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THE BOUNDARY DISTANCE FUNCTION AND THE
DIRICHLET-TO-NEUMANN MAP

Leonid Pestov and Gunther Uhlmann

Abstract. We outline the proof that two dimensional simple Riemannian man-
ifolds with boundary are boundary distance rigid. In addition we give, in two
dimensions, a reconstruction procedure to recover the index of refraction of a
bounded medium in Euclidean space from the travel times of sound waves going
through the medium.

1. Introduction and statement of the results

Let (M, g) be a compact Riemannian manifold with boundary ∂M . Let
dg(x, y) denote the geodesic distance between x and y. The inverse problem
we address in this paper is whether we can determine the Riemannian metric
g knowing dg(x, y) for any x ∈ ∂M , y ∈ ∂M . This problem arose in rigidity
questions in Riemannian geometry [M], [C], [Gr]. For the case in which M is
a bounded domain of Euclidean space and the metric is conformal to the Eu-
clidean one, this problem is known as the inverse kinematic problem which arose
in Geophysics and has a long history (see for instance [R] and the references
cited there) and section 5 of this paper.

The metric g cannot be determined from this information alone. We have
dψ∗g = dg for any diffeomorphism ψ : M → M that leaves the boundary point-
wise fixed, i.e., ψ|∂M = Id, where Id denotes the identity map and ψ∗g is the
pull-back of the metric g. The natural question is whether this is the only ob-
struction to unique identifiability of the metric. It is easy to see that this is not
the case. Namely one can construct a metric g and find a point x0 in M so
that dg(x0, ∂M) > sup x,y∈∂Mdg(x, y). For such a metric, dg is independent of
a change of g in a neighborhood of x0. The hemisphere of the round sphere is
another example.

Therefore it is necessary to impose some a-priori restrictions on the metric.
One such restriction is to assume that the Riemannian manifold is simple, i.e.,
given two points there is a unique geodesic joining the points and ∂M is strictly
convex. ∂M is strictly convex if the second fundamental form of the boundary
is positive definite in every boundary point.
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R. Michel conjectured in [M] that simple manifolds are boundary distance
rigid that is dg determines g uniquely up to an isometry which is the identity on
the boundary. This is known for simple subspaces of Euclidean space (see [Gr]),
simple subspaces of an open hemisphere in two dimensions (see [M]), simple
subspaces of symmetric spaces of constant negative curvature [BCG], simple
two dimensional spaces of negative curvature (see [C1] or [O]). We remark that
simplicity of a compact manifold with boundary can be determined from the
boundary distance function.

In this article we announce the proof of the conjecture in two dimensions.
The details will appear in [PU].

Theorem 1.1. Let (M, gi), i = 1, 2, be two Riemannian metrics on a compact,
simple Riemannian manifold with boundary. Assume

dg1(x, y) = dg2(x, y) ∀(x, y) ∈ ∂M × ∂M

then there exists a diffeomorphism ψ : M →M , ψ|∂M = Id, so that

g2 = ψ∗g1.

As was pointed out in [I] Theorem 1.1 together with the results of [I] implies
the following

Theorem 1.2. Let (M, g1) be a compact simple Riemannian manifold and g2

another metric on M such that dg1(x, y) ≥ dg2(x, y) for all x and y in the bound-
ary. Then Area (g1) ≥ Area (g2) with equality in area implying the isometry
of g1 and g2.

The function dg measures the first arrival time of geodesics joining points of
the boundary. In the case that both g1 and g2 are conformal to the Euclidean
metric e (i.e., (gk)ij = αkδij , k = 1, 2 with δij the Kronecker symbol), as men-
tioned earlier, the problem we are considering here is known in seismology as
the inverse kinematic problem. In this case, it has been proven by Mukhometov
in two dimensions [Mu] that if (M, gi), i = 1, 2 is simple and dg1 = dg2 , then
g1 = g2.

More generally the same method of proof shows that if (M, gi), i = 1, 2,
are simple compact Riemannian manifolds with boundary and they are in the
same conformal class then the metrics are determined by the boundary distance
function. More precisely we have:

Theorem 1.3. Let (M, gi), i = 1, 2 be a two dimensional simple Riemannian
compact Riemannian manifold. Assume g1 = ρg2 for a positive, smooth function
ρ and dg1 = dg2 then g1 = g2.

This result and a stability estimate were proven in [Mu1]. We remark that
in this case the diffeomorphism ψ must be the identity. For related results and
generalizations see [B], [BG], [C], [GN], [MR].

As a consequence of the method of proof of Theorem 1.1 we derive a recon-
struction formula for the conformal factor in the two dimensional case. More
precisely we have:
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Theorem 1.4. Let (M, g) be a a bounded open set of Euclidean space with
smooth boundary and (M, g) simple. Let ρ be a smooth positive function on
M so that (M, ρg) is also simple. Then we develop a reconstruction procedure
to recover ρ from dρg(x, y), x, y ∈ ∂M.

The proof of Theorem 1.1 involves a connection between the scattering rela-
tion and the Dirichlet-to-Neumann map (DN) associated to the Laplace-Beltrami
operator. In section 2 we define the scattering relation. In section 3 we discuss
the DN map. In section 4 we outline the proof that from the scattering relation
one can determine the DN map in the two dimensional case. Finally in section
5 we give the proof of Theorem 1.4.

We would like to thank Christopher Croke for pointing out to us the reference
[I]. We are also very grateful to him for several useful comments on a previous
version of this paper.

2. The scattering relation

We mention a closely related inverse problem. Suppose we have a Riemannian
metric in Euclidean space which is the Euclidean metric outside a compact set.
The inverse scattering problem for metrics is to determine the Riemannian metric
by measuring the scattering operator (see [G]). A similar obstruction occurs in
this case with ψ equal to the identity outside a compact set. It was proven in [G]
that from the wave front set of the scattering operator one can determine, under
some non-trapping assumptions on the metric, the scattering relation on the
boundary of a large ball. We proceed to define in more detail the scattering
relation and its relation with the boundary distance function.

Let ν denote the unit-inner normal to ∂M. We denote by Ω (M) → M the
unit-sphere bundle over M :

Ω(M) =
⋃

x∈M

Ωx, Ωx = {ξ ∈ Tx(M) : |ξ|g = 1}.

Ω(M) is a (2 dim M − 1)-dimensional compact manifold with boundary, which
can be written as the union ∂Ω (M) = ∂+Ω (M) ∪ ∂−Ω (M)

∂±Ω (M) = {(x, ξ) ∈ ∂Ω (M) , ± (ν (x) , ξ) ≥ 0 }.
The manifold of inner vectors ∂+Ω (M) and outer vectors ∂−Ω (M) intersect at
the set of tangent vectors

∂0Ω (M) = {(x, ξ) ∈ ∂Ω (M) , (ν (x) , ξ) = 0 }.
Let (M, g) be an n-dimensional compact manifold with boundary. We say

that (M, g) is non-trapping if each maximal geodesic is finite. Let (M, g) be
non-trapping and the boundary ∂M is strictly convex. Denote by τ(x, ξ) the
length of the geodesic γ(x, ξ, t), