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A LOWER BOUND FOR THE CANONICAL HEIGHT ON
ABELIAN VARIETIES OVER ABELIAN EXTENSIONS

Matthew H. Baker and Joseph H. Silverman

Abstract. Let A be an abelian variety defined over a number field K and let ĥ
be the canonical height function on A(K̄) attached to a symmetric ample line
bundle L. We prove that there exists a constant C = C(A, K,L) > 0 such

that ĥ(P ) ≥ C for all nontorsion points P ∈ A(Kab), where Kab is the maximal
abelian extension of K.

Introduction

The purpose of this paper is to provide a proof of the following result.

Theorem 0.1. Let A/K be an abelian variety defined over a number field K.
Let L be a symmetric ample line bundle on A/K, and let ĥ : A(K̄) → R be
the associated canonical height function. Then there exists a constant C =
C(A, K,L) > 0 such that

ĥ(P ) ≥ C for all nontorsion points P ∈ A(Kab).

Together with Remark 5.4, Theorem 0.1 establishes both parts of Conjecture
1.10 in [3].

In the case of elliptic curves, Theorem 0.1 was proven by the first author [3]
for CM elliptic curves and by the second author [27] for non-CM elliptic curves.
The present paper is thus a combination and extension of these two earlier works
to abelian varieties of arbitrary dimension. The two papers [3] and [27] were
themselves motivated by work of Amoroso-Dvornicich and Amoroso-Zannier ([1],
[2]) providing absolute lower bounds for the height of nontorsion points in the
multiplicative group over abelian extensions of a given number field K. For
more history and background information on the elliptic curve and multiplicative
group analogues of Theorem 0.1, we refer the reader to sections 1 and 2 of [27].

Theorem 0.1 fits into the general context of providing lower bounds for the
heights of nontorsion points on abelian varieties. An open problem in this context
is the generalized Lehmer conjecture (Conjecture 1.4 of [4]):
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Lower bound for ĥ(P ) Restrictions Reference

cD−κ none Masser (1984) [13]

cD−
1
g

(
log log(3D)

log(3D)

)κ

CM, g = g0(P ) David-Hindry (2000) [4]

c
P ∈ A(Kab)

K totally real
Zhang (1998) [32]

c
P ∈ A(Kab)

g = 1
Baker, Silverman

(2003) [3],[27]
Table 1. History of lower bounds for ĥ in A(K̄)

Conjecture 0.2. Suppose A is an abelian variety over a number field K, and
that L is a symmetric ample line bundle on A. Then there exists a positive
constant c = c(A, K,L) such that

ĥ(P ) ≥ cD−1/g0(P )

for all non-torsion points P ∈ A(K̄), where D = [K(P ) : K] and g0(P ) denotes
the dimension of the smallest algebraic subgroup of A containing P .

Table 1 gives an abbreviated history of lower bounds for ĥ(P ), where A is an
abelian variety of dimension g over a number field K, L is a symmetric ample
line bundle on A, P ∈ A(K̄) is a nontorsion point, and D = [K(P ) : K]. In the
table, c denotes a positive constant that depends on A/K and on L, but not
on P , and κ denotes a positive constant depending only on the dimension of A.

In light of the results of [1] and [2] for the multiplicative group, one might also
ask if Theorem 0.1 admits a generalization to arbitrary semiabelian varieties. We
do not address this question here.

1. Notation

We set the following notation and normalizations, which will be used through-
out this paper.

K a number field.
Kab the maximal abelian extension of K.
OK the ring of integers of K.
qp the absolute norm NK/Q(p) of the ideal p.

MK the set of places of K.
nv the normalized local degree [Kv : Qv]/[K : Q], for v ∈MK .

| · |v the unique absolute value on K in the equivalence class of v ∈MK

that extends the standard absolute value on the completion Qv.
h The absolute logarithmic Weil height h : Pn(Q̄) → R defined for

[x0, . . . , xn] ∈ Pn(K) by

h
(
[x0, . . . , xn]

)
=

∑
v∈MK

nv log max{|x0|v, . . . , |xn|v}.
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The height h(P ) is well-defined, independent of the choice of a particular
number field K over which the point P = [x0, . . . , xn] is defined. See [10, 12, 25]
for this and other basic properties of height functions.

Remark 1.1. Let p be a prime ideal of K corresponding to a place v ∈ MK .
Then the largest value less than 1 of the normalized absolute value attached
to v is

max
α∈p
|α|v = q

−1/[Kv :Qv ]
p .

We set the following additional notation.
A/K an abelian variety of dimension g defined over K.

End(A) the endomorphism ring of A over K̄.
L an ample symmetric line bundle on A/K.
ĥ the canonical height ĥ : A(K̄)→ [0,∞) associated to L. If we need

to make the dependence on A and/or L explicit, we will write ĥL
or ĥA,L.

S a finite set of places of K that includes at least all archimedean
places and all places of bad reduction of A. From time to time we
may expand the set S, but it will depend only on A/K, and not
on particular points of A or the extensions over which they are
defined.

2. A reduction step

Theorem 0.1 deals with arbitrary abelian varieties and ample line bundles.
We begin with a reduction step to a simpler situation.

Proposition 2.1 (Reduction Step). (a) If Theorem 0.1 is true for geometri-
cally simple abelian varieties and very ample symmetric line bundles, then
it is true for all abelian varieties and all ample symmetric line bundles.

