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ON THE GEOMETRY OF WEIL-PETERSSON COMPLETION
OF TEICHMÜLLER SPACES

Sumio Yamada

Abstract. Given a surface of higher genus, we will look at the Weil-Petersson
completion of the Teichmüller space of the surface, and will study the geometry
induced by the Weil-Petersson distance functional. Although the completion is no
longer a Riemannian manifold, it has characteristics similar to those of Cartan-
Hadamard manifolds.

1. Introduction

It is well known [20] that the Weil-Petersson metric is not complete on the
Teichmüller space over a closed surface of higher genus. When a Weil-Petersson
geodesic cannot be further extended, a non-trivial closed geodesic shrinks in
length (with respect to the hyperbolic metric) to zero, thus developing a node.
Take the Weil-Petersson completion T of the Teichmüller space T . It was shown
by Masur [14] that the Weil-Petersson metric extends to T . In this paper, we
show that the space (T , d) is an NPC (or CAT(0)) space in the sense of Topono-
gov [12], even though the distance function d induced by the Weil-Petersson
metric is no longer smooth (with respect to geometric quantities such as the hy-
perbolic length of closed geodesics.) By construction, the mapping class group
(Teichmüller modular group) acts isometrically on the Teichmüller space T . One
can extend the isometric action of the mapping class group to the completion T .
It will be noted that the geometry of T is closely related to the isometric actions
of various subgroups of the mapping class group. Although T is no longer a
manifold, it still has many geometric characteristics shared with the so called
Cartan-Hadamard manifolds; complete simply-connected manifolds with non-
positive sectional curvature. The aim of this paper and its sequel is to rewrite
the paper [3] of Lipman Bers’ where he characterizes, after Thurston [16], the
elements of mapping class group in terms of their translation distances with re-
spect to the Teichmüller metric, only to replace the Teichmüller metric by the
Weil-Petersson metric.

In Section 2 we will define and characterize the Weil-Petersson completion
of the Teichmüller space for a closed surface of genus g. We will show that the
space is NPC/CAT(0). Next in Section 3 we investigate the singular behavior
of the Weil-Petersson metric tensor as the surface develops nodal singularities
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by sharpening the results of H. Masur [14]. In the last section, the behaviors of
Weil-Petersson geodesics are studied. In particular we observe that the copies of
frontier Teichmüller spaces are imbedded totally geodesically inside T . Moreover
it is noted that those sets are left invariant under the action of Dehn twists when
the twist occurs around the nodes, regarded as degenerated simple closed curves.

This paper is motivated to provide a geometric approach to the subject of
super/strong rigidity where lattices of Lie groups are represented in the mapping
class group of a surface. As in the papers of Corlette [5], Gromov-Schoen [11],
the rigidity questions can be transcribed into the study of equivariant harmonic
maps into the NPC space on which the isometry group acts. In this approach,
the negative curvature condition is crucial to controlling analytic properties of
the harmonic maps. In the case of strong rigidity, the representation arises
as the monodromy of some fibration where the fiber is the Riemann surfaces of
varying conformal structures. The monodromy is created by existence of singular
surfaces/fibers, or equivalently vanishing cycles. It should be noted that the
super rigidity of lattices of rank two and higher in mapping class groups have
been studied recently by Farb and Masur [9] via a group theoretic approach.

Also it should be pointed out that there has been much work done on so-
called augmented Teichmüller space, and its mapping class group action on it
(see [2] for example). One should note that the Weil-Petersson completion of
a Teichmüller space can be identified with the augmented Teichmüller space
set-theoretically.

The author wishes to thank G. Tian for originally suggesting to look at the
geometry of moduli space behind the monodromy of Lefschitz fibration, which
motivated this investigation. He also wishes to thank H. Masur, M. Wolf and S.
Wolpert who have offered numerous suggestions and comments in the course of
completing the paper.

The author would like to record that the set of results presented here have
been available since 2000 in several versions, and they were as presented in April
2001 at a joint meeting of Pacific Northwest Geometry Seminar and Wasatch
Topology hosted at University of Utah. It should be also remarked that there
appeared since two preprints [6] and [22] which contain results partly motivated
on the material presented in the previous versions of this paper.

2. Weil-Petersson completion of a Teichmüller space

Let Σ2 be a closed (compact and without boundary) surface of genus g with
g > 1. Denote the set of all smooth Riemannian metrics on Σ by M. Denote
the set of all hyperbolic metrics on Σ byM−1. Note that by the uniformization
theorem, M−1 can be identified with the set of all conformal structures on Σ2.
Let D be the group of smooth orientation-preserving diffeomorphisms of Σ , and
D0 the subgroup of diffeomorphisms homotopic to the identity map from a fixed
Riemann surface Σ̃ (this gives markings to all the points inM−1.)



ON THE WEIL-PETERSSON GEOMETRY 329

Define the Teichmüller space Tg of Σ to be

Tg =M−1/D0.

Define the moduli space Mg of Σ to be

Mg =M−1/D.

The discrete group D/D0 is called the mapping class group, or the Teichmüller
modular group. which we will denote by Map(Σ).

