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PFAFFIAN EQUATIONS SATISFIED BY DIFFERENTIAL
MODULAR FORMS

Alexandru Buium

Abstract. The ring of (ordinary) isogeny covariant differential modular forms
introduced in [3] was shown in [1] to be described by two basic forms introduced in
[3] and [1] respectively. We prove that these two forms satisfy a simple triangular
system of Pfaffian equations (in characteristic zero). The equation giving the
form in [1] is “integrable by quadratures” which gives a closed form expression for
this form; the equation giving the form in [3] is shown not to be “integrable by
quadratures”.

1. Introduction

Differential modular forms were introduced in [3]; they are analogues of usual
modular forms in a larger geometry [2] obtained from usual algebraic geom-
etry by “adjoining” a “Fermat quotient operation”. An aspect of the theory
of differential modular forms (which has no analogue in the theory of classical
modular forms) is the presence of objects that behave well with respect to iso-
genies, called isogeny covariant differential modular forms; cf. [3]. As shown in
[1] the story of the “ordinary” isogeny covariant forms is essentially told by two
fundamental such forms, fjet and f∂ . The form fjet was introduced in [3]; two
equivalent definitions were given for it, one based on crystalline cohomology and
the other based on the “arithmetic” Manin map in [2]. The Fourier expansion
of fjet was computed in [3] and the reduction mod p of fjet was computed in [5].
The form f∂ was introduced in [1] via crystalline cohomology and, in that same
paper, its Fourier expansion and reduction mod p were computed. In spite of the
above mentioned results the forms fjet and f∂ remain quite mysterious and it is
reasonable to look for some new, complementary ways of understanding them.
This is the motivation of the present paper in which we show that these two
forms satisfy a simple, entirely explicit, triangular system of Pfaffian equations.
The Pfaffian equation for f∂ can be “integrated by a simple quadrature” hence,
as a Corollary, we will be able to give a closed form formula for f∂ , up to an
“integration constant”. Remarkably, once f∂ has been determined, the Pfaffian
equation for fjet has a unique solution; this can be interpreted as saying, in
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particular, that the Pfaffian equation for fjet is not “integrable by quadratures”
in any reasonable way. So, in some sense, the form fjet is more elusive than f∂ .

Here is the main idea of the paper. Our forms fjet and f∂ are, as we shall
recall below, power series in 4 variables. In order to compute the differential
df of either f = fjet or f = f∂ we need to know the effect on f of 4 linearly
independent vector fields. The paper [1] provides 2 independent vector fields
together with their effect on f . These vector fields are “differential analogues”
of the classical Serre and Euler operators. One needs then two more vector fields
to complete the picture and this is what we are going to provide in this paper.
The 2 new vector fields to be introduced here are, in some sense “conjugates” of
the vector fields in [1]. Here the word “conjugate” is understood in an arithmetic
sense but also in a sense similar to that of conjugate variables in mechanics. The
latter analogy comes via the analogy between the arithmetic jet spaces in [2] and
usual jet spaces (phase spaces) in differential geometry.

It is worth noting that our characteristic zero results here have a characteristic
p counterpart; cf. [4]. The characteristic p story is easier to deal with (the 4
vector fields mentioned above being replaced in [4] by the classical Serre and
Euler operators) but on the other hand the characteristic p differential equation
in [4] has a flavour (and consequences) of its own.

Our note is organized as follows. In Section 2 we review the definition of fjet

and f∂ and some of their properties, following [3] and [1], and we state our main
results. In Section 3 we introduce our main tool, the conjugate operators. In
Section 4 we conclude the proof of our main results.

2. Main concepts and results

Let us review some basic definitions from [3]. Start with indeterminates a4, a6,
set ∆ := −26a3

4 − 2433a2
6 and consider the ring

M0 := Zp[a4, a6,∆−1 ]̂ ,(1)

where Zp is the ring of p−adic integers (p ≥ 5) and the superscript ˆ means
“p−adic completion”.

