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PRESCRIBING RICCI CURVATURE ON COMPLEXIFIED
SYMMETRIC SPACES

ROGER BIELAWSKI

The aim of this note is to prove the existence of invariant Ricci-flat Kahler
metrics on complexifications of symmetric spaces of compact type. Before stating
the result, let us fix the notation.

Let (M, g) be a Riemannian symmetric space of compact type and p a point
in M. Let G be the identity component of the isometry group of (M, g) and
let K be the stabiliser of p in G. Then M ~ G/K and the complexification of
M is TM with the adapted complex structure [7] that can be identified with
GC/KC!. We are going to prove

Theorem 1. Let (M, g) be an irreducible symmetric space of compact type. Let
G and K be as above and suppose that K is connected. Let p be a real exact G-
invariant (1,1)-form on the complexification TM ~ G/KC. Then there exists
a G-invariant Kdhler metric on T M whose Ricci form is p.

Remark. The Kahler form obtained in Theorem 1 is exact.

The above result has been proved in [9] for symmetric spaces of rank 1 and in
[2] for compact groups, i.e. for the case when G = K x K and K acts diagonally.
For hermitian symmetric spaces and p = 0, Theorem 1 has also been known [4].

The proof given here is quite different from that given for group manifolds in
[2]. We show that the complex Monge-Ampere equation on G®/K® reduces, for
G-invariant functions, to a real Monge-Ampere equation on the dual symmetric
space G*/K. We also show that the Monge-Ampeére operator on non-compact
symmetric spaces has a radial part, i.e. it is equal, for K-invariant functions,
to another Monge-Ampere operator on the maximal abelian subspace of G* /K.
These facts, together with the theorem on K-invariant real Monge-Ampére equa-
tions proved in [3], yield Theorem 1.

1. Riemannian symmetric spaces of non-compact type

Here we recall some facts about the geometry of Riemannian symmetric
spaces. The standard reference for this section is [6].

Let M = G/K be a symmetric space of compact type with K connected,
and let G*/K be its dual. If g, g* and € denote the Lie algebras of G, G* and
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IThe complexification of a compact connected Lie group G is the connected group G¢ whose
Lie algebra is the complexification of the Lie algebra of G and which satisfies w1 (G® ) = 71 (G).
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K, then g = t® p, g* = € D ip, where [€,p] C p and [p,p] C & The restric-
tion of the Killing form to ép is positive definite and induces the Riemannian
metric of G*/K. Moreover, the Riemannian exponential mapping provides a
diffeomorphism between p and G*/K. This can be viewed as the map:

(1.1) p— ePK,

where p € p and e is the group-theoretic exponential map for G*. Thus we have
two K-invariant Riemannian metrics on p ~ R™: the Euclidean one given by the
Killing form, and the negatively curved one given by the diffeomorphism (1.1).

Let a be a maximal abelian subspace of p and [ its centraliser in €. Let X
be the set of restricted roots and XT the set of restricted positive roots. For
each o € X, let p, (resp. £,) denote the subspace of p (resp. of £) where each
(ad H)?, H € a, acts with eigenvalue a(H)?. We have the direct decompositions

(1.2) p=a+ > Pa E=0+ )

aext aext

Let at be an open Weyl chamber and let p’ be the union of K-orbits of points
in at. Any K orbit in p’ is isomorphic to K/L where the Lie algebra of L is [.
Moreover, we have the diffeomorphism:

(1.3) at x K/L —y, (h, k) — Ad(k)h.

We now wish to write the two K-invariant metrics on p in coordinates given
by this diffeomorphism. Let >~ dr? be the Killing metric on a™ (the r; can be
viewed as K-invariant functions on p’). For each ., choose a basis X4, (m
runs from 1 to twice the multiplicity of a) of vectors orthonormal for the Killing
form and denote by 6., the corresponding basis of invariant 1-forms on K/L.
We have

Proposition 1.1. Let go be the Fuclidean metric on p, given by the restriction
of the Killing form, and let g be the negatively curved symmetric metric on p
given by the diffeomorphism (1.1). Then, under the diffeomorphism (1.3) the
metrics go and g can be written in the form

(1.4) Z dr} + > F(a(r)0f,

(a,m)
where F(z) = 2% for go, and F(z) = sinh?(z) for g.