The space M of all Riemannian metrics has a natural L2-metric defined by

< h, k >L2(G)=
∫

N

< h(x), k(x) >G(x) dµG(x)

where h and k are symmetric (0, 2)-tensors, which belong to TGM. Knowing
that M−1 is smoothly imbedded in M with the induced L2-metric, and also
thatM−1 →M−1/D0 is a Riemannian submersion (see [10]), it makes sense to
restrict the L2-metric defined onM toM−1/D0. Thus the Teichmüller space has
a L2-inner product structure, and it is called Weil-Petersson metric. It should
be noted that the Weil-Petersson cometric was introduced (Ahlfors [1]) as an
L2 pairing of two cotangent vectors, or equivalently two holomorphic quadratic
differentials on the surface. It was then identified with the L2 metric defined as
above by Fischer and Tromba [10]. Recall the standard geometric fact [8] that
any Weil-Petersson geodesic in T can be lifted horizontally once the initial point
of the lift is specified, and the lift is then itself a geodesic inM−1 with respect to
the L2 metric. In what follows, we will not distinguish a Weil-Petersson geodesic
in T and its horizontal lift in M−1 unless it is necessary. By construction each
element of the mapping class group acts as a Weil-Petersson isometry. In [15]
it was shown that the mapping class group is the full Weil-Petersson isometry
group of the Teichmüller space.

With respect to this metric, the Teichmüller space T has non-positive sec-
tional curvature (see Tromba [17] or Wolpert [19]) and though the metric is
incomplete (Wolpert [20]) —not every Weil-Petersson geodesic can be extended
indefinitely— T is still geodesically convex, that is, every pair of points can be
joined by a unique length minimizing geodesic (Wolpert [18].) It is also known
that the space is simply connected, diffeomorphic to the 6g− 6 dimensional Eu-
clidean ball, where g > 1 is the genus of the surface Σ (see [17] for references.)

We will first show that the incompleteness is always caused by pinching of (at
least) one neck of the Riemann surface. Since the proof (as presented in [17]) is
short and elementary, we will include it here.

Proposition 1. Suppose that σ : [0, T ) → T , where T < +∞ is a Weil-
Petersson geodesic, which cannot be extended beyond T . Then for any sequence
{tn} with lim tn = T , the hyperbolic length of the shortest closed geodesic(s) on
(Σ, σ(tn)) converges to zero.

Proof. Suppose the contrary. Then there is some lower bound ε for the length
of all closed geodesics in Σ on σ([0, T )). Then the compactness theorem of
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Mumford and Mahler says that there exists a subsequence of {tn}, which we
denote by {tn} again, and a sequence of diffeomorphisms {φn} of Σ such that
φ∗nσ(tn) converges to a hyperbolic metric G. Note φ∗nσ is a horizontal lift of a
Weil-Petersson geodesic defined on (0, T ] for each n. (Here we are using the fact
thatM−1 → T is a Riemannian submersion.)

In the meantime, the existence theorem of solutions to ordinary differential
equation says that given G in the space M−1 of hyperbolic metrics, there exist
an open neighborhood U of G and δ > 0 such that any geodesic with an initial
point G′ in U is defined on (−δ, δ).

Choose n sufficiently large so that φ∗nσ(tn) is in U , and T − tn < δ/2. Then
the geodesic φ∗nσ(t) can be extended to the interval (tn − δ, tn + δ), which is a
contradiction since T < tn + δ.

Definition 1. Let T be the Weil-Petersson completion of the Teichmüller space
of a Riemann surface of genus greater than one. Denote by ∂T the frontier set
T \T .

The preceding proposition states that every point in ∂T represent a nodal
surface, that is, a surface with a node or equivalently a pinched neck. H. Masur
has shown in [14] that ∂T consists of a union of Teichmüller spaces of topo-
logically reduced Riemann surfaces, created by neck pinching as the conformal
structure degenerates toward the frontier points. Masur also showed that the
Weil-Petersson metric tensor of T restricted to the directions tangent to the
frontier set ∂T , spanned by the holomorphic quadratic differentials developing
poles over the pinching neck, converges to the Weil-Petersson metric tensor of
the Teichmüller space of the topologically reduced Riemann surface. In this
sense the Weil-Petersson metric extends to T . The Weil-Petersson metric tensor
evaluated in the directions spanned by holomorphic quadratic differentials with
order two poles over the pinching neck, blows up at various rates (also in [14]),
which we will carefully analyze in the following section.

Set-theoretically there is a natural stratification of the Weil-Petersson com-
pletion T studied in the name of augmented Teichmüller space (See [2]). Let
S be the equivalent classes of homotopically nontrivial simple closed curves on
the Riemann surface Σ, two curves equivalent when there is an isotopic diffeo-
morphism sending one to the other. Denote by TC the Teichmüller space of (or
a product of Teichmüller spaces of) punctured Riemann surface(s) obtained by
pinching a collection of mutually disjoint simple closed geodesics C = {ci} with
0 ≤ i ≤ 3g − 3. Note that 3g − 3 is the upper bound of the number of mutually
disjoint simple closed geodesics on Σ of genus g. Then we have

T = ∪c∈STc

where T is denoted as T∅. It should be noted that T can be also seen as

T = ∪C⊂STC
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since we have the following set theoretic relation

TC1∪C2 ⊂ TC1 ∩ TC2

provided C1 ∪ C2 is a subset of S representing a collection of mutually disjoint
simple closed geodesics.

Lastly in this section we prove the following theorem.

Theorem 1. The Weil-Petersson completed Teichmüller space T is an NPC
space (or equivalently a CAT(0) space.)

