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PRESCRIBING RICCI CURVATURE ON COMPLEXIFIED
SYMMETRIC SPACES

Roger Bielawski

The aim of this note is to prove the existence of invariant Ricci-flat Kähler
metrics on complexifications of symmetric spaces of compact type. Before stating
the result, let us fix the notation.

Let (M, g) be a Riemannian symmetric space of compact type and p a point
in M . Let G be the identity component of the isometry group of (M, g) and
let K be the stabiliser of p in G. Then M � G/K and the complexification of
M is TM with the adapted complex structure [7] that can be identified with
GC/KC1. We are going to prove

Theorem 1. Let (M, g) be an irreducible symmetric space of compact type. Let
G and K be as above and suppose that K is connected. Let ρ be a real exact G-
invariant (1, 1)-form on the complexification TM � GC/KC. Then there exists
a G-invariant Kähler metric on TM whose Ricci form is ρ.

Remark. The Kähler form obtained in Theorem 1 is exact.

The above result has been proved in [9] for symmetric spaces of rank 1 and in
[2] for compact groups, i.e. for the case when G = K×K and K acts diagonally.
For hermitian symmetric spaces and ρ = 0, Theorem 1 has also been known [4].

The proof given here is quite different from that given for group manifolds in
[2]. We show that the complex Monge-Ampère equation on GC/KC reduces, for
G-invariant functions, to a real Monge-Ampère equation on the dual symmetric
space G∗/K. We also show that the Monge-Ampère operator on non-compact
symmetric spaces has a radial part, i.e. it is equal, for K-invariant functions,
to another Monge-Ampère operator on the maximal abelian subspace of G∗/K.
These facts, together with the theorem on K-invariant real Monge-Ampère equa-
tions proved in [3], yield Theorem 1.

1. Riemannian symmetric spaces of non-compact type

Here we recall some facts about the geometry of Riemannian symmetric
spaces. The standard reference for this section is [6].

Let M = G/K be a symmetric space of compact type with K connected,
and let G∗/K be its dual. If g, g∗ and k denote the Lie algebras of G, G∗ and
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1The complexification of a compact connected Lie group G is the connected group GC whose

Lie algebra is the complexification of the Lie algebra of G and which satisfies π1(GC ) = π1(G).
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K, then g = k ⊕ p, g∗ = k ⊕ ip, where [k, p] ⊂ p and [p, p] ⊂ k. The restric-
tion of the Killing form to ip is positive definite and induces the Riemannian
metric of G∗/K. Moreover, the Riemannian exponential mapping provides a
diffeomorphism between p and G∗/K. This can be viewed as the map:

p �→ eipK,(1.1)

where p ∈ p and e is the group-theoretic exponential map for G∗. Thus we have
two K-invariant Riemannian metrics on p � Rn: the Euclidean one given by the
Killing form, and the negatively curved one given by the diffeomorphism (1.1).

Let a be a maximal abelian subspace of p and l its centraliser in k. Let Σ
be the set of restricted roots and Σ+ the set of restricted positive roots. For
each α ∈ Σ, let pα (resp. kα) denote the subspace of p (resp. of k) where each
(adH)2, H ∈ a, acts with eigenvalue α(H)2. We have the direct decompositions

p = a +
∑

α∈Σ+

pα, k = l +
∑

α∈Σ+

kα.(1.2)

Let a+ be an open Weyl chamber and let p′ be the union of K-orbits of points
in a+. Any K orbit in p′ is isomorphic to K/L where the Lie algebra of L is l.
Moreover, we have the diffeomorphism:

a+ ×K/L→ p′, (h, k) �→ Ad(k)h.(1.3)

We now wish to write the two K-invariant metrics on p in coordinates given
by this diffeomorphism. Let

∑
dr2

i be the Killing metric on a+ (the ri can be
viewed as K-invariant functions on p′). For each kα, choose a basis Xα,m (m
runs from 1 to twice the multiplicity of α) of vectors orthonormal for the Killing
form and denote by θα,m the corresponding basis of invariant 1-forms on K/L.
We have

Proposition 1.1. Let g0 be the Euclidean metric on p, given by the restriction
of the Killing form, and let g be the negatively curved symmetric metric on p

given by the diffeomorphism (1.1). Then, under the diffeomorphism (1.3) the
metrics g0 and g can be written in the form∑

i

dr2
i +

∑
(α,m)

F (α(r))θ2
(α,m),(1.4)

where F (z) = z2 for g0, and F (z) = sinh2(z) for g.