Now let a′4, a
′
6 be new indeterminates and consider the ring

M1 := M0[a′4, a
′
6 ]̂ = Zp[a4, a6, a

′
4, a
′
6,∆

−1 ]̂(2)

The elements of this ring will be referred to as δ−modular functions. For any
such element f we usually write f = f(a4, a6, a

′
4, a
′
6); note that it makes sense

to substitute the four variables in f by any elements in a p−adically complete
ring in which the value of ∆ is invertible. Let φ : M0 → M1 be the unique
Zp−algebra homomorphism such that φ(a4) = ap

4 + pa′4, φ(a6) = ap
6 + pa′6, write

fφ instead of φ(f), and define δ : M0 →M1 by the formula δf = (fφ − fp)/p.
Let Λ,Λ′ be two more variables and denote by

φ : M0[Λ,Λ−1 ]̂ →M1[Λ,Λ′,Λ−1 ]̂(3)
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the unique Zp−algebra homomorphism lifting φ : M0 → M1 and satisfying
φ(Λ) = Λp + pΛ′. We continue to write fφ := φ(f) for any f ∈ M0[Λ, Λ−1 ]̂ .
Also we consider the map

δ : M0[Λ,Λ−1 ]̂ →M1[Λ,Λ′,Λ−1 ]̂ , δf :=
fφ − fp

p
.(4)

For any expression of the form w = n0 + n1φ ∈ Z⊕ Zφ we set

fw = fn0 · (fφ)n1 for f ∈M0[Λ,Λ−1 ]̂ .(5)

For any δ−modular function f ∈M1 write

f ∗ Λ := f(Λ4a4,Λ6a6, δ(Λ4a4), δ(Λ6a6)),(6)

f ∗ Λ ∈M1[Λ,Λ′,Λ−1 ]̂ . Say that f is a δ−modular form of weight w ∈ Z⊕ Zφ
if

f ∗ Λ = Λw · f.(7)

More generally assume one is given a δ−modular form g �≡ 0 mod p (of some
weight) and an element

f ∈M1[g−1 ]̂ ;

one says that f has weight w if Equation 7 holds.
Similarly if q and q′ are variables consider the ring Zp((q))̂ := Zp[[q]][q−1 ]̂ ,

the ring homomorphism

φ : Zp((q))̂ → Zp((q))[q′ ]̂ , F 
→ φ(F ) = Fφ := F (qp + pq′),(8)

and the map

δ : Zp((q))̂ → Zp((q))[q′ ]̂ , F 
→ δF :=
Fφ − F p

p
.

Following [3] we define then the (q, q′)− Fourier expansion map

M1 → Zp((q))[q′ ]̂ ,(9)

f 
→ f(q, q′) := f(a4(q), a6(q), δ(a4(q)), δ(a6(q))),

where

a4(q) := −2−43−1E4(q), a6(q) := −2−53−3E6(q),

E2m(q) := 1− 4m

B2m

∞∑
n=1

σ2m−1(n)qn,

the usual normalized Eisenstein series, with B2m the Bernoulli numbers. More
generally, for a δ−modular function g �≡ 0 mod p we have an induced (q, q′)−
Fourier expansion map

M1[g−1 ]̂ → (Zp((q))[q′ ]̂ [g(q, q′)−1])̂ .(10)

We have the following (q, q′)−expansion principle; cf. [3], Proposition 7.21 plus
the Remark following that Proposition.
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Proposition 2.1. [3] For any weight w ∈ Z⊕Zφ the (q, q′)− Fourier expansion
map 10 restricted to the set of elements of weight w is injective.

By the way recall from [7] that Ep−1(q) and Ep+1(q) belong to Zp((q)) and
are images of unique forms

Ep−1, Ep+1 ∈ Zp[a4, a6]

of weight p− 1 and p + 1 respectively. Also recall from [6] that E2(q) belongs to
Zp((q)) and is the image of a unique form

P ∈ Zp[a4, a6, E
−1
p−1 ]̂(11)

of weight 2 which we can refer to as the Ramanujan form. The reduction mod
p, P̄ , of P is given as follows. Cf. [1], Lemma 3.1.

Lemma 2.2. [1] Ēp+1 = P̄ · Ēp−1 in Fp[a4, a6, Ē
−1
p−1].

The following was proved in [3], Corollary 7.26.

Theorem 2.3. [3] There exists a unique δ−modular form fjet ∈ M1 of weight
−1− φ with (q, q′)−Fourier expansion

fjet(q, q′) =
1
p
log

qφ

qp
=
∞∑

n=1

(−1)n−1pn−1n−1

(
q′

qp

)n

.

Uniqueness follows, of course, from Proposition 2.1.
The following result follows from [1] by putting together Theorem 5.1, Propo-

sition 5.2, and Equation 5.1 in loc. cit.