Proof. Since all these metrics are K-invariant, it is enough to compute them at
points of a*. Let H be such a point and let (h,p), h € a, p € Tjy)K/L, be a
tangent vector to at x K/L at (H,[1]). The vector p can be identified with an
element of > ¢, C €. The corresponding (under (1.3)) tangent vector at H € p’
is h+ [p, H]. Computing the Killing form of this vector yields the formula (1.4)
with F(z) = 22 for go. The formula for g follows from a similar computation,
using the expression for the differential of the map (1.1) given in [6], Theorem
IvV.4.1. U
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2. Monge-Ampeére equation on symmetric spaces

Let (M,g) be a Riemannian manifold and v : M — R a smooth function.
Then the Hessian of u is the symmetric (0, 2)-tensor Ddu where D is the Levi-
Civita connection of g. In local Coordinates x;, Ddu is represented by the matrix

ou
.. k [
(2.1) Hij = 8 8x] Z U oxy

We say that the function w is g-convex (resp. strictly g-convex), if Ddu is non-
negative (resp. positive) definite. The Monge-Ampeére equation on the manifold
(M, g) is then

(2.2) M, (u) := (det g) " det Ddu = f

where f is a given function.

Let (G*/K,g) be a symmetric space of non-compact type given by a Cartan
decomposition g* = €+ ip. As in the previous section, we identify M = G*/K
with p and denote by go the (flat) metric given by restricting the Killing form
to p. We have:

Theorem 2.1. Let M ~ p be a symmetric space of noncompact type and let u
be a K-invariant (smooth) function on M. Then

(1) w is g-convex if and only if u is go-convex (i.e. convex in the usual sense

onyp).
(2) The following equality of Monge-Ampére operators holds:

MQ(U) =F- Mgo (u)v

where F' : M — R is a positive K-invariant smooth function depending
only on M.

We have proved in [3] a theorem on the existence and regularity of K-invariant
solutions to Monge-Ampere equations on R™. From this we immediately obtain

Corollary 2.2. Let (G*/K, g) be an irreducible symmetric space of noncompact
type and let f be a positive smooth K-invariant function on G*/K. Then the
Monge-Ampeére equation (2.2) has a global smooth K -invariant strictly g-convex
solution. O

We shall now prove Theorem 2.1. In fact we shall prove it in the following,
more general situation. Suppose that we are given a K-invariant metric on p
whose pullback under (1.3) can be written as (cf. (1.4)):

(2.3) Zdr + > Flam)(@(r)0, m);

(c;m)

where F(, ) 1 R — R are smooth functions vanishing at the origin such that
z_lw is smooth and positive everywhere. Proposition 1.1 implies that the
symmetric metric on G*/K is of this form. We claim that Theorem 2.1 holds

for any metric g of the form (2.3).
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In order to simplify the notation, let us write j for the index (o, m) and «;
for a if j = (ar,m). The metric g can be now written as

Z dr? + Z Fj(ay(r))62.

We recall the following formula:
2Ddu = Ly,g,

where L is the Lie derivative and Vu is the gradient of v with respect to the
metric g. On the other hand, for any (0,2)-tensor g and vector fields X,Y, Z,
we have:
(Lxg)(Y,Z) = Xg(Y,Z) — g([X,Y], Z) — g(Y, X, Z]).

We now compute Ly, g on p’ with respect to the basis vector fields 9/0r;, X;
where X; are dual to ;. Here u is a K-invariant function. The gradient of u
is just ) %ain? in particular it is independent of the functions F}. It follows
immediately that (Lv.g)(0/0r;, X;) = 0 and that the matrix (Lv.g)(X;, Xx)
is equal to Vu.g(X;, Xi) and hence it is diagonal with the (jj)-entry equal to

dF;

Vu (Fj(a;(r))) = —= a;(Vol).
dz Iz:cxj(r)
Here Vou = %% is the gradient of w restricted to the Euclidean space

a = R" in coordinates r;, and viewed as a map from R" to itself.
Theorem 2.1 with the more general metric (2.3) follows easily with the func-
tion F' given explicitly by

po ot oy
[T Fj(e(r)) 2dz ) o
Observe that the assumptions on the F); guarantee that F' extends to a smooth
positive function on p.

3. Proof of the Main Theorem

Let (M, g) be a Riemannian symmetric space of compact type, G its isometry
group, and K C G the stabiliser group of a point. There is a canonical isomor-
phism between G¢/K® and G x p (i.e. the tangent bundle of G/K) given by
the map:

(3.1) Gxp—G°—G/K", (9,p) — ge™.

This isomorphism can be viewed in many ways: as an example of Mostow fibra-
tion [8], as given via Kihler reduction of G* ~ G x g by the group K [5], or as
given by the adapted complex structure construction [7] which provides a canon-

ical diffeomorphism between the tangent bundle of G/K and a complexification
of G/K. In any case it provides a fibration

(3.2) 7m:GY/K® - G/K.
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The fibers of this projection can be identified with p via the map (3.1). In
particular, the fiber over [1] is given by the KC-orbits of elements ¢, p € p.
We shall relate G-invariant plurisubharmonic functions on G¢/K® to convex
functions on this fiber (see [1] for a different approach to this).

For a function w on a complex manifold one defines its Levy form Lw to be
the Hermitian (0, 2) tensor given in local coordinates as

0w
025,07
This form does not depend on the choice of local coordinates. We shall compute
this form for a G-invariant function w on G¢/KC. It is enough to compute it at

points €?, p € p. First of all, we choose local holomorphic coordinates at such
a point:

(3.3) dzy, ® d.