Proof. Since all these metrics are K-invariant, it is enough to compute them at
points of a+. Let H be such a point and let (h, ρ), h ∈ a, ρ ∈ T[1]K/L, be a
tangent vector to a+ ×K/L at (H, [1]). The vector ρ can be identified with an
element of

∑
kα ⊂ k. The corresponding (under (1.3)) tangent vector at H ∈ p′

is h + [ρ, H]. Computing the Killing form of this vector yields the formula (1.4)
with F (z) = z2 for g0. The formula for g follows from a similar computation,
using the expression for the differential of the map (1.1) given in [6], Theorem
IV.4.1.
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2. Monge-Ampère equation on symmetric spaces

Let (M, g) be a Riemannian manifold and u : M → R a smooth function.
Then the Hessian of u is the symmetric (0, 2)-tensor Ddu where D is the Levi-
Civita connection of g. In local coordinates xi, Ddu is represented by the matrix

Hij =
∂2u

∂xi∂xj
−

∑
k

Γk
ij

∂u

∂xk
.(2.1)

We say that the function u is g-convex (resp. strictly g-convex), if Ddu is non-
negative (resp. positive) definite. The Monge-Ampère equation on the manifold
(M, g) is then

Mg(u) := (det g)−1 det Ddu = f(2.2)

where f is a given function.
Let (G∗/K, g) be a symmetric space of non-compact type given by a Cartan

decomposition g∗ = k + ip. As in the previous section, we identify M = G∗/K
with p and denote by g0 the (flat) metric given by restricting the Killing form
to p. We have:

Theorem 2.1. Let M � p be a symmetric space of noncompact type and let u
be a K-invariant (smooth) function on M . Then

(1) u is g-convex if and only if u is g0-convex (i.e. convex in the usual sense
on p).

(2) The following equality of Monge-Ampère operators holds:

Mg(u) = F ·Mg0(u),

where F : M → R is a positive K-invariant smooth function depending
only on M .

We have proved in [3] a theorem on the existence and regularity of K-invariant
solutions to Monge-Ampère equations on Rn. From this we immediately obtain

Corollary 2.2. Let (G∗/K, g) be an irreducible symmetric space of noncompact
type and let f be a positive smooth K-invariant function on G∗/K. Then the
Monge-Ampère equation (2.2) has a global smooth K-invariant strictly g-convex
solution.

We shall now prove Theorem 2.1. In fact we shall prove it in the following,
more general situation. Suppose that we are given a K-invariant metric on p

whose pullback under (1.3) can be written as (cf. (1.4)):∑
i

dr2
i +

∑
(α,m)

F(α,m)(α(r))θ2
(α,m),(2.3)

where F(α,m) : R → R are smooth functions vanishing at the origin such that
z−1 dF (α,m)

dz is smooth and positive everywhere. Proposition 1.1 implies that the
symmetric metric on G∗/K is of this form. We claim that Theorem 2.1 holds
for any metric g of the form (2.3).
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In order to simplify the notation, let us write j for the index (α, m) and αj

for α if j = (α, m). The metric g can be now written as∑
i

dr2
i +

∑
j

Fj(αj(r))θ2
j .

We recall the following formula:

2Ddu = L∇ug,

where L is the Lie derivative and ∇u is the gradient of u with respect to the
metric g. On the other hand, for any (0, 2)-tensor g and vector fields X, Y, Z,
we have:

(LXg)(Y, Z) = X.g(Y, Z)− g([X, Y ], Z)− g(Y, [X, Z]).