Theorem 2.4. [1] There exist unique elements f∂ , f∂ ∈ M1[E−1
p−1 ]̂ , f∂f∂ = 1,

of weights φ− 1 and 1− φ respectively, with (q, q′)−Fourier expansions

f∂(q, q′) = f∂(q, q′) = 1.

Their reductions mod p are given by

f̄∂ = Ēp−1, f̄∂ = Ē−1
p−1 ∈ Fp[a4, a6, a

′
4, a
′
6, ∆̄

−1, Ē−1
p−1].

Uniqueness follows, of course, from Proposition 2.1.
Finally recall from [7] that we have at our disposal the classical Serre operator

∂ = −2332a6
∂

∂a4
+ 24a2

4

∂

∂a6
: Zp[a4, a6]→ Zp[a4, a6].(12)

Note that ∂∆ = 0. If ∂̄ : Fp[a4, a6] → Fp[a4, a6] is the reduction mod p of ∂
then

∂̄Ēp−1 = Ēp+1;(13)

cf. [7], p. 165. By Equation 13 and Lemma 2.2 we may consider the following
element which will play a role later:

1
p

(
P − ∂Ep−1

Ep−1

)
∈ Zp[a4, a6, E

−1
p−1 ]̂ .(14)
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In what follows set

S0 = M0[E−1
p−1 ]̂ , S1 = M1[E−1

p−1 ]̂ .

We denote by Ω1
S1 the p−adic completion of the module of Kahler differentials

of S1/Zp; then Ω1
S1 is a free S1−module with basis with basis

da4, da6, da′4, da′6.

Similarly we define Ω1
S0 ; it is a free S0−module with basis with basis da4, da6.

Denote by Ωi
S1 the i−th wedge product of Ω1

S1 ; we may then consider the de
Rham complex

S1 d→ Ω1
S1

d→ Ω2
S1

d→ ...(15)

and similarly for S0. The map φ : S0 → S1 induces maps φ∗ : Ωi
S0 → Ωi

S1 which
commute with the differentials d. Consider the following 1−forms:

ω0 =
6a6da4 − 4a4da6

∆
∈ Ω1

S0 ,(16)

η0 =
d∆
12∆

∈ Ω1
S0 ,

ω1 = p−1φ∗ω0 = p−1 · 6aφ
6d(aφ

4 )− 4aφ
4d(aφ

6 )
∆φ

∈ Ω1
S1 ,

η1 = p−1φ∗η0 = p−1 d(∆φ)
12∆φ

∈ Ω1
S1 .

Then Pω0 and η0 are trivially checked to be closed (i.e. in the kernel of d).
Therefore ν0 := Pω0 − η0 and φ∗ν0 = pPφω1 + pη1 are also closed. Here is the
first main result of our note:

Theorem 2.5. The pair (X, Y ) = (f∂ , fjet) ∈ (S1)××S1 satisfies the following
system of equations in Ω1

S1 :

dX = X · (ν0 − φ∗ν0),(17)

dY = Y · (ν0 + φ∗ν0)− 12X−1ω0 + 12Xω1.(18)

The system of Equations 17 and 18 should be viewed as a triangular Pfaffian
system satisfied by (f∂ , fjet). As it is, this system is not linear because of the
presence of the X−1 term in Equation 18; but, of course, one can rewrite the
system as a linear system by noting that X∗ := X−1 satisfies the equation

dX∗ = X∗ · (−ν0 + φ∗ν0).(19)

It turns out that Equation 17 is “solvable by quadratures” which will help us
give a closed form formula for f∂ . We say that a form ω ∈ Ω1

S1 is exact if ω = dg
for some g ∈ S1; such a g is referred to as a primitive of ω and we write g =

∫
ω.

Note that closed forms need not be exact. Then we will deduce, from Theorem
2.5, the following:
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Corollary 2.6. The form

ω :=
1
p

(
P − ∂Ep−1

Ep−1

)
ω0 − η0 − Pφω1 + η1 ∈ Ω1

S1

is exact and there exists a primitive
∫

ω such that

f∂ = Ep−1 · exp

(
p

∫
ω

)
.

In the above statement exp : pS1 → 1 + pS1 is the usual p−adic exponential
function. The next result looks at the space of all solutions to the Equations 17
and 18:

Theorem 2.7. 1) If X1, X2 ∈ S1 are any two non-zero solutions of Equation
17, not in pS1, then X2 = λX1 for some λ ∈ Z×p .