Remark NPC stands for “non-positively curved” as defined in [12]. It is a
length space (X, d), in which any pair of points p and q can be connected by
a rectifiable curve whose length realizes the distance d(p, q), and in which any
triangle satisfies the length comparison in the sense of Toponogov with a com-
parison triangle in R2.

Proof. The result (Corollary 3.11) cited in [4] says that the metric completion of
an NPC space is an NPC space. The Teichmüller space equipped with the Weil-
Petersson metric is an NPC space, since it is simply connected, non-positively
curved, geodesically convex, open manifold as described above. Hence it follows
that its Weil-Petersson metric completion T is an NPC space.

Remark When the statement of the theorem was first proved, the author was
unaware of the general fact as it appears in [4]. The direct relevance of the fact
in this context was first pointed out by B. Farb.

3. Singular Behavior of Weil-Petersson Metric

Consider the case where P in ∂T represents a Riemann surface Σ0 with
p ≤ 3g − 3 nodes. Suppose that this Σ0 is obtained by pinching mutually
disjoint closed geodesics ci of a non-singular hyperbolic surface Σ (i.e. without
nodes) of genus g to a point. It belongs to a copy of a Teichmüller space T∪ci of a
topological surface with p nodes (or equivalently a surface with p pairs of punc-
tures ai and bi.) Now introduce a complex coordinate system, as demonstrated
in [14], t = (t1, ..., tp, tp+1, ..., t3g−3) where the origin 0 ∈ C3g−3 represents Σ0,
where tp+1, ...t3g−3 parametrize the Teichmüller space T∪ci while ti, 1 ≤ i ≤ p
is defined by local coordinates on the surface Σ0 near the node Ni as follows.

At the node Ni with 1 ≤ i ≤ p, Σ0 has a neighborhood Vi isomorphic to {|zi| <
c, |wi| < c, ziwi = 0} in C2 for a sufficiently small c < 1. The isomorphism is
given by local coordinate functions Fi : Ui → C and Gi : Wi → C where Ui and
Wi are disjoint neighborhoods around the pair of points ai and bi respectively
identified with the node Ni such that for p in Ui and q in Wi, we have zi =
Fi(p), wi = Gi(q) with Fi(ai) = Gi(bi) = 0, {|zi| < c} ⊂ Fi(Ui) and {|wi| <
c} ⊂ Gi(Wi).
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Recall the plumbing construction of a nodal surface( [21].) Remove p pairs
of discs {zi : 0 < |zi| < c2 < 1} and {wi : 0 < |wi| < c2 < 1} from Σ0, and
denote the surface thus obtained by (Σ)∗c2 . Let ti be a complex number so that
|ti| < c4. Consider a model for a hyperboloid parametrized by ti as follows,

Vi,c = {(zi, wi, ti) : ziwi = ti, |zi|, |wi| < c and |ti| < c4}
For a given ti we glue (Σ)∗c2 to Vi,c by the maps F̂i : F−1

i {c > |zi| > c2} → Vi,c

defined by F̂i(p) = (Fi(p), ti/Fi(p), ti) and Ĝi : G−1
i {c > |wi| > c2} → Vi,c

defined by Ĝi(q) = (Gi(q), ti/Fi(q), ti). We denote by Σt the Riemann surface
obtained by plumbing the p necks with t = (t1, ..., tp). Now each node Ni have
been replaced by a neck of size |ti|. Given the complex structure of Σt, we will
assume that Σt is uniformized, that is, equipped with the hyperbolic metric ds2

t .
As |ti| → 0, the surface Σ develops a node Ni, or equivalently a hyperbolic cusp.

Observe that by a pinching a closed geodesic c to a point, one can have two
topologically distinct pictures depending on whether [c] is homologically trivial
or not. One is when the resulting surface Σ0 has one path-connected component,
with genus g−1 and with two punctures. The other is that the surface Σ0 consists
of two disconnected surfaces, of genus g1 and g2 with g1+g2 = g and each surface
has one puncture.

In the first case, the frontier component Tc1 is the Teichmüller space of surfaces
of genus g− 1 with two punctures. The complex dimension of Tc1 then is 3[(g−
1)− 1] + 2 = 3g − 3− 1, where the extra two complex dimensions is due to the
freedom to choose the positioning of the two punctures.

In the second case, Tc1 is a product space of two Teichmüller spaces T 1
c1

and T 2
c1

, where T i
c1

represents the set of Riemann surfaces of genus gi with one
puncture. Then the dimension of the product space is

[3(g1 − 1) + 1] + [3(g2 − 1) + 1] = 3(g1 + g2 − 1)− 3 + 2 = 3g − 3− 1.

Hence in either case the dimension of the frontier Teichmüller space T1 is of
complex codimension one. Similarly when Σ0 has p nodes, the frontier com-
ponent that parametrized the nodal surfaces is of complex codimension p. A
neighborhood of Σ0 in this frontier component is parametrized by linear combi-
nations by a set of 3g − 3− p Beltrami differentials νj with p + 1 ≤ j ≤ 3g − 3
where each νi is supported away from the neighborhoods of the nodes, denoted
above by Uj , Wj with 1 ≤ j ≤ p. In other words, {νi} are supported on (Σ)∗c
where c is chosen above. In particular for ν(s) =

∑3g−3
j=p+1 sj∂/∂tj with sj are

sufficiently small, ζν(s) : Σ0 → Σ(0,s) is a quasiconformal diffeomorphism sat-
isfying the Beltrami equation ∂ζν(s) = ν(s)∂ζν(s). The fact that {∂/∂τj} with
p + 1 ≤ j ≤ 3g − 3 are supported away from the nodes implies that the same
set can be used to span a subspace of the tangent space at the point in T
representing the surface Σt with t = (t1, ..., tp, 0, ..., 0)