We now compute L∇ug on p′ with respect to the basis vector fields ∂/∂ri, Xj ,
where Xj are dual to θj . Here u is a K-invariant function. The gradient of u

is just
∑

∂u
∂ri

∂
∂ri

, in particular it is independent of the functions Fj . It follows
immediately that (L∇ug)(∂/∂ri, Xj) = 0 and that the matrix (L∇ug)(Xj , Xk)
is equal to ∇u.g(Xj , Xk) and hence it is diagonal with the (jj)-entry equal to

∇u (Fj(αj(r))) =
dFj

dz |z=αj(r)

αj(∇0ū).

Here ∇0ū =
∑

∂u
∂ri

∂
∂ri

is the gradient of u restricted to the Euclidean space
a = Rn in coordinates ri, and viewed as a map from Rn to itself.

Theorem 2.1 with the more general metric (2.3) follows easily with the func-
tion F given explicitly by

F =
∏

αj(r)∏
Fj(αj(r))

∏ (
1
2

dFj

dz

)
z=αj(r)

.

Observe that the assumptions on the Fj guarantee that F extends to a smooth
positive function on p.

3. Proof of the Main Theorem

Let (M, g) be a Riemannian symmetric space of compact type, G its isometry
group, and K ⊂ G the stabiliser group of a point. There is a canonical isomor-
phism between GC/KC and G×K p (i.e. the tangent bundle of G/K) given by
the map:

G× p→ GC → GC/KC, (g, p) �→ geip.(3.1)

This isomorphism can be viewed in many ways: as an example of Mostow fibra-
tion [8], as given via Kähler reduction of GC � G× g by the group K [5], or as
given by the adapted complex structure construction [7] which provides a canon-
ical diffeomorphism between the tangent bundle of G/K and a complexification
of G/K. In any case it provides a fibration

π : GC/KC → G/K.(3.2)
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The fibers of this projection can be identified with p via the map (3.1). In
particular, the fiber over [1] is given by the KC-orbits of elements eip, p ∈ p.
We shall relate G-invariant plurisubharmonic functions on GC/KC to convex
functions on this fiber (see [1] for a different approach to this).

For a function w on a complex manifold one defines its Levy form Lw to be
the Hermitian (0, 2) tensor given in local coordinates as

∂2w

∂zk∂z̄l
dzk ⊗ dz̄l.(3.3)

This form does not depend on the choice of local coordinates. We shall compute
this form for a G-invariant function w on GC/KC. It is enough to compute it at
points eip, p ∈ p. First of all, we choose local holomorphic coordinates at such
a point:

Lemma 3.1. In a neighbourhood of a point eip, p ∈ p, complex coordinates are
provided by the map pC → GC → GC/KC, (a + ib) �→ ea+ibeip.

Proof. We have to show that the map (a + ib) �→ ea+ibeipKC has a non-singular
differential at 0. This is equivalent to

(
ad e−ip

)
u �∈ kC for u ∈ pC. We have(

ad e−ip
)
u = ead(−ip)u = cosh

(
ad(−ip)

)
u + sinh

(
ad(−ip)

)
u,(3.4)

where the first term of the sum lies in pC and the second one in kC. To show
that the first term does not vanish recall that (ad(−ip))2 has all eigenvalues
nonnegative.