2) If (X, Y1) and (X, Y2) are two solutions, in (S1)× × S1, of the system of
Equations 17 and 18 then Y1 = Y2. Equivalenty, the Equation

dZ = Z · (ν0 + φ∗ν0).(20)

has no non-zero solution in S1.

Corollary 2.8. The element Y = fjet is the unique solution in S1 of the equa-
tion

dY = Y · (ν0 + φ∗ν0)− 12f∂ω0 + 12f∂ω1.(21)

In particular Equation 21 is not “integrable by quadratures” in any reasonable
sense; indeed, any definition of “integrability by quadratures” should allow the
presence of an “integration constant” in the “general solution”.

3. The conjugate operators

In addition to the Serre operator in Equation 12 one can consider the Euler
operator

D = 4a4
∂

∂a4
+ 6a6

∂

∂a6
: Zp[a4, a6]→ Zp[a4, a6].(22)

The following operator, called δ−Serre operator, played a key role in [1]:

∂1 := −2332aφ
6

∂

∂a′4
+ 24a2φ

4

∂

∂a′6
: M1 →M1(23)

Also the following operator (which we can refer to as the δ−Euler operator) was
considered in [1]

D1 := 4aφ
4

∂f

∂a′4
+ 6aφ

6

∂f

∂a′6
: M1 →M1.(24)



PFAFFIAN EQUATIONS SATISFIED BY DIFFERENTIAL MODULAR FORMS 459

The main idea of the present paper is to introduce the following conjugate
δ−Serre operator

∂0 := −2332a6

(
∂

∂a4
− ap−1

4

∂

∂a′4

)
+ 24a2

4

(
∂

∂a6
− ap−1

6

∂

∂a′6

)
: M1 →M1,

(25)

and also the following conjugate δ−Euler operator

D0 := 4
(

a4
∂f

∂a4
− ap

4

∂f

∂a′4

)
+ 6

(
a6

∂f

∂a6
− ap

6

∂f

∂a′6

)
: M1 →M1.(26)

Remark 3.1. The operator ∂0 can be characterized as the unique Zp−derivation
lifting the classical Serre operator ∂ in Equation 12 and satisfying

∂0(fφ) = 0(27)

for all f ∈M0. A similar description holds for D0.

Recall the following easy facts from [1], p. 251.

Lemma 3.2. [1] If f ∈M1[g−1 ]̂ has weight w then
∂f

∂a′4
and

∂f

∂a′6
have weights w−4φ and w−6φ respectively. In particular ∂1f has weight w+2φ.

Lemma 3.3. [1] If f ∈M1[g−1 ]̂ has weight w = n0 + n1φ then

D1f = pn1f.(28)

The above two lemmas have analogues for the conjugate operator as follows.

Lemma 3.4. If f ∈M1[g−1 ]̂ has weight w then
∂f

∂a4
− ap−1

4

∂f

∂a′4
and

∂f

∂a6
− ap−1

6

∂f

∂a′6
have weights w − 4 and w − 6 respectively. In particular ∂0f has weight w + 2.

Proof. First note that
∂

∂a4

[
δ(Λ4a4)

]
= ap−1

4 (Λ4φ − Λ4p).(29)

Taking ∂/∂a4 in Equation 7 we get

Λw ∂f

∂a4
=

(
∂f

∂a4
∗ Λ

)
· Λ4 +

(
∂f

∂a′4
∗ Λ

)
· ∂

∂a4

[
δ(Λ4a4)

]

= Λ4 ·
[(

∂f

∂a4
− ap−1

4

∂f

∂a′4

)
∗ Λ

]
+ Λ4φap−1

4 ·
(

∂f

∂a′4
∗ Λ

)
, by Equation 29

= Λ4 ·
[(

∂f

∂a4
− ap−1

4

∂f

∂a′4

)
∗ Λ

]
+ ap−1

4 Λw ∂f

∂a′4
, by Lemma 3.2;

this proves the assertion for a4. The assertion for a6 is proved similarly.
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Lemma 3.5. If f ∈M1[g−1 ]̂ has weight w = n0 + n1φ then

D0f = n0f.