On the other hand the Beltrami differential ∂/∂ti with 1 ≤ i ≤ p are given
by Beltrami differentials, each of which is defined by the following one complex-
parameter family of quasiconformal diffeomorphisms ζ |t

′
i| : A|ti| → A|t′i| where
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ζ |t
′
i|(zi) is given by

ζ |t
′
i|(zi) = zi|zi|α(|zi|,t′i)

where for every t′i, α(c, t′i) = 0, and for each t′i ζ |t
′
i|(ti) = t′i. ζ |t

′
i| pushes in/out

the inner circle {|zi| = |ti|} of the annulus Ati onto {|zi| = |t′i|} while keeping
the outer circle {|zi| = c} intact. Differentiate ζ |t

′
i|(zi) with respect to t′i and

evaluate t′i = ti, and then further differentiate by zi to obtain the Beltrami
differential

∂

∂ti
(zi) =

zi

2zi

∂

∂ log |zi|
( ∂α

∂t′1
(|zi|, t1) log |zi|

)dzi

dzi
.

Note that (t1, ..., tp, tp+1, ..., t3g−3) provides a complex coordinate system for
a local manifold cover of the compactified moduli space Mg as explained in [14]
(p.625) and [21] (2.4C). For 1 ≤ i ≤ p, ti determines the surface up to the Dehn
twists around ci, and hence Σt is determined up to a product of Dehn twists
about the curves {cj}pj=1. It is important to recall the Weil-Petersson metric is
invariant under the action of the mapping class group. In particular the action
of the Dehn twists is isometric. Hence the coordinate system t ∈ C3p−3 may be
used to fully describe the Weil-Petersson metric on T .

With respect to the coordinate system (t1, ..., tp, tp+1, ..., t3g−3) defined as
above, H. Masur [14] showed that the Weil-Petersson Hermitian metric tensor
blows up as |ti| → 0. In particular, it was shown that for 1 ≤ i ≤ p

0 < lim inf
t→0

|ti|2(− log |ti|)3Gii < lim sup
t→0

|ti|2(− log |ti|)3Gii < C

where t = 0 ∈ C3g−3 represent the surface with the nodes {Ni}pi=1. On the
other hand restricted to the directions represented by deformations supported
away from the nodes, the metric converges to that of the frontier Teichmüller
space;

lim
(t1,...,tp)→0

Gij(t) = Gij(0, ..., 0, tp+1, ..., t3g−3)

We will refine Masur’s result and show the following.

Proposition 2. As |ti| → 0, that is, as the p nodes develop, one has the follow-
ing description of the blowing up of the Weil-Petersson metric component.

|Gii(t)| = π3
(
1 + O(

p∑
j=1

(− log |tj |)−2)
)
|ti|−2(− log |ti|)−3.

Remark The exact value π3 of the constant above is due to S. Wolpert [22].
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Proposition 3. The Weil-Petersson metric evaluated in the directions
{∂/∂ti}3g−3

i=p+1 have the following convergence.

Gij(t1, ..., tp, tp+1, ..., t3g−3)

= Gij(0, ..., 0, tp+1, ..., t3g−3){1 + O(
p∑

i=1

(− log−2 |ti|))}

These results complement the following expansions in [14];

|Gij(t)| = O(|ti|−1|tj |−1(− log−3 |ti|)(− log−3 |tj |)) for 1 ≤ i, j ≤ p, i �= j

|Gij(t)| = O(|ti|−1(− log−3 |ti|)) for 1 ≤ i ≤ p and j > p

Proof of Proposition 2. We will first show that the i-th diagonal component of
the Weil-Petersson cometric satisfy

Gii(t) =
1
π3

(− log3 |ti|)|ti|2
(
1 + O(

p∑
k=1

(− log |tk|)−2)
)
.

for 1 ≤ i ≤ p.
We start by recalling Masur’s construction [14] of regular 2-differentials as

the dual basis for the set of Beltrami differentials introduced above. There is
a natural pairing between Beltrami differentials and the holomorphic quadratic
differentials over the i-th annulus, and one can check to see that for zα

i dz2
i ,∫

A|ti|

( ∂

∂ti

)(
zα
i dz2

i

)
=

{ − π
ti

if α = −2
0 otherwise

This suggests that the dual element of ∂
∂ti

in the cotangent space T ∗T be of

the form φi(zi) = − ti

π f(zi)
(

dzi

zi

)2

, where f(zi) is holomorphic with f(0) = 1.
The Proposition 7.1 of [14] says that indeed this can be done so that there are
2-differentials φ1(z, t), ..., φ3g−3(z, t) on Σt which we identify with dt1, ..., dt3g−3

using the fact that the pairings between the Beltrami differentials ∂/∂ti and
the regular 2-forms as described in 5.4 and 5.5 of [14] are by construction
parametrized holomorphically in t = (t1, ..., t3g−3). In particular, near each neck
for 0 < |ti| < c, 1 ≤ i ≤ p we have the following descriptions of the differentials
φi on Σt. For 1 ≤ i, j ≤ p

φi(zj , t) = − ti
π

{
δij + f1(zj , t) + f2(wj , t)

}(dzj

zj

)2

and for k > p

φk(zi, t) =
{

f1(zi, t) + f2(wi, t)
}(dzi

zi

)2

where f1 is holomorphic in zi on {|zi| < c} and f1(0) = 0, and f2 is holomorphic
in wi on {|wi| < c} and f2(0) = 0.