(b) If Theorem 0.1 is true for A/K ′ for some finite extension K ′/K, then it
is true for A/K. In particular, if A has complex multplication, it suffices
to prove Theorem 0.1 under the assumption that EndK(A) = EndK̄(A)
and EndK(A)⊗Q ⊂ K.

Proof. (a) Let A/K be an arbitrary abelian variety and L an ample symmetric
line bundle on A/K.

Over an algebraically closed field, Poincaré’s complete reducibility theorem [16,
Section 19] says that every abelian variety decomposes, up to isogeny, into a
product of simple abelian varieties. We may thus find a finite extension K ′ and
geometrically simple abelian varieties A1, . . . , Ar defined over K ′ so that there
are isogenies

φ : A1 × · · · ×Ar −→ A and ψ : A −→ A1 × · · · ×Ar

defined over K ′ with the property that φ ◦ ψ = [m] is multiplication-by-m on A
for some integer m ≥ 1.

The line bundle φ∗L is ample on the product A1 × · · · × Ar, since φ is a
finite morphism [8, Exercise III.5.7(d)]. We fix an integer n ≥ 1 so that φ∗L⊗n



380 MATTHEW BAKER AND JOSEPH SILVERMAN

is very ample on the product, and we let L′i = φ∗L⊗n
∣∣
Ai

be the restriction to
the ith factor. Then L′i is a very ample line bundle on Ai.

Let P ∈ A(K̄) and write ψ(P ) = (P1, . . . , Pr). Then standard transformation
properties of canonical heights (see [12, Chapters 4–5] or [10, Sections B.3–B.5])
allow us to compute

ĥA,L(P ) =
1

m2
ĥA,L([m]P )

=
1

m2n
ĥA,L⊗n([m]P )

=
1

m2n
ĥA1×···×Ar,φ∗L⊗n(ψ(P ))

=
1

m2n

(
ĥA1,L′1(P1) + ĥA2,L′2(P2) + · · ·+ ĥAr,L′r (Pr)

)
.

By assumption, Theorem 0.1 is true for each abelian variety Ai/K ′ and line
bundle L′i, say

ĥAi,L′i(P ) ≥ Ci > 0 for all nontorsion P ∈ Ai(K ′
ab).

Since Kab ⊂ K ′ab and since

P ∈ Ators ⇐⇒ Pi ∈ (Ai)tors for all 1 ≤ i ≤ r,

we conclude that if P ∈ A(Kab) is a nontorsion point, then

ĥA,L(P ) ≥ 1
m2n

min
1≤i≤r

Ci.

This completes the proof of reduction step (a).
(b) It is clear that Theorem 0.1 for K ′ implies Theorem 0.1 for K, since Kab ⊂

K ′ab. The second part of (b) follows, since there is always a finite exten-
sion K ′/K satisfying EndK′(A) = EndK̄(A) and EndK′(A)⊗Q ⊂ K ′.

In view of Proposition 2.1(a), we will assume henceforth that the abelian
variety A/K is geometrically simple and that the line bundle L on A/K is very
ample. We fix an embedding

ψ : A −→ Pn
K

with ψ∗(O(1)) ∼= L. We fix a proper model A/OK for A/K by letting A be the
Zariski closure of ψ(A) in Pn

OK
. In particular, the embedding ψ extends to a

closed immersion

A −→ Pn
OK

.

Adding a finite number of primes to the set S, we may assume that A is a group
scheme over SpecOK,S with generic fiber A/K. In particular, the group law on A
commutes with reduction modulo p for p /∈ S. More precisely, if P, Q, R ∈ A(K ′)
for some finite extension K ′/K, and if P ∈ SpecOK′ is a prime of K ′ that does
not lie above a prime in S, then

P ≡ Q (mod P)⇐⇒ P + R ≡ Q + R (mod P).
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3. An elementary local-global height inequality

For each place v ∈ MK , we define a logarithmic v-adic distance function
on Pn(K) by the formula

δv(x, y) = − log




(
max

i,j
|xiyj − xjyi|v

)
(
max

k
|xk|v

)(
max

k
|yk|v

)

 .

Note that δv(x, y) does not depend on the choice of projective coordinates for x
and y. The intuition is that

δv(x, y) = − log |v-adic distance from x to y|,
so δv(x, y) becomes large as x and y become v-adically close to one another. We
set δv(x, x) =∞ by convention.

Lemma 3.1. Let K be a number field and let T ⊂ MK be any set of places
of K. Then for all distinct points x, y ∈ Pn(K),

h(x) + h(y) ≥
∑
v∈T

nvδv(x, y)− log 2.

Proof. For each v ∈ MK , let εv = 1 if v is archimedean, and εv = 0 otherwise.
The triangle inequality gives

max
i,j
|xiyj − xjyi|v ≤ max

i,j
2εv max

{|xiyj |v, |xjyi|v
}

= 2εv max
i
{|xi|v}max

j
{|yj |v}.

Hence

δv(x, y) ≥ −εv log 2 for all x, y ∈ Pn(K) and all v ∈MK .(3.2)

We are given that x �= y, so there exist indices α, β so that

xαyβ �= xβyα.