Proof. Note that (
∂Λw

∂Λ

)
|Λ=1,Λ′=0

= n0 + pn1,(30)

(
∂

∂Λ
(δ(Λ4a4))

)
|Λ=1,Λ′=0

= 4pa′4,(31)

(
∂

∂Λ
(δ(Λ6a6))

)
|Λ=1,Λ′=0

= 6pa′6.(32)

Taking ∂/∂Λ in Equation 7, setting Λ = 1, Λ′ = 0, and using Equations 30, 31,
and 32 we get

4
(

a4
∂f

∂a4
+ pa′4

∂f

∂a′4

)
+ 6

(
a6

∂f

∂a6
+ pa′6

∂f

∂a′6

)
= (n0 + pn1)f.(33)

We conclude by subtracting Equation 28 from Equation 33.

As in [1], where the Fourier expansion of ∂1f was computed for f a δ−modular
form, we need a formula for ∂0f . Consider the following derivation

θ0 := q
∂

∂q
− qp ∂

∂q′
: Zp((q))[q′ ]̂ → Zp((q))[q′ ]̂ ;(34)

θ0 can be characterized as being the unique derivation lifting

θ := q
∂

∂q
: Zp((q))̂ → Zp((q))̂

and satisfying

θ0(Fφ) = 0(35)

for all F ∈ Zp((q))̂ . In particular

θ0δF = −F p−1θF(36)

for all F ∈ Zp((q))̂ . One should view θ0 as the “conjugate” of the operator

θ1 := qφ ∂

∂q′

considered in [1].
With P the Ramanujan form, cf. Equation 11, the following was proved in

[1]:

Lemma 3.6. [1] If f ∈M1[g−1 ]̂ has weight w = n0 + n1φ then

12θ1(f(q, q′)) = (∂1f + pn1P
φf)(q, q′).(37)

We need a “conjugate analogue” of the above Lemma:
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Lemma 3.7. If f ∈M1[g−1 ]̂ has weight w = n0 + n1φ then

12θ0(f(q, q′)) = (∂0f + n0Pf)(q, q′).(38)

Proof. Using Equation 36 we get

θ0(δ(a4(q))) = −ap−1
4 · θ(a4(q)),(39)

θ0(δ(a6(q))) = −ap−1
6 · θ(a6(q)).(40)

On the other hand recall from [7], p. 161, that

12θ(a4(q)) = (4Pa4 + ∂a4)(q),(41)

12θ(a6(q)) = (6Pa6 + ∂a6)(q).(42)

We now have the following computation using Equations 39, 40, 41, 42, and
Lemma 3.5:

12θ0(f(q, q′)) = 12
∂f

∂a4
(q, q′) · θ(a4(q)) + 12

∂f

∂a6
(q, q′) · θ(a6(q))

+12
∂f

∂a′4
(q, q′) · θ0(δ(a4(q))) + 12

∂f

∂a′6
(q, q′) · θ0(δ(a6(q)))

=
[
∂0f + P ·

(
4

(
a4

∂f

∂a4
− ap

4

∂f

∂a′4

)
+ 6

(
a6

∂f

∂a6
− ap

6

∂f

∂a′6

))]
(q, q′)

= (∂0f + n0Pf)(q, q′).

Recall from [1] the following:

Proposition 3.8. [1] The following equalities hold in S1:

∂1fjet = 12f∂ + pPφfjet,

∂1f
∂ = −pPφf∂ .

We need a “conjugate analogue” of the above Proposition:

Proposition 3.9. The following equalities hold in S1:

∂0fjet = −12f∂ + Pfjet,

∂0f
∂ = Pf∂ .
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Proof. In order to check the first equation note that both its members have
weight 1 − φ. By the (q, q′)− expansion principle, cf. Proposition 2.1, it is
enough to check that both members have the same Fourier (q, q′)−expansion.
Note that

θ0(fjet(q, q′)) = θ0

(
1
p
log

qφ

qp

)
, by Theorem 2.3(43)

=
1
p
θ0

(
qφ

qp

)
· q

p

qφ
= −1, by Equation 35.

On the other hand one has the following computation for the Fourier (q, q′)-
expansions:

(∂0fjet)(q, q′) = 12θ0(fjet(q, q′)) + (Pfjet)(q, q′), by Lemma 3.7

= −12 + (Pfjet)(q, q′), by Equation 43

= (−12f∂ + Pfjet)(q, q′), by Theorem 2.4.

This concludes the proof of the first equation. The proof of the second equation
is entirely similar.