We are ready to calculate the Weil-Petersson cometric tensor with respect
to the dual basis {dti}3g−3

i=1 at a point in T representing the surface Σt. First
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introduce a one-parameter family of approximately hyperbolic surfaces which
models the development of the node as |ti| goes to zero.

We denote by (Σ)∗c a surface obtained by removing from Σ0 p pairs of disjoint
discs of radius c centered at ai and bi for each pair of punctures {ai, bi}. (Σ)∗c
has a hyperbolic metric which is the restriction of the hyperbolic metric on Σ0.
By construction, the complement of (Σ)∗c in Σt is a union of annuli A|ti| = {z :
|ti|/c < |zi| < c} where 1 ≤ i ≤ p, each of which we uniformize by the hyperbolic
metric

dω2
|ti| =

( π

log |ti| csc
π log |zi|
log |ti|

∣∣∣dzi

zi

∣∣∣)2

.

Hence we have a hyperbolic metric dω2
t on the disjoint union of (Σ)∗c and A|ti|.

As the neck pinches (|ti| → 0), the hyperbolic metric on the annulus converges
pointwise to the hyperbolic metric on two copies of the punctured disc {0 <
|z| < c};

ds2
0 =

( |dz|
|z| log |z|

)2

,

which models the standard hyperbolic cusp.
Now for the Riemann surface Σt, we have two conformally equivalent metrics:

the hyperbolic metric ds2
t uniformizing Σt and the approximate metric dw2

t where
the latter is possibly discontinuous across {|zi| = c}. Note that when t = 0, the
approximate metric dω2

0 coincides with ds2
0. In [21] (Expansion 4.2), Wolpert

studied the explicit dependence of the hyperbolic metric ds2
ti

on ti. In particular,
it follows that

∣∣∣dω2
t

ds2
t

− 1
∣∣∣ = O(Σp

i=1(− log |ti|)−2)

over Σt. Using the complex coordinate zi over the neck, the hyperbolic metrics
dω2
|ti| and ds2

ti
are related by

ds2
t = ρ2

t (zi)dzi ⊗ zi and dω2
|ti| = λ2

t (zi)dzi ⊗ dzi.

Then the estimate above says that

λt/ρt = 1 + O(
3g−3∑

j

(− log |tj |)−2).
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The contribution of the Weil-Petersson pairing of φi = dti with itself over the
i-th neck can be now written down in terms of λt;

∫
A|ti|

|φi|2(z)
ρ2

t (zi)
dxidyi

= (1 + O(
∑p

j=1(− log |tj |)−2)
∫

A|ti|
|φi|2(z)
λ2

t (zi)
dxidyi

= {1 + O(
∑p

j=1(− log |tj |)−2)}π−2|ti|2
∫

A|t1|
1+O(r2

i )

r4
i

sin2
(

π(− log ri)
(− log |ti|)

)
ridridθi

= |ti|2 2
π3 {1 + O(

∑p
j=1(− log |tj |)−2)}(− log3 |ti|)

∫ log c/ log |ti|
log(|ti|/c)/ log |ti| sin

2 πµdµ

= |ti|2
(

1
π3 {1 + O(

∑p
j=1(− log |tj |)−2)}(− log3 |ti|) + O(1)

)
= |ti|2 1

π3 {1 + O(
∑p

j=1(− log |tj |)−2)}(− log3 |ti|)

where zi = xi + iyi, ri = |zi| and µ = log ri/ log |ti| and the term O(1) on the
second line from the last depends on the value of c.

The pairing of φi with itself over the j-th neck for i �= j is given by the integral

∫
A|tj |

|φi|2(z)
ρ2

t (zj)
dxjdyj

= (1 + O(
∑p

l=1(− log |tl|)−2)
∫

A|tj |
|φi|2(z)
λ2

t (zj)
dxjdyj

= {1 + O(
∑p

l=1(− log |tl|)−2)}π−2|ti|2
∫

A|tj |

1+O(r2
j )

r2
j

sin2
(

π(− log rj)
(− log |tj |)

)
rjdrjdθj

= O(|ti|2)

As described in [14], one checks that on any compact set K in (Σ)∗c , we have

∫
K

|φi|2(z)
ρ2

t (z)
dxdy = O(

p∑
i=1

|ti|2).

Therefore the Weil-Petersson pairing of φi with itself over the entire surface
Σt is dominated by the contribution from the i-th neck, and we have

Gii(t) =
∫
Σt

|φi|2(z)
ρ2(z) dxdy

= 1
π3 |ti|2(− log |ti|)3{1 + O(

∑p
j=1(− log |tj |)−2)}

for 1 ≤ i ≤ p.
The statement of the proposition follows by inverting the matrix Gij as in the

argument given by Masur [14]. Note that the diagonal terms Gii for 1 ≤ i ≤ p

vanish at faster rates than the off diagonal terms Gik with k �= i, while the
square block Gmn with m, n > p is a uniformly positive definite matrix. With
those two observations in mind, one calculates the determinant and the cofactors
to invert the matrix, to obtain the statement of the proposition.