We now have:

Lemma 3.2. In the complex coordinates z = a+ib given by the previous lemma,
the Levy form (3.3) of a G-invariant function w satisfies the equation:(

∂2w

∂zk∂z̄l

)
a = 0
b = 0

=
1
4

∂2

∂bk∂bl
w

(
eibeip

)
b=0

.(3.5)

Proof. The polar decomposition of GC implies that ea+ib can be uniquely written
as geiy, where g ∈ G and y ∈ g. Any G-invariant function on GC/KC in a
neighbourhood of eip is a function of y only. On the other hand, as e2iy =(
exeiy

)∗(
exeiy) = e−a+ibea+ib, it follows from the Campbell-Hausdorff formula

that y = b+[b, a]/2+higher order terms. Hence the matrix of second derivatives
in (3.3) at eip (i.e. at a = 0, b = 0) is the same as the matrix of second derivatives
of

(a, b) �→ e(ib+ i
2 [b,a])eip(3.6)

at a = 0, b = 0. We shall now show that for a G-invariant function w on GC/KC,
this matrix of second derivatives is equal to the right-hand side of (3.5).

The Campbell-Hausdorff formula implies that up to order 2 in a, b, we have
e(ib+ i

2 [b,a]) = eibe
i
2 [b,a]). Set c = [b, a]/2, which is a point in k. We are going to

show that modulo terms of order 2 in c (hence of order 4 in a, b), eiceip is equal
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to eρeipeiq, where ρ ∈ g and q ∈ k are both linearly dependent on c. We note
that this proves the lemma, as

eibeρeipeiq = eρeib+O(3)eipeiq = eρeib+O(3)eip

in GC/KC, where O(3) denotes terms of order 3 and higher in a, b.
We find q from the equation cosh ad(ip)(q) = c, which can be solved uniquely

as cosh ad(ip) is symmetric and positive-definite on k ⊂ g. We then put ρ =
−i sinh ad(ip)(q). We observe that ρ ∈ g and eρ−ic = eipe−iqe−ip, thanks to
(3.4). Moreover, modulo terms quadratic in c, eρ = eiceρ−ic and, consequently:

eρeipeiq = eiceρ−iceipeiq = eic
(
eipe−iqe−ip

)
eipeiq = eiceip,

again modulo terms quadratic in c. This finishes the proof of the lemma.

According to this lemma, we have to compute ∂2

∂bk∂bl
w

(
eibeip

)
b=0

. Now, since
eibeip ∈ G∗, eibeip = keiz, where z = z(b) ∈ p and k ∈ K. As w is G-invariant,
w

(
eibeip

)
= w(eiz) and therefore

∂2

∂bk∂bl
w

(
eibeip

)
b=0

=
∂2

∂bk∂bl
w

(
eiz(b)

)
b=0

.

Thus we compute the matrix of second derivatives of a function defined on
exp(ip) in the coordinates given by b �→ eibeip �→ eiz(b). These, however, are the
geodesic coordinates at the point eip in the symmetric space dual to M (being
translations of geodesics at [1]) and hence the matrix of second derivatives in
these coordinates is equal to the Riemannian Hessian (2.1) for the symmetric
metric on the dual space. If we assume that K is connected, then this dual space
is G∗/K, and we obtain

Theorem 3.3. Suppose that K is connected. Let w be a smooth G-invariant
function on X = GC/KC and let w̄ be its restriction to the fiber S = exp(ip)
of (3.2) over [1]. Let g denote the symmetric metric on S � G∗/K. Then w is
(strictly) plurisubharmonic if and only if w̄ is (strictly) g-convex. Moreover, the
following equality holds:

∂∂̄ log detLw = ∂∂̄ log M̂g(w̄),

where û : X → R is a G-invariant function such that ¯̂u is a given K-invariant
function u on S.

We are now ready to prove Theorem 1. Recall that X = GC/KC is a Stein
manifold and so if ρ is an exact (1, 1) form on X, then ρ = −i∂∂̄h for some
function h. If ρ is G-invariant, then we can assume that h is G-invariant. We
can restrict h to the fiber S defined in the last theorem and thanks to Corollary
2.2 we can find a strictly g-convex K-invariant smooth solution ū to the equation
(2.2) with f = eh, where the metric g is the symmetric metric on S � G∗/K.
We can extend this solution via G-action to a G-invariant function u on X.
Theorem 3.3 implies now that u is strictly plurisubharmonic and that the Ricci
form of the Kähler metric with potential u is ρ.
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