The above two Propositions have analogues involving the Euler operators that
follow directly from Lemmas 3.3 and 3.5:

Corollary 3.10. The following equalities hold in S1:

D1f
∂ = pf∂ , D1fjet = −pfjet,

D0f
∂ = −f∂ , D0fjet = −fjet.

4. Proof of the main results

The dual, ΘS1 , of Ω1
S1 has basis

∂

∂a4
,

∂

∂a6
,

∂

∂a′4
,

∂

∂a′6
.

Similarly the dual, ΘS0 , of ΩS0 has a basis consisting of the first 2 components
of the above basis. Note that


∂0

D0

∂1

D1


 = A




∂/∂a4

∂/∂a6

∂/∂a′4
∂/∂a′6


 ,

where

A =
(

A11 A12

0 A22

)
,

A11 =
( −2332a6 24a2

4

4a4 6a6

)
, A12 =

(
2332ap−1

4 a6 −24a2
4a

p−1
6

−4ap
4 −6ap

6

)
,
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and A22 = Aφ
11. Then det A = ∆φ+1 so A is invertible hence ∂0,D0, ∂1,D1 form

a basis of ΘS1 ; the inverse B = A−1 is trivially found to be:

B =
(

B11 B12

0 B22

)
,

where

B11 =
1
∆

(
6a6 −24a2

4

−4a4 −2332a6

)
, B12 =

1
∆φ

(
6ap−1

4 aφ
6 −24a2φ+p−1

4

−4aφ
4ap−1

6 −2332aφ+p−1
6

)
,

and B22 = Bφ
11. A straightforward computation gives

(da4, da6, da′4, da′6)B = (ω0, η0, ω1, η1),(44)

where ω0, η0, ω1, η1 are as in Equation 16. With the preparation above it is
trivial to conclude the proof of Theorem 2.5:

Proof. Using Equation 44 plus Propositions 3.8 and 3.9 and Corollary 3.10 we
have

df∂ = (da4, da6, da′4, da′6)BA




∂/∂a4

∂/∂a6

∂/∂a′4
∂/∂a′6


 f∂ = (ω0, η0, ω1, η1) ·




∂0

D0

∂1

D1


 f∂

= f∂(Pω0 − η0 − pPφω1 + pη1).

Similarly

dfjet = (ω0, η0, ω1, η1) ·




∂0

D0

∂1

D1


 fjet

= fjet(Pω0 − η0 + pPφω1 − pη1)− 12f∂ω0 + 12f∂ω1.

Then one can deduce Corollary 2.6 as follows:

Proof. Start by noting that

dEp−1 = (da4, da6)B11A11

(
∂/∂a4

∂/∂a6

)
Ep−1 = (ω0, η0)

(
∂
D

)
Ep−1

= Ep−1

(
∂Ep−1

Ep−1
ω0 + (p− 1)η0

)
.
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Hence

d

(
f∂

Ep−1

)
= E−2

p−1(Ep−1df
∂ − f∂dEp−1)

=
f∂

Ep−1
(Pω0 − η0 − pPφω1 + pη1)− f∂

Ep−1

(
∂Ep−1

Ep−1
ω0 + (p− 1)η0

)

=
f∂

Ep−1
· p · ω.

On the other hand, by Theorem 2.4, we have

f∂

Ep−1
∈ 1 + pS1.

Let log : 1 + pS1 → pS1 be the p−adic logarithm and set

U :=
1
p
log

f∂

Ep−1
∈ S1.

Then dU = ω and we are done.

To prove Theorem 2.7 we need the following:

Lemma 4.1. Let g ∈ Zp[x1, ..., xn ]̂ , g �≡ 0 mod p, h ∈ Zp[x1, ..., xn, g−1 ]̂ ,
h �≡ 0 mod p, and let

f ∈ (Zp[x1, ..., xn, g−1 ]̂ )[h−1]

be such that
∂f

∂x1
= ... =

∂f

∂xn
= 0.

Then f ∈ Zp.