We apply the product formula and the inequality (3.2) to compute

h(x) + h(y) =
∑

v∈MK

nv

(
log max

k
|xk|v + log max

k
|yk|v

)
=

∑
v∈MK

nv

(
max

i,j
log |xiyj − xjyi|v + δv(x, y)

)
≥

∑
v∈MK

nv

(
log |xαyβ − xβyα|v + δv(x, y)

)
=

∑
v∈MK

nvδv(x, y) (by the product formula)

≥
∑
v∈T

nvδv(x, y)−
∑
v/∈T

nvεv log 2 (from (3.2))
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≥
∑
v∈T

nvδv(x, y)− (log 2)
∑

v∈M∞K

nv (from def of εv)

≥
∑
v∈T

nvδv(x, y)− log 2.

Remark 3.3. It is possible to put Lemma 3.1 into a more general context, albeit
with an inexplicit constant, using functorial properties of Weil height functions
associated to subschemes. We briefly sketch the idea; see [26] for the general
theory. Let H be a hyperplane in Pn, and for each i �= j, let Dij ∈ Div(Pn×Pn)
be the divisor of type (1, 1) defined by xiyj = xjyi. Then

Dij ∼ π∗1H + π∗2H, so hDij = hH ◦ π1 + hH ◦ π2 + O(1).

The diagonal ∆ ⊂ Pn × Pn is the intersection ∆ = ∩Dij , hence [26, Theo-
rem 4.1(b)] says that

h∆ ≤ min
i �=j

hDij + O(1) = hH ◦ π1 + hH ◦ π2 + O(1).

Finally we use the fact that h∆ is defined as a sum of local heights

h∆ =
∑

v

λ∆,v,

and the local heights are uniformly bounded below away from the support of ∆.
Thus for any set of places T ,

h∆ ≥
∑
v∈T

nvλ∆,v + O(1).

Combining these inequalities and using the fact that λ∆,v = δv + O(1) yields

h(x) + h(y) ≥
∑
v∈T

nvδv(x, y) + O(1) for all (x, y) ∈ (Pn × Pn)(K̄)�∆,

which is Lemma 3.1 with an inexplicit constant.

We will apply Lemma 3.1 to our abelian variety as follows.

Proposition 3.4. There is a constant B = B(K, A,L) so that for all finite
extensions L/K and all pairs of distinct points P, Q ∈ A(L), the following two
inequalities are valid.

(a) Let T ⊂MK be any set of places of K. Then

ĥ(P ) + ĥ(Q) ≥
∑
v∈T

nvδv(P, Q)−B.

(b) Let P1, . . . ,Pr be primes of OL lying over primes of OK that are not in
the set of excluded primes S. Assume further that

P ≡ Q (mod Pi) for all 1 ≤ i ≤ r.
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Then

ĥ(P ) + ĥ(Q) ≥ 1
[L : Q]

∑
1≤i≤r

log NL/QPi −B.

Proof. Recall that we have fixed an embedding ψ : A → Pn corresponding to
the line bundle L. We apply Lemma 3.1 to the points ψ(P ) and ψ(Q) in Pn(L)
and to the set of places v ∈ T . This yields

h(ψ(P )) + h(ψ(Q)) ≥
∑
v∈T

nvδv

(
ψ(P ), ψ(Q)

)− log 2.(3.5)

For all points R ∈ A(K̄), functorial properties of height functions give

hPn,O(1)(ψ(R)) = hA,ψ∗O(1)(R) + O(1)

= hA,L(R) + O(1) = ĥA,L(R) + O(1).(3.6)

Combining (3.5) and (3.6) gives part (a) of the proposition.
Let {v1, . . . , vr} be the places of L corresponding to the set of primes

{P1, . . . ,Pr}. The congruence P ≡ Q (mod Pi) implies that ψ(P ) ≡ ψ(Q)
(mod Pi) (remember that the map ψ has good reduction at all primes not in S).
Hence from Remark 1.1 we see that

δvi

(
ψ(P ), ψ(Q)

) ≥ 1
[LPi : QPi ]

log NL/QPi.

Substituting this into (a) gives

ĥ(P ) + ĥ(Q) ≥
∑

1≤i≤r

nvi

[LPi : QPi ]
log NL/QPi −B

=
1

[L : Q]

∑
1≤i≤r

log NL/QPi −B.

4. A mod p annihilating polynomial

The proof of Theorem 0.1 is by induction on the amount of ramification in a
given finite abelian extension of K. The key to handling the unramified case is
to note that there is an element of the group ring Z[GK̄/K ] that simultaneously
annihilates A(Kab) modulo every prime of Kab lying above p, an idea already
exploited in [27] for the case of elliptic curves. In this section we describe the
analogous fact for abelian varieties.

Theorem 4.1. Let K/Q be a number field, let p be a prime of K, and let
q = NK/Q(p). Let A/K be an abelian variety of dimension g with good reduction
at p, and let

Φp(X) = det
(
X − Frobp

∣∣ T�(A)
) ∈ Z[X]
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be the characteristic polynomial of Frobenius at p. (Here * is any prime number
different from the residue characteristic of p, and T�(A) is the *-adic Tate module
of A.)

Fix a prime p̄ of K̄ lying over p and let σ ∈ (p̄, K̄/K) ⊂ GK̄/K be in the
associated Frobenius conjugacy class.
(a) Write Φp(X) as

Φp(X) =
2g∑

i=0

aiX
i =

2g∏
j=1

(X − αj).

Then the roots of Φp satisfy |αj | = q1/2 and the coefficients of Φp satisfy
|ai| ≤ (4q)g.

(b) For all P ∈ A(K̄),

Φp(σ)P ≡ O (mod p̄).