Lemma 3.1. In a neighbourhood of a point P, p € p, complex coordinates are
provided by the map p© — G — GC/KC, (a 4 ib) — e4T0e?,

Proof. We have to show that the map (a + ib) — e?Te”? KC has a non-singular
differential at 0. This is equivalent to (ad e~ ) u ¢ €€ for u € p©. We have

(3.4) (ade ) u = e?d(=ip)y — cosh(ad(—ip))u + sinh(ad(—ip))w,

where the first term of the sum lies in p® and the second one in £¢. To show
that the first term does not vanish recall that (ad(—ip))? has all eigenvalues
nonnegative. O

‘We now have:

Lemma 3.2. In the complex coordinates z = a+1b given by the previous lemma,
the Levy form (3.3) of a G-invariant function w satisfies the equation:

0w 1 92 ib ip
(3.5) (8zk821> o = 195,96 (€€ oo
0

a =
b=

Proof. The polar decomposition of G implies that e*T% can be uniquely written
as ge’, where g € G and y € g. Any G-invariant function on G¢/K® in a
neighbourhood of e is a function of y only. On the other hand, as e?¥ =
(e7e)™ (e"e™) = e~aTibea*® it follows from the Campbell-Hausdorff formula
that y = b+ [b, a]/2+ higher order terms. Hence the matrix of second derivatives
in (3.3) at € (i.e. at a = 0,b = 0) is the same as the matrix of second derivatives

of
(3.6) (a,b) — elibt3bal) gip

at a = 0,b = 0. We shall now show that for a G-invariant function w on G¢/K€,
this matrix of second derivatives is equal to the right-hand side of (3.5).

The Campbell-Hausdorff formula implies that up to order 2 in a,b, we have
elibtslbal) — gibeslbal) - Set ¢ = [b,a]/2, which is a point in &. We are going to
show that modulo terms of order 2 in ¢ (hence of order 4 in a,b), e*“e™ is equal
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to e”e’Pe’, where p € g and ¢ € £ are both linearly dependent on c. We note
that this proves the lemma, as

ezbepezpezq _ epezb+0(3) Pl — epezb+0(3) &P

in G®/KC, where O(3) denotes terms of order 3 and higher in a, b.

We find ¢ from the equation cosh ad(ip)(¢q) = ¢, which can be solved uniquely
as coshad(ip) is symmetric and positive-definite on ¢ C g. We then put p =
—isinhad(ip)(q). We observe that p € g and e/~ = e'Pe~"e~ P, thanks to
(3.4). Moreover, modulo terms quadratic in ¢, e? = e*“e’~* and, consequently:

6peip€iq — eicep—iceipeiq — 6ic (eipe—iqe—ip) eipeiq — eiceip’

again modulo terms quadratic in ¢. This finishes the proof of the lemma. O

According to this lemma, we have to compute %;mw(eibeip) Y Now, since
ele? € G, e’ = ke'* where z = z(b) € p and k € K. As w is G-invariant,
w(e™e™) = w(e'*) and therefore

0? 0?
0by, 0b; )b:O B Oby, Ob;
Thus we compute the matrix of second derivatives of a function defined on
exp(ip) in the coordinates given by b s e i2(t) " These, however, are the
geodesic coordinates at the point e in the symmetric space dual to M (being
translations of geodesics at [1]) and hence the matrix of second derivatives in
these coordinates is equal to the Riemannian Hessian (2.1) for the symmetric

metric on the dual space. If we assume that K is connected, then this dual space
is G*/K, and we obtain

w(eibeip w(eiz(b))

b=0"

e e

Theorem 3.3. Suppose that K is connected. Let w be a smooth G-invariant
function on X = G¢/KC and let w be its restriction to the fiber S = exp(ip)
of (3.2) over [1]. Let g denote the symmetric metric on S ~ G* /K. Then w is
(strictly) plurisubharmonic if and only if w is (strictly) g-convex. Moreover, the
following equality holds:

00 log det Lw = 90 1log M, (w),
where 4 : X — R is a G-invariant function such that @ is a given K-invariant
function uw on S. ]

We are now ready to prove Theorem 1. Recall that X = G¢/KC is a Stein
manifold and so if p is an exact (1,1) form on X, then p = —id0h for some
function h. If p is G-invariant, then we can assume that h is G-invariant. We
can restrict h to the fiber S defined in the last theorem and thanks to Corollary
2.2 we can find a strictly g-convex K-invariant smooth solution u to the equation
(2.2) with f = e, where the metric g is the symmetric metric on S ~ G*/K.
We can extend this solution via G-action to a G-invariant function v on X.
Theorem 3.3 implies now that u is strictly plurisubharmonic and that the Ricci
form of the Kéhler metric with potential w is p.
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