Proof. First we prove the assertion of the Lemma for h = 1. We may replace Zp

by R := Ẑur
p , the completion of the maximum unramified extension of Zp. Since

the residue field of R is infinite there exists a1, ..., an ∈ R such that g(a1, ..., an) �≡
0 mod p. Since ∂/∂xi are invariant under the R−automorphism xi 
→ xi− ai of
R[x1, ..., xn ]̂ , we may assume a1 = ... = an = 0. Then we have an injection

R[x1, ..., xn, g−1 ]̂ → R[[x1, ..., xn]]

and we are done by the (obvious) fact that the only elements in R[[x1, ..., xn]]
killed by all ∂/∂xi are in R. This proves the case h = 1 of the Lemma. For
arbitrary h we take h0 ∈ Zp[x1, ..., xn, g−1] congruent mod p with h in the latter
ring and write h0 = h1/gN , h1 ∈ Zp[x1, ..., xn]. It is trivial to check that

((Zp[x1, ..., xn, g−1 ]̂ )[h−1])̂ 
 Zp[x1, ..., xn, (h1g)−1 ]̂ .

By the h = 1 case of our proof, the image of f in ((Zp[x1, ..., xn, g−1 ]̂ )[h−1])̂
lies in Zp. But now, the homomorphism from (Zp[x1, ..., xn, g−1 ]̂ )[h−1] to its
completion is injective (because any ring of fractions of a p−adically separated
ring in which p is prime and not a zero divisor is again p−adically separated,
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provided p does not divide any of the elements of the multiplicative system). We
conclude that f ∈ Zp.

Proof. (of Theorem 2.7) If X1, X2 ∈ S1 are as in assertion 1 then X2dX1 =
X1dX2 so X2/X1 ∈ S1[X−1

1 ] is killed by both ∂/∂a4 and ∂/∂a6. By Lemma 4.1
X2/X1 is in Zp hence in Z×p .

Now assume 0 �= Z ∈ S1 is a solution to Equation 20 and let us derive
a contradiction. Upon combining Equations 17 and 20 we get the following
equalities

d(XZ) = XZ · 2ν0,(45)

d(Z/X) = (Z/X) · 2φ∗ν0(46)

in Ω1
S1 . Equation 45 shows that

∂

∂a′4
(XZ) =

∂

∂a′6
(XZ) = 0

which immediately shows that V := XZ ∈ S0. Since φ∗ and d commute,
Equation 45 implies

d(V φ) = V φ · 2φ∗ν0.(47)

From Equations 47 and 46 we get

(V/X2) · d(V φ) = V φ · d(V/X2)(48)

in ΩS1 . Since V �= 0 we can write V = pnW with W ∈ S0\pS0 and an equality as
in Equation 48 holds with V replaced by W . We get that X2Wφ/W ∈ S1[W−1]
is killed by

∂

∂a4
,

∂

∂a6
,

∂

∂a′4
,

∂

∂a′6
.

By Lemma 4.1 we get that X2Wφ/W is in Zp, hence in Z×p . Since S1 is an
integral domain we get

X2Wφ = λ1W(49)

in S1, with λ1 ∈ Z×p . By assertion 1 in the Theorem we have

X = λ2f
∂ ,(50)

with λ2 ∈ Z×p . Combining Equations 49 and 50, reducing mod p, and using
Theorem 2.4 we get an equality of the form

Ē2
p−1W̄

p−1 = λ̄1λ̄
−2
2(51)

in S1 ⊗ Fp hence in

S0 ⊗ Fp = Fp[a4, a6, ∆̄−1, Ē−1
p−1].

So there exists a constant c ∈ F×p such that

Ēp−1W̄
p−1
2 = c.(52)
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Recall from [7], p. 167, that Ēp−1 has no multiple irreducible factors. Also
recall that ∆̄ is irreducible in Fp[a4, a6] and does not divide Ēp−1 (as one can
see by looking at Fourier expansions). Write Ēp−1 = Ḡ1...Ḡs with Ḡi irreducible
polynomials in Fp[a4, a6] and write W̄ as an irreducible fraction

W̄ =
F̄

∆̄N Ḡn1
1 ...Ḡns

s

with ni ≥ 0, N ≥ 0, F̄ ∈ Fp[a4, a6]. Then one can write Equation 52 as

Ḡ1...ḠsF̄
p−1
2 = c∆̄N (Ḡn1

1 ...Ḡns
s )

p−1
2 .(53)

If all ni = 0 then we must have N ≥ 1 but then ∆̄ divides the left hand side of
Equation 53, a contradiction. If there is an i such that ni ≥ 1 then, since p ≥ 5,
we get that Ḡi divides

Ḡ1...Ḡi−1Ḡi+1...ḠsF̄
p−1
2 ,

which is again a contradiction. This concludes our proof.
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