(This congruence is taking place on a model A for A whose special fiber Ã
is smooth.)

(c) If P ∈ A(K̄) satisfies Φp(σ)P = O, then P is a torsion point.

Proof. (a) The equality |αj | = q1/2 is the Riemann hypothesis for A(Fp), which
was proven originally by Weil, see [16, IV.21, Theorem 4]. The coefficient aj is
the jth symmetric polynomial of the roots of Φp, so

|aj | ≤
(

2g

j

)
max |αi|j ≤ 4gqj/2 ≤ (4q)g.

(b) When reduced modulo p̄, the element σ ∈ GK̄/K acts as the q-power
Frobenius map fq ∈ End(Ã). Further, the map Φp(fq) annihilates T�(Ã),
since Φp is the characteristic polynomial of fq acting on T�(Ã) and the Cayley-
Hamilton theorem tells us that a linear transformation satisfies its own charac-
teristic equation.

We have the general fact that if B is an abelian variety over a field k, then
the map

End(B) −→ End(T�(B))(4.2)

is injective; see [16, IV.19, Theorem 3] for the stronger result that End(B) ⊗
Z� ↪→ End(T�(B)). We can prove the injectivity of (4.2) directly by noting that
if φ ∈ End(B) induces the zero map on T�(B), then φ(B[*n]) = 0 for all n ≥ 1.
Hence φ factors through the isogeny [*n], say φ = ψn ◦ [*n]. This implies that
deg(φ) = deg(ψn) deg([*])n. Since this holds for all n ≥ 1, and since deg(φ)
and deg(ψn) are integers and deg([*]) > 1, it follows that deg(φ) = 0, and hence
that φ = 0.

Thus the fact that Φp(fq) annihilates T�(Ã) implies that Φp(fq) = 0 as an
element of End(Ã). In other words,

Φp(fq)Q = O for all Q ∈ Ã(F̄p).
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Finally, using the fact that the reduction map commutes with the group law
on A, we see that for any P ∈ A(K̄),

Φp(σ)P ≡ Φp(fq)P (mod p̄) ≡ O (mod p̄).

(c) Let P ∈ A(K̄) satisfy Φp(σ)P = O. Fix a finite Galois extension L/K
with P ∈ E(L), say of degree m = [L:K]. Then σm = 1 in GL/K , so in
particular, σmP = P . Let

r = Resultant(Φp(X), Xm − 1) ∈ Z.

The complex roots of Xm − 1 have absolute value 1 and from (a), the complex
roots of Φp(X) have absolute value q1/2, so the two polynomials have no complex
roots in common. It follows that r �= 0.

The resultant of two polynomals in Z[X] is an element of the ideal that they
generate [11, Chapter IV, Section 8], so we can find polynomials u(X), v(X) ∈
Z[X] satisfying

u(X)Φp(X) + v(X)(Xm − 1) = r.

Substituting X = σ gives the identity

u(σ)Φp(σ) + v(σ)(σm − 1) = r

in the group ring Z[GK̄/K ]. Hence

rP = u(σ)
(
Φp(σ)P

)
+ v(σ)

(
(σm − 1)P

)
= O,

so P is a point of finite order.

5. Selection of a “good” prime

In order to prove our main result (Theorem 0.1), we will show that there is a
prime p of K and positive constants C1, C2, C3, depending only on A/K and L,
such that

ĥA,L(P ) ≥ C1

log NK/Q p− C2

(NK/Q p)C3
> 0 for all nontorsion P ∈ A(Kab).

The next proposition will help us choose such a prime p. We assume from
now on that the abelian variety A is K̄-simple and that L is very ample. By
Proposition 2.1, these assumptions are harmless.

Proposition 5.1. There exist infinitely many primes p of K satisfying the fol-
lowing conditions:

1. p is unramified of degree one, so that in particular NK
Q p is a prime number

p.
2. Reduction modulo p commutes with the embedding ψ : A ↪→ Pn coming

from the very ample symmetric line buncle L.
3. The abelian variety A has good reduction at p, so that in particular, reduc-

tion modulo p commutes with the group law on A.
4. p > exp([K : Q](B + 1)), where B is the constant appearing in Proposi-

tion 3.4.
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5. One of the following holds:
(a) Either A(Kab) has no points of order p, or
(b) A has complex multiplication and ordinary reduction at p.

Proof. It is clear that conditions (2), (3), and (4) exclude only finitely many
primes. If A does not have complex multiplication, then the same is true for
condition (5a) by a theorem of Zarhin (Theorem 5.3 below). On the other hand,
if A does have complex multiplication, then it is well-known that A has ordinary
reduction at all sufficiently large primes which split completely in some fixed
finite extension of K (see Theorem 5.2 below). Since there are infinitely many
rational primes which split completely in any given number field, this shows that
we can find (infinitely many) primes satisfying all five conditions.

Theorem 5.2. Let A be a g-dimensional abelian variety over the number field
K, and suppose that L := (EndA)⊗Q is a field of degree 2g over Q. Let p be a
degree-1 prime of K and let p be the rational prime under p. Suppose that

1. A has good reduction at p;
2. Every endomorphism of A has good reduction at p;
3. EndK(A) = EndK̄(A); and
4. p is unramified in L.

Then A has ordinary reduction at p.

