURD ANGENENT AND DAN KNOPF

whence
ψψss

1− ψ2
s

≤ C

−2 log ψ
· 1

1− 1
2

log(1−ψ2
s)

log ψ

.

Since we only considering the region where ψ ≤ β and |ψs| ≤ β, we have

1− 1
2

log(1− ψ2
s)

log ψ
≥ 1− 1

2
log(1− β2)

log β
.

By choosing β small enough we can make the righthand side ≥ 1
2 , so that we get

ψψss

1− ψ2
s

≤ C

− log ψ
.

We now further restrict our attention to the region to the right of the neck,
where ψs > 0, and where we may choose the radius ψ as a coordinate; i.e. we
regard all quantities as functions of ψ. Then we have

−d log(1− ψ2
s)

d log ψ
=

2ψsψss

1− ψ2
s

· ψ

ψs
≤ C

− log ψ
.

Integrate this from the neck, where ψ = rmin(t) = r and ψs = 0, to an arbitrary
point. One gets

− log(1− ψ2
s) ≤

∫ ψ

u=r

C

− log u
d log u = C log

log r

log ψ
.

Using the calculus inequalities x ≤ − log(1− x) and log x ≤ x− 1, we arrive at

ψ2
s ≤ C log

log r

log ψ
≤ C

(
log r

log ψ
− 1

)
.(34)

We are always assuming that |ψs| ≤ β, so this last inequality will only be useful
if the righthand side is no more than β2. Henceforth we assume that

r ≤ ψ ≤
(

1
r

)β2/2C

r.(35)

Using e−β2/C ≤ 1 − β2/2C for small β, one finds that (35) and (34) imply
|ψs| ≤ β and ψ < β, as required.

Integrating once again, we get

√
Cσ ≥

∫ ψ

r

du√
log r
log u − 1

.

Substitute u = rv. It follows from r ≤ u ≤ ψ that 1 ≤ v ≤ ψ/r, and by (35),
that 0 ≤ log v ≤ − β2

2C log r. Hence we get

√
C

σ

r
≥

∫ ψ/r

1

√
− log r − log v

dv√
log v

≥ 1
2

√
− log r

∫ ψ/r

1

dv√
log v

.(36)
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Proposition 9.3. The function Z : [0,∞)→ [1,∞) defined by

x =
∫ Z(x)

1

du√
log u

is monotone increasing and satisfies

Z(x) =

{
1 + 1

2x2 + o(x2) (x↘ 0)

(1 + o(1))x
√

log x (x→∞)
.

In particular, we have, for some constant C <∞,

Z(x) ≤
{

1 + Cx2 (0 ≤ x ≤ 2)

Cx
√

log x (x ≥ 2).

We leave the proof to the reader. Our last estimate (36) can be recast as
ψ/r ≤ Z(Cσ/r

√− log r), which combined with the estimate of Z(x) for x ≤ 2
gives (32).

For larger σ we get
ψ

r
≤ C

σ

r
√− log r

√
log

σ

r
√− log r

,

which is exactly (33). This estimate will be valid when σ ≥ 2r
√− log r, while

(35) must also be satisfied. Using C
√− log r = ro(1) we find that (33) will hold

if ψ/r ≤ (1/r)β2/2C+o(1).

9.2. The type-I blow-up. Let g(t) be the solution of Ricci flow considered
above. We know by Lemma 7.2 that the curvature stays bounded on the polar
caps, while Lemma 7.1 applied to the waist W(t) gives us the upper bound
|Rm| ≤ Crmin(t)−2. Since rmin(t) ≥ C

√
T − t, we find that |Rm| ≤ C(T − t)−1;

i.e. the singularity is of “type-I,” namely “fast-forming.”
One can therefore construct a type-I blow-up by considering the metrics g̃(t) =

(T − t)−1g(t). Near a neck, these will converge to an ancient solution of Ricci
flow; and in view of Lemma 9.2, this ancient solution must be the cylinder
solution. It follows that

rmin(t) = (1 + o(1))
√

2(n− 1)(T − t).(37)

In view of this, Lemma 9.2 implies

Lemma 9.4. There are constants δ > 0 and C <∞ such that for t sufficiently
close to T one has

1 + o(1) ≤ ψ(x, t)√
2(n− 1)(T − t)

≤ 1 +
C

− log(T − t)
σ2

T − t
(38)

for |σ| ≤ 2
√−(T − t) log(T − t), and

ψ(x, t)√
T − t

≤ C
σ√−(T − t) log(T − t)

log
σ√−(T − t) log(T − t)

(39)
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for 2
√−(T − t) log(T − t) ≤ σ ≤ (T − t)(1−δ)/2.