Proof of Proposition 3. We will show that the components Gmn of the cometric



ON THE WEIL-PETERSSON GEOMETRY 337

for m, n > p satisfy

|Gmn(t1, ..., tp, tp+1, ..., t3g−3)−Gmn(0, ..., 0, tp+1, ..., t3g−3)| =

O(
p∑

j=1

{− log |tj |}−2).

The statement of the proposition then follows by inverting the matrix as above,
this time with this refined description of Gmn(t).

Now Gmn is given by the Weil-Petersson pairing∫
Σt

φmφn

ρ2
t

dxdy

where φm, and φn are two regular differentials with possible poles of order at
most one over the shrinking neck as |t| → 0.

As before, we consider the region containing the pinching neck and the rest
separately. Let A|ti| be the annulus {z : |ti| < |z| < c} in Σt and Let (Σt)∗c
denote the complement of the p punctured discs of radius c in the nodal sur-
face represented by (0, ..., 0, tp+1, ..., t3g−3). Then using the previously quoted
estimate of Wolpert’s,

λt/ρt = 1 + O(
3g−3∑
j=1

(− log |tj |)−2).

Over the k-th neck we have∫
A|tk|

φmφn

ρ2
t

dxkdyk −
∫

A|tk|
φmφn

λ2
t

dxkdyk

=
∫

A|tk|
φmφn

[
1

[1+O(
∑ p

j=1(− log |tj |)−2)]λ2
t (z)
− 1

λ2
t (z)

]
dxkdyk

= O(
∑p

j=1(− log |tj |)−2)
∫

A|tk|
φmφn

λ2
t (z)

dxkdyk

= O(
∑p

j=1(− log |tj |)−2)

The last equality follows from the fact that the part of the integrand φiφj is a
term which, as zk → 0, blows up no faster than the rate of 1/|zk|2, which in turn
implies that the integral

∫
A|tk|

φmφm

ρ2
0(z)

dxkdyk is a term O(1) as (t1, ..., tp) goes to
zero.

On any compact set K in (Σt)∗c , that is away from the p necks, we have∫
K

φmφn

ρ2
t

dxdy − ∫
K

φmφn

λ2
t

dxdy = O(
∑p

j1
{− log |tj |}−2)

∫
K

φmφn

ρ2
t (z)

dxdy

= O(
∑p

j=1(− log |tj |)−2)

The last equality follows from the fact that the integrand of the previous line is
continuous in z over K.

Combining those estimates, we see that the difference between

Gmn(t1, t2, ...tp, tp+1, ...t3g−3)

and
Gmn(0, ..., 0, tp+1, ..., t3g−3)
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is a term of O(
∑p

j+1(− log |tj |)−2).

Now we perform the following change of variables;

tj = |tj |eiθj , θj = arg tj and uj = (− log |tj |)−1/2

dtj = eiθj d|tj |+ itjdθj , dtj = e−iθj d|tj | − itjdθj

�
[

π3

|tj |2(− log |tj |)3 dtj ⊗ dtj

]
= π3

|tj |2(− log |tj |)3
[
(d|tj |)2 + |tj |2(dθj)2

]

= π3

(− log |tj |)3
(

d|tj |
|tj |

)2

+ π3

(− log |tj |)3 (dθj)2

= 4π3
(
(duj)2 + 1

4 (uj)6(dθj)2
)

where � denotes the real part of the complex-valued tensor.
Then the Weil-Petersson Riemannian metric near the frontier point is written

down as

ds2

= 4π3
(
1 + O((ui)4)

) ∑p
i=1

[
du2

i + 1
4 (ui)6dθ2

i

]
+

∑
p<j≤3g−3

(
1 + O((uj)4

)
|dtj |2

+
∑

1≤i, j≤p

(
C̃ij + O((ui)4) + O((uj)4)

)
(ui)3(uj)3×

[
cross terms dui, duj

]
+

∑
k≤p, l>p

(
Ĉkl + O((uk)4)

)
(uk)3 ×

[
cross terms duk, dtl (or dtl)

]
+

∑
1≤i≤p, p<j≤3g−3

(
Cij + O((ui)4)

)
(ui)6 ×

[
cross terms dθi,dtj (or dtj)

]
+

∑
1≤i,j≤p O((ui)6(uj)6)dθi ⊗ dθj .

One can see the almost product structure of the Weil-Petersson metric G(t)
near the nodal surface Σ0 by rewriting the description above as

(1) G(t1, ..., tp, tp+1, ..., t3g−3)

= G(0, tp+1, ..., t3g−3) + 4π3(1 + O(‖u‖3))
[ p∑

j=1

du2
j +

1
4
(uj)6dθ2

j

]
.

where ‖u‖ = (
∑p

j=1 u2
j )

1/2.
In a sequel to this paper, we will study the differentiability of the metric

near the boundary, and hence obtain the singular behavior of the Levi-Civita
connection there.

4. Geometry of the Frontier Set ∂T
We start this section with a theorem which describes how each boundary

component is embedded in ∂T .
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Theorem 2. Each component of the boundary Teichmüller spaces is totally ge-
odesic; that is, given any pair of points p and q in a Teichmüller space TC

representing a collection of nodal surfaces ΣC obtained by pinching a collection
C of mutually disjoint simple closed geodesics ci of the nonsingular surface Σ, a
length minimizing geodesic connecting p and q are totally contained in TC and
it is unique.