Proof. Since the property of being ordinary is preserved by isogenies and prod-
ucts, we may assume without loss of generality that A is simple and that A
is principal, i.e., that End(A) is the maximal order in (EndA) ⊗ Q. It then
follows from [24, Chapter III, Theorem 2] and our hypotheses that the reduc-
tion Ã of A modulo p is also simple, and that the natural reduction map gives
an isomorphism

End(A)⊗Q ∼−→ End(Ã)⊗Q.

In particular, since L := End(A) ⊗ Q is a CM field of degree 2g, we conclude
that End(Ã)⊗Q = L is a CM field of degree 2g as well.

Let π ∈ L be the Frobenius morphism of Ã over Fp; then π is in fact an
element of the ring of integers OL of L. Let π be the complex conjugate of π.
A consideration of degrees and the fact that L is a CM field shows that ππ = p.
Since [L : Q] = 2g, it follows from [29, Theorem 2, page 140] that L = Q(π) and
that Φ, the characteristic polynomial of π acting on T�(Ã) for some prime * �= p,
has no multiple roots. Since every conjugate of π satisfies the polynomial Φ as
an endomorphism of Ã, it follows that

Φ(X) =
2g∏

i=1

(X − πi),

where π1, . . . , π2g are the conjugates of π.
Since p is unramified in OL, it follows from the relation p = ππ′ that for

any prime ideal q of OL lying over p and for each i, exactly one of πi and πi
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is divisible by q. This implies that Ã is ordinary (see [30, proof of Proposition
7.1]).

Theorem 5.3. Let A/K be a geometrically simple abelian variety that does not
have complex multiplication (over K̄). Then A(Kab)tors is finite. In particular,

A(Kab)[p] = 0 for all but finitely many primes p.

Proof. This is proven by Zarhin in [31], using methods developed by Faltings [5]
in his proof of Tate’s isogeny conjecture. See also [18, 19, 20, 21].

Remark 5.4. In the statament of Theorem 5.3, one can replace the hypothesis
that A/K is a geometrically simple abelian variety without complex multiplica-
tion over K̄ by the hypothesis that A/K is an abelian variety having no abelian
subvariety with complex multiplication over K (see [18]).

For the remainder of this paper, we fix a prime p of K satisfying the conditions
described in Proposition 5.1, and we let p = NK/Q p.

6. Proof of the main theorem in the unramified case

Let A/K be an abelian variety and L a line bundle on A/K. As we have
already mentioned, we may assume that A is geometrically simple and L is very
ample. Recall that we have fixed a prime p of K satisfying the conditions in
Proposition 5.1, and that p is the residue characteristic of p.

Let P ∈ A(Kab) be a nontorsion point. The proof of Theorem 0.1 is by
induction on ordp(fp(K(P )/K)), where fp(L/K) denotes the local conductor of
the abelian extension L/K at p. For our purposes, we define fp(L/K) to be
the smallest positive integer m such that Lq ⊆ Qp(ζm), where q is a prime of L
lying over p. It follows from local class field theory that fp(L/K) exists and is
well-defined, and that ordp(fp(L/K)) ≥ 1 if and only if L/K is ramified at p. In
this section we begin the induction by proving the unramified case.

Theorem 6.1. Let L ⊂ Kab be unramified at p and let P ∈ A(L) be a nontor-
sion point. Then

ĥ(P ) ≥ 1
(12p)2g

.

(Note that this gives a lower bound for ĥ(P ) that is independent of L and P .)

Proof. Factor the prime p in L as

pOL = P1P2 · · ·Pr.

Since p is unramified in L, the pi’s are all distinct. Moreover, the fact that the
extension L/K is abelian implies that all of the primes P1, . . . ,Pr have the
same associated Frobenius element in GL/K , say

σ = (Pi, L/K) ∈ GL/K for all 1 ≤ i ≤ r.
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Let Φp(X) ∈ Z[X] be the characteristic polynomial of Frobenius acting
on T�(A). Theorem 4.1(b) tells us that

Φp(σ)P ≡ O (mod Pi) for all 1 ≤ i ≤ r.

Theorem 4.1(c) and our assumption that P is a nontorsion point tell us
that Φp(σ)P �= O. Hence we can apply Proposition 3.4(b) to the distinct
points Φp(σ)P and O. Since ĥ(O) = 0, this yields

ĥ(Φp(σ)P ) ≥ 1
[L : Q]

r∑
i=1

log NL/QPi −B

for a constant B that is independent of L and P . The factorization p = P1 · · ·Pr

implies that
r∑

i=1

log NL/QPi = log NL/Q p = [L : K] log NK/Q p,

so we obtain the lower bound

ĥ(Φp(σ)P ) ≥ log p

[K : Q]
−B.(6.2)

(Remember that p has degree one over Q.)
Next we write Φp(X) =

∑
ajX

j and compute

ĥ(Φp(σ)P ) = ĥ

( 2g∑
j=0

ajσ
jP

)

≤ (2g + 1)
2g∑

j=0

ĥ(ajσ
jP ) parallelogram law (see Remark 6.3),

= (2g + 1)
2g∑

j=0

a2
j ĥ(σjP ) since ĥ is a quadratic form,

≤ (2g + 1)
2g∑

j=0

(4p)2gĥ(σjP ) from Theorem 4.1(a),

= (2g + 1)2(4p)2gĥ(P ) since ĥ is Galois invariant.

Combining this with (6.2) and the trivial estimate 2g + 1 ≤ 3g gives

ĥ(P ) ≥ 1
(12p)2g

(
log p

[K : Q]
−B

)
.