10. Equatorial pinching

In this section, we consider the special case of a reflection-invariant metric
on Sn+1 with a single symmetric neck at x = 0 and two bumps. In this case,
we prove that the neckpinch singularity will occur only on the totally-geodesic
hypersurface {0} × Sn, unless the diameter of the sphere Sn+1 becomes infinite
as the singularity time is approached. (We do not expect the latter alternative
to occur.) Our method will be to construct a family of subsolutions v for v = ψs.

As in Section 5.4, let x∗(t) denote the location of the right-hand bump (the
unique point in (0, 1) where ψmax(t) is attained). As in Section 7, let D =
limt↗T ψ(x∗(t), t) denote the final height of that bump. By the construction in
Section 8, we may assume that D > 0. Define the function

ρ(t) = n

∫ t

0

∫ D

0

(
ψs

ψ

)2

ds dt,

noting that ρ is monotone increasing in time, so that ρ(T ) = limt↗T ρ(t) exists.
Now let s∗(t) = s(x∗(t), t) denote the distance from the equator to the right-

hand bump. By Proposition 5.1, one has |ψs| ≤ 1; and because ∂tψmax ≤
−(n− 1)/ψmax, one has ψ(s∗(t), t) > D for all t ∈ [0, T ). Together, these results
imply that s∗(t) > D for all t ∈ [0, T ). Let xD(t) denote the unique point
in (0, x∗(t)) such that s(xD(t), t) = D. Notice that for any s, the hypothesis
of reflection symmetry about x = 0 lets one integrate by parts to obtain the
identity

∂s

∂t
= n

∫ x

0

ψss

ψ

∂s

∂x
dx = n

{
ψs

ψ
+

∫ s(x)

0

(
ψs

ψ

)2

ds

}
.

Since Lemma 5.5 implies that ψs ≥ 0 when 0 ≤ s ≤ s∗(t), one may then estimate
at any x̂ ∈ [xD(t), x∗(t)] that

s∗(t) ≥ s(x̂, t) ≥ n

∫ t

0

∫ s(x̂)

0

(
ψs

ψ

)2

ds dt ≥ ρ(t).(40)

In particular, ρ(t) is bounded above by the distance from the equator to the
bump.

We are now ready to prove the following “single-point pinching” result:

Lemma 10.1. If the diameter of the solution g(t) remains bounded as t ↗ T ,
then ψ(s, T ) > 0 for all 0 < s < D/2.

To establish the lemma, let t0 ∈ (0, T ) and δ > 0 be given. For ε > 0 to be
chosen below, define

v(s, t) = ε{s− [ρ(t)− ρ(t0 − δ)]}.
By (40), the finite-diameter assumption implies that ρ(T ) <∞, hence that

sup
t0−δ<t<T

[ρ(t)− ρ(t0 − δ)]
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becomes arbitrarily small when t0 − δ is sufficiently close to T . The lemma is
thus an immediate consequence of

Proposition 10.2. If ρ(T ) <∞, then for any t0 ∈ (0, T ) and δ ∈ (0, t0), there
exists ε > 0 such that v = ψs satisfies

v(s, t) ≥ v(s, t)

for all points 0 < s < D/2 and times t0 ≤ t < T .

Proof. Since v(0, t0) < 0 and v(s, t0) > 0 for all s ∈ (0, s∗(t0)), one may choose
ε1 such that if 0 < ε < ε1, then v(s, t0) > v(s, t0) whenever 0 ≤ s ≤ D/2. So if
the result is false, there will be a first time t̄ ∈ (t0, T ) and a point s̄ ∈ (0, D/2)
such that v(s̄, t̄) = v(s̄, t̄). At (s̄, t̄), one then has

vt ≤ vt = ε

(
∂s

∂t
− ρ′

)
(41)

as well as v = v, vs = vs = ε, and vss ≥ vss = 0. Hence

vt = vss +
(n− 2)

ψ
vvs +

(n− 1)
ψ2

(1− v2)v ≥ ε
(n− 2)

ψ
v +

(n− 1)(1− v2)
ψ2

v.

Whenever 0 < ε < ε2 =
√

2/D, one has v ≤ εs < 1/
√

2 for all 0 ≤ s ≤ D/2 and
t ∈ [t0, T ). Then because v ≥ 0 for s ∈ (0, D/2) ⊂ [0, s∗ (t)], one estimates at
(s̄, t̄) that

vt − vt ≤ ε

(
∂s

∂t
− ρ′ − n− 2

ψ
v

)
− (n− 1)(1− v2)

v

ψ2

≤ ε

(
∂s

∂t
− ρ′

)
− n− 1

2
v

ψ2

= εn

[
v

ψ
−

∫ D

s̄

(
v

ψ

)2

ds

]
− n− 1

2
v

ψ2

<
v

ψ

[
εn− n− 1

2ψ

]
.

Choose ε3 < (n − 1)/[2nψmax(0)]. Then if 0 < ε < min {ε1, ε2, ε3}, the con-
sequence ψt < 0 of Proposition 5.2 implies the inequality vt − vt < 0. This
contradicts (41), hence establishes the result.
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