Proof. Suppose C = ∪|C|i=1ci. Let lci
(x) be the hyperbolic length of the simple

closed geodesic ci with respect to the hyperbolic metric x on Σ. The domain of
the functional lci : T → R≥0 ∪{∞} with its values in the extended positive real
line can be continuously extended to T from T by defining lci |TA

≡ 0 on TA with
ci ∈ A and lci |TA

≡ ∞ if A contains a simple closed curve a which intersects
with ci both represented as a simple closed geodesic on a nonsingular hyperbolic
surface Σ.

Define a new functional LC : T → R≥0 ∪∞ by

LC(x) =
|C|∑
i=1

lci
(x).

Note that LC |T C
≡ 0, hence that LC(p) = LC(q) = 0.

We now construct a length minimizing geodesic connecting p and q. Let {pi}
and {qi} be Cauchy sequences in T converging to p and q respectively. Let σi(t)
be the unique length minimizing Weil-Petersson geodesic connecting pi = σi(0)
and qi = σi(1). Note that σi lies entirely in T due to the geodesic convexity of
T [18], and it realizes the Weil-Petersson distance between pi and qi. Then by
the strictly negative sectional curvature of the Weil-Petersson metric on T , we
know that

d(σi(t), σj(t)) ≤ max
(
d(pi, pj), d(qi, qj)

)
.

The right hand side of the inequality converges to zero, and hence it follows that
σi(t) converges to a point in T , which we call σ(t).

We now claim that σ(t) is a Weil-Petersson geodesic in T , that is, it minimizes
the length among all the rectifiable curves connecting p and q.

Let us recall that for a harmonic map from a Riemannian domain into an
NPC space as defined in [12] by introducing the energy functional as the norm
of a functional/measure on the domain obtained from the pull-back distance
functional. From now on we will replace the Weil-Petersson length L(σ) of a
path by the energy E(σ) of the path, since in one dimension we have L = E1/2

provided that the path is parametrized by the unit interval.
One of the properties of the energy thus defined is the lower semicontinuity.

In particular, given the sequence of maps σi : [0, 1] → T which converges to σ
in L2, that is

lim
i→∞

∫ 1

0

d2(σi(t), σ(t))dt = 0,
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then we have the inequality

E(σ) ≤ lim inf
i→∞

E(σi).

Recall E(σi)1/2 = L(σi) = d(pi, qi). While the continuity of d on T implies that
limi d(pi, qi) = d(p, q). Putting together, we have

L(σ) = E(σ)1/2 ≤ d(p, q).

By the definition of the distance, we have the opposite inequality. Therefore we
have shown that

L(σ) = d(p, q)

and hence that σ is a Weil-Petersson geodesic. Note by the NPC condition, it
is also unique.

It is known that the length functional lci is convex with respect to the Weil-
Petersson metric on T (a result of S. Wolpert [18], see [23] for generalizations.)
In particular the function LC(σi(t)) is convex in t. Recall the general fact that
the supremum of a family of convex functions is itself convex. We apply this
to the family {LC(σi(t))}. On the other hand LC is a continuous functional
defined on T with its values in the extended real line and σi(t) converges to σ(t)
pointwise. Combined together we have

lim sup
i→∞

LC(σi(t)) = lim
i→∞

LC(σi(t)) = LC(σ(t))

is a convex function in t ∈ [0, 1].
Consider the function f(t) = LC(σ(t)). Suppose that M = max f(t) > 0. It

follows from the convexity that f(t) ≡ M > 0, which contradicts with f(0) =
f(1) = 0.

We have so far shown that f(t) ≡ 0, which then implies that σ lies in T C

To see σ lies in TC , note that there exists a Weil-Petersson length realizing
geodesic σ′ connecting p and q lying entirely in the Teichmüller space TC due to
the Weil-Petersson geodesic convexity of the TC . Since given two points in an
NPC/CAT(0) space X a length-realizing geodesic is unique (here we take X to
be TC ), we know that σ′ coincides with σ.

Remark Note that in the preceding proof, when the points p and q are chosen
to be in T C instead of TC by using the same argument one can deduce the con-
clusion that T C is totally geodesic in T . We make a point here to state that
both TC and T C are totally geodesic in T , but only the latter is geodesically
complete with respect to the induced Weil-Petersson distance function.

The next theorem had been essentially known in the context of geometry of
Teichmüller space with respect to the Teichmüller distance function. In partic-
ular it is a consequence of a statement (Theorem 6) which appears in [2], due to
the fact the Teichmüller distance dominates the Weil-Petersson distance. The
proof is based on the fact that the Dehn twist can be arbitrarily localized in
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the presence of a pinching neck. The proof is presented here for the sake of
completeness and also to make this idea of localizing the Dehn twist explicit
utilizing the expansion in Section 3 of the Weil-Petersson metric tensor near the
frontier sets.

It is of particular interest when one studies a local monodromy around a
singular fiber (a nodal surface Σ0.) ( See for example papers of Matsumoto-
Montesinos-Amilibia [13], Earle-Sipe [7])

Theorem 3. Suppose that γ is a Dehn twist around a simple closed geodesic c
in Σ. Let Tc be the Teichmüller space of the surface Σ0 obtained by pinching c
of non-singular surface Σ to a node. Then T c in T is fixed by the action of γ.

Remark Suppose that C is a collection of mutually nonintersecting simple closed
geodesics ci on Σ, and let γi is the Dehn twist along ci. Then the group gener-
ated by γi is a free abelian subgroup GC of the mapping class group. Note that
each γi fixes T ci , and hence that the set ∩iT ci = T C ⊂ T is fixed by the action
of the subgroup GC .