Finally, we recall that condition (4) of Proposition 5.1 says that p > exp
(
[K :

Q](B + 1)
)
, which yields the stated lower bound ĥ(P ) ≥ 1/(12p)2g.
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Remark 6.3. During the proof of Theorem 6.1 we made use of the following
generalized parallelogram law. For any quadratic form Q, it is easy to check the
formal identity

Q

( t∑
i=1

xi

)
+

1
2

t∑
i,j=1

Q(xi − xj) = t
t∑

i=1

Q(xi).

Hence if Q is positive semidefinite, then

Q

( t∑
i=1

xi

)
≤ t

t∑
i=1

Q(xi).

Remark 6.4. The proof of Theorem 6.1 actually shows that

ĥ(P ) ≥ 1
(2g + 1)2(4p)2g

(
log p

ep(L/K)[K : Q]
−B

)
,

where ep(L/K) is the ramification index of L/K. This suffices to prove our main
theorem for extensions whose ramification index at p is bounded, but it will not
handle highly ramified extensions.

7. A generalized Amoroso-Dvornicich lemma

In order to deal with the ramified case of Theorem 0.1, we recall the following
lemma of Amoroso and Dvornicich (see [1, Lemma 2], and also [2, 3, 27]). We
refer the reader to [27] for a proof of this particular formulation.

Lemma 7.1 (Amoroso-Dvornicich [1]). Let K/Q be a number field, let p be a
degree 1 prime of K with residue characteristic p, and let L/K be an abelian
extension that is ramified at p. Let P be a prime of L lying over p, let OL,P

denote the localization of L at P, and let IL/K be the inertia group at P. Then
there exists an element τ ∈ IL/K with τ �= 1 such that

τ(α)p ≡ αp (mod pOL,P) for all α ∈ OL,P.

(Note that the strength of this result is that the congruence is modulo p, and not
merely modulo P.)

Remark 7.2. Suppose that LP = Qp(ζm) for some integer m divisible by p.
Then the proof of Lemma 7.1 shows that we may take τ to be any nontrivial
element of Gal

(
Qp(ζm)/Qp(ζm/p)

)
, considered as a subgroup of

Gal(Qp(ζm)/Qp) = Gal(LP/Kp) ⊂ Gal(L/K).

We now prove a version of the lemma of Amoroso and Dvornicich that applies
to varieties and maps with a particular type of inseparable reduction.

Proposition 7.3. Let K/Q be a number field and let p be a degree 1 prime
of K. Let X/K ⊂ Pn

K be a variety and let φ : X → X be a finite K-morphism.
Fix a model X/OK,p ⊂ Pn

OK,p
and let Φ : X → X denote the extension of φ

to X . Make the following assumptions:
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1. The scheme X/OK,p is embedded as a proper OK,p-subscheme of Pn
OK,p

.
2. The map Φ : X → X is a finite OK,p-morphism.
3. The restriction of Φ to the special fiber, i.e., the reduction Φ̃ : X̃ → X̃ ,

of Φ modulo p, factors through the Frobenius map Frob : X̃ → X̃ (p).
Let L/K be an abelian extension which is ramified at p, let P|p, and let

τ ∈ IL/K be as in Lemma 7.1. Then for all points P ∈ X(L),

δP

(
φ(τ(P )), φ(P )

) ≥ log p.(7.4)

(We recall that δP is the (logarithmic) P-adic distance function defined in sec-
tion 3.)

Remark 7.5. The crucial property of the estimate (7.4) is that the lower bound
for the P-adic distance does not depend on the ramification degree of P. Since τ
is in the inertia group, we know that τ(P ) ≡ P (mod P). Hence Remark 1.1
gives the trivial lower bound

δP(τ(P ), P ) ≥ 1
[LP : Qp]

log NL/QP =
log p

eL/Q(P)
.

This would not suffice for our purposes.

Proof. Without loss of generality, we may replace K and L by Kp and LP,
respectively.

Let U/OK and V/OK be affine open subsets of X/OK with Φ(U) ⊂ V. Choose
affine coordinates (i.e., generators of the affine coordinate ring as an OK-algebra)
x = (x1, . . . , xr) on U and simlarly y = (y1, . . . , ys) on V. The map Φ : U → V
is given by polynomials

Φ∗y = A(x) = (A1(x), . . . , As(x)) with A1, . . . , As ∈ OK [x].

We are given that Φ mod p factors through the Frobenius map. It follows that

Φ∗y = B(xp) + pC(x) with B,C ∈ OK [x]s,(7.6)

where for notational convenience we write xp = (xp
1, . . . , xp

r). (Remember that p

has degree 1, so p is a uniformizer for p.)
Let P ∈ X(L) = X (OL). Choose an open affine subsets and local coordinates

as above with P ∈ U and Φ(P ) ∈ V. (More formally, P is really a morphism
P : Spec(OL) → X over Spec(OK), and we choose U so that P (SpecOL) ⊂ U .
Similarly for Φ(P ) and V.) We compute

y(Φ(τP ))− y(Φ(P ))

=
(
B(x(τP )p) + pC(x(τP ))

)− (
B(x(P )p) + pC(x(P ))

)
from (7.6),

=
(
B(x(P )p + pa) + pC(x(τP ))

)− (
B(x(P )p) + pC(x(P ))

)
from Lemma 7.1, where a ∈ Or

L,

≡ 0 (mod pOL).(7.7)
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The P-adic distance between any two points Q1, Q2 ∈ V(OL) is given by

δP(Q1, Q2) = − log max
1≤i≤s

∣∣yi(Q1)− yi(Q2)
∣∣
P

.(7.8)

(Note that y gives affine coordinates on V, so projective coordinates are
[1, y1, . . . , ys].) We apply this formula with Q1 = Φ(τP ) and Q2 = Φ(P ) to
obtain the desired result:

δP(Φ(τP ),Φ(P )) = − log max
1≤i≤s

∣∣yi(Φ(τP ))− yi(Φ(P ))
∣∣
P

from (7.8),

≥ − log |p|p from (7.7),
= log p.

In order to apply Proposition 7.3, we will use the following result.

Lemma 7.9. If Ã is an abelian variety over a perfect field k of characteristic
p > 0, then [p] : Ã→ Ã factors through the Frobenius map Frob : Ã→ Ã(p).

Proof. By the theory of isogenies and quotients, it suffices to prove that ker(Frob)
⊆ ker([p]) as finite flat group schemes over k, i.e., that the connected group
scheme ker(Frob) is killed by p. This holds for any formal commutative group
scheme G over k, as follows from the theory of the Verscheibung operator (see
[6, Chapter I, Section 7.5] for details).

8. Proof of the main theorem in the ramified, non-CM case

We now consider the case in which the point P ∈ A(Kab) is defined over a
field that is ramified at p. In this section, we assume furthermore that A does
not have complex multiplication. We will use the following induction hypothesis.

Hyp(e):




For all fields K ′ ⊂ Kab whose p-ramification index satis-
fies ep(K ′/K) ≤ e and all nontorsion points P ∈ A(K ′), the

height of P satisfies ĥ(P ) ≥ 1
(12p)2g

.




We note that Theorem 6.1 shows that Hyp(1) is true.

Theorem 8.1. Suppose that A does not have complex multiplication (over K̄).
Let L be a finite abelian extension of K and assume that Hyp(e) is true for all
e < ep(L/K). Then

ĥ(P ) ≥ 1
(12p)2g

for all nontorsion P ∈ A(L).

Hence by induction, Hyp(e) is true for all e ≥ 1.

Proof. As noted above, we have already shown that Hyp(1) is true, so we may as-
sume the L/K is ramified at p. Let P ∈ A(L) be a nontorsion point. If K(P )/K
is less ramified at p than L/K (i.e., if ep(K(P )/K) < ep(L/K)), then we are
done by the induction hypothesis, so we may assume that

ep(K(P )/K) = ep(L/K).
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Let τ ∈ GL/K be chosen as in Lemma 7.1.
Using Lemma 7.9, we now apply Proposition 7.3 to the point P ∈ A(L) and

the map Φ = [p]. The proposition tells us that

δP([p](τP ), [p](P )) ≥ log p for all primes P|p.

Summing over all of the primes dividing p, we obtain a lower bound that is
independent of the ramification degree of L/K:∑

P|p

[LP : Qp]
[L : Q]

δP(([p](τP ), [p](P )) ≥ [Kp : Qp]
[K : Q]

∑
P|p

[LP : Kp]
[L : K]

log p

=
log p

[K : Q]
.(8.2)

(Remember that p is a degree one prime, so Kp = Qp.)
Assume for the moment that [p](τP ) �= [p](P ). Then we can apply Propo-

sition 3.4(a) to the distinct points [p](τP ) and [p](P ), which gives the lower
bound

ĥ([p](τP )) + ĥ([p]P ) ≥
∑
P|p

[LP : Qp]
[L : Q]

δP(([p](τP ), [p](P ))−B

≥ log p

[K : Q]
−B from (8.2),

≥ 1 from Proposition 5.1(4).

Using the quadratic nature and Galois invariance of the canonical height yields

ĥ([p](τP )) + ĥ([p]P ) = 2p2ĥ(P ).

Hence ĥ(P ) ≥ 1/2p2, which is considerably stronger than the desired result.
This completes the proof under the assumption that [p](τP ) �= [p](P ).

Finally, let Q = τP − P , and suppose that [p](Q) = O. In particular, Q ∈
A(L)tors. Since we are assuming that A does not have complex multiplication,
we may assume that our chosen prime p satisfies Condition 5(a) of Proposi-
tion 5.1, i.e., that A(Kab) contains no nontrivial points of order p. This implies
immediately that Q = O, and hence that τP = P . Therefore P is defined over
the fixed field Lτ of τ . However, τ is a nontrivial element of the inertia group
at p, so

ep(Lτ/K) < ep(L/K) (strict inequality).

Therefore ĥ(P ) > 1/(12p)2g by the induction hypothesis applied to the field Lτ .

Remark 8.3. We could just as well have proved Theorem 8.1 by induction on
the local conductor fp(L/K) (rather than on the ramification index ep(L/K)).
In the next section, we will necessarily have to use the local conductor, in order
to assume that the field L contains enough roots of unity.
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9. Completion of the proof — L/K is ramified and A has complex
multiplication

An examination of the proof of Theorem 8.1 given in the previous section
shows that we have reduced the proof of Theorem 0.1 to the case that A has
complex multiplication, A has ordinary reduction at p, and the point P ∈ A(L)
satisfies

[p](τ − 1)P = O.