Proof. Suppose that γ is a Dehn twist around a closed geodesic c on Σ. Suppose
Σ0 is a Riemann surface with at least one node N which is obtained by pinching
the closed geodesic c.

Let t1 be the plumbing parameter for the curve c. Then according to the
almost-product structure (1) of the Weil-Petersson metric tensor near the frontier
sets, we have

G(t1, ..., tp, tp+1, ..., t3g−3) = 4π3(1 + O(‖u‖3))(du2
1 +

1
4
(u1)6dθ2

1)

+
{

G(0, tp+1, ..., t3g−3) + 4π3(1 + O(‖u‖3))
[ p∑

j=2

du2
j +

1
4
(uj)6dθ2

j

]}
,(2)

where we use the following coordinates as before,

tj = |tj |eiθj , θj = arg tj , uj = (− log |tj |)−1/2 and ‖u‖ = (
p∑

j=1

u2
j )

1/2.

As was explained in a paragraph preceding Proposition 2, the coordinates
(t1, ..., tp) parametrized the surface Σt only up to a product of Dehn twists
about the curves ci. In particular the cyclic subgroup generated by the Dehn
twist γ around c = c1 acts as covering transformations on the universal covering
space of the complement of {t1 = 0} by

γ : (|t1|+ iθ1, ..., t3g−3) �→ (|t1|+ i(θ1 + 2π), ..., t3g−3).

Given a point x = (t1, ..., t3g−3) near a point y in the frontier set T c, consider a
path σ(s) connecting x and γx defined by

σ(s) = (|t1|+ i(θ1 + s), ..., t3g−3).
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for 0 ≤ s ≤ 2π. Then using the almost-product structure (2) of the Weil-
Petersson metric tensor, the Weil-Petersson length of the path σ is computed to
be O(|t1|3), which in turn gives an upper bound on the Weil-Petersson distance
between x and γx. Therefore for the y in T c with |t1|(y) = 0, we have

d(y, γy) = lim
x→y

d(x, γx) = 0.

The previous two theorems says that T C is a convex subset of the NPC space
T which is fixed by products of the Dehn twists γci with ci ∈ C. Recall that a
convex subset S, which is complete with respect to the induced metric within
a Cartan-Hadamard manifold has a globally defined projection map πS where
πS(x) is defined to be the nearest point to x in S. This can be generalized in the
NPC setting, as in [4] (Proposition 2.4.) In particular, given a collection C of
mutually disjoint simple closed homotopically nontrivial curves ci, |C| ≤ 3g−3,
the subset T C is a convex subset of the NPC space T , which is geodesically
complete in the induced Weil-Petersson distance function. Hence it enjoys the
following properties [4];

1. For every x ∈ T , there exists a unique point πC(x) ∈ T such that
d(x, πC(x)) = d(x, T C) := infy∈T C

d(x, y).
2. If x′ belongs to the geodesic segment connecting x and πC(x), then πC(x′) =

πC(x).
3. Given x /∈ T C and y ∈ T C , if y �= πC(x) then the Alexandrov angle (as

defined in [4]) ∠πC(x)(x, y) ≥ π/2.
4. The map πC is a retraction of T onto T C which does not increase distances,

that is d(x, y) ≥ d(πC(x), πC(y)) for any x and y. Furthermore, the map
H : T ×[0, 1]→ T associating to (x, t) the point a distance td(x, πC(x) from
x on the geodesic [x, πC(x)] is a continuous homotopy from the identity
map of T to π.

Lastly we point out the following observation. It has come to the author’s
attention thanks to a conversation with M. Bestvina in April of 2001.

Given a surface of genus g > 1, by pinching certain nodes it becomes a
disjoint union of �g/2�−1 four-times punctures spheres and �g� once-punctured
tori. The Teichmüller space of a four-times punctured sphere, as well as that
of the once-punctured torus are complex one dimensional. Any further pinching
of a neck of those two hyperbolic surfaces would produce a product of three
punctured spheres, whose Teichmüller space is trivial. Hence g+(�g/2�−1) can
be regarded as the maximal number of copies of nontrivial Teichmüller spaces
appearing as a factor of the product space TC .

Suppose C is a collection of homotopically nontrivial simple closed curves
represented by mutually disjoint simple closed geodesics on a uniformized sur-
face Σ of genus g, such that TC is a direct product of �g/2� − 1 copies of the
Teichmüller space for four-times punctures sphere and �g� copies of Teichmüller
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space for once-punctured torus;

TC = T1 × · · · × Tg+�g/2�−1.

Let σi : [0, 1] → Ti be a nontrivial Weil-Petersson geodesic for each i, 1 ≤ i ≤
g + �g/2� − 1. Then the map

I :
g+�g/2�−1∏

i

[0, 1]→ TC

defined by

I(t1, ..., tg+�g/2�−1) =
(
σ1(t1), · · ·, σg+�g/2�−1(tg+�g/2�−1)

)

is clearly an isometric imbedding of the g + �g/2� − 1 dimensional locally Eu-
clidean space.

Therefore we conclude;

Theorem 4. There exists a locally Euclidean isometric embedding of dimension
g + �g/2� − 1 in T .

We remark here that for any Teichmüller space T of complex dimension at
least one, the sectional curvature of Weil-Petersson metric is bounded above by
zero, hence there is no flat in T apart from the geodesics.
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