We would like to conclude that (τ − 1)P = O, but unfortunately this need not
be true. However, we will show that it is true if we modify P by a torsion point.
The following well-known description of the formal group of an abelian variety
at primes of ordinary reduction provides the crucial information needed to find
the required torsion point.

Theorem 9.1. Let Knr
p be the maximal unramifed extension of Kp, and let Onr

p

be its ring of integers. Assume that A has good ordinary reduction at p. Then
the formal group Â of A is toroidal over Onr

p , that is, it is isomorphic over Onr
p

to the formal torus Ĝg
m.

In particular, for all n ≥ 1,

Â[pn] ∼= Ĝg
m[pn] ∼= µg

pn

as Gal(K̄p/Knr
p )-modules.

Proof. See [3, Lemma 3.1] or [14, Lemma 4.27].

Without loss of generality, we may assume that all of the endomorphisms
of A are defined over K, see Proposition 2.1(b). Under this assumption, it is
well known (see, for example, [22, Cor. 2 of Theorem 5]) that the torsion points
of A generate abelian extensions of K. To keep the exposition as self-contained
as possible, we present a proof of this fact.

Theorem 9.2. Let K be a number field, let A/K be an abelian variety with
complex multiplication. Assume that EndK(A) = EndK̄(A). Then K(Ators) ⊂
Kab, i.e., the torsion points of A generate abelian extensions of K.

Proof. Since EndK(A) = EndK̄(A), it follows from the theory of complex mul-
tiplication that F = EndK(A) ⊗ Q is a CM field with [F : Q] = 2d, where d =
dim(A). If * is any prime number, then one also knows that V�(A) = T�(A)⊗Q
has rank one as a module over F ⊗Ql (see [18, Lemma 2]). Let G be the image
of the natural map Gal(K̄/K) → Aut(V�(A)). Since every endomorphism of A
is defined over K, we get an injection

G ↪→ (F ⊗Ql)∗,

which implies that G is abelian. Since * is an arbitrary prime, the action
of Gal(K̄/K) on Ators is therefore abelian.
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We now prepare to state and prove a result (Theorem 9.3) which, together
with Theorem 8.1, will complete the proof of our main theorem. The proof of
Theorem 9.3 will use the following induction hypothesis.

Hyp(f):




For all fields K ′ ⊂ Kab whose local conductor satisfies
ordp(fp(K ′/K)) ≤ f and all nontorsion points P ∈ A(K ′),

the height of P satisfies ĥ(P ) ≥ 1
(12p)2g

.




As before, we note that Theorem 6.1 shows that Hyp(0) is true.

Theorem 9.3. Suppose that A has complex multiplication (over K̄). Let L ⊂
Kab be ramified at p and assume that Hyp(f) is true for all f < ordp(fp(L/K)).
Then

ĥ(P ) ≥ 1
(12p)2g

for all nontorsion P ∈ A(L).

Hence by induction, Hyp(f) is true for all f ≥ 0.

Proof. Let m be the local conductor fp(L/K) of L/K at p. Recall that by
definition we have LP ⊆ Qp(ζm), and m is the smallest positive integer with
this property.

Without loss of generality, we may assume that L contains a primitive mth
root of unity, since L(ζm) ⊇ L is again an abelian extension of K with local
conductor m. It follows that LP = Qp(ζm).

The assumption that L/K is ramified at p tells us that p|m, and indeed τ ∈
Gal(L/K) was chosen to generate Gal

(
Qp(ζm)/Qp(ζm/p)

)
(see Remark 7.2).

Write
m = pkm′ with k ≥ 1 and p � m′.

Then Theorem 9.1 and the fact that the formal group has only p-power torsion
imply that

Â(Lnr
P )tors ∼= Â[pk] ∼= µg

pk(9.4)

as Gal(Lnr
P/Knr

p )-modules. (We identify Â(Kp) with the kernel of reduction in
A(Kp)).

We may replace L by the extension L(Â[pk]). This is permissible, since from
the above isomorphism, L(Â[pk])/L is unramified at p, and from Theorem 9.2,
the extension K(Â[pk]) is an abelian extension of K.

Now consider the point Q = (τ −1)P , which by assumption satisfies [p](Q) =
O. The point Q is in the formal group Â(LP), since τ is in the inertia group.
Hence under the identification (9.4), the point Q corresponds to a g-tuple of
pth roots of unity,

(η1, . . . , ηg) ∈ µg
pk .

Also, by construction, the automorphism τ is a nontrivial element of the sub-
group Gal

(
Qp(ζpk)/Qp(ζpk−1)

)
, so there is a primitive pth root of unity ξ ∈ µp

such that
τ(ζpk) = ξζpk .
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In other words, the map
(τ − 1) : µpk −→ µp, ζ −→ τ(ζ)/ζ,

is surjective. Again referring to the identification (9.4), this shows that the map

(τ − 1) : Â(L)[pk] −→ Â(L)[p]

is surjective.
The point Q = (τ − 1)P is a point of order p in Â(L), so this shows that we

can find a point T ∈ Â(L)[pk] satisfying

Q = (τ − 1)T.

It follows that P − T is fixed by τ , so P − T is defined over the fixed field Lτ

of τ . Since Lτ has strictly smaller local conductor than does L at p, the induction
hypothesis says that ĥ(P − T ) ≥ 1/(12p)2g. But T is a torsion point, so

ĥ(P − T ) = ĥ(P ),

which completes the proof of Theorem 9.3, and with it the proof of our main
theorem (Theorem 0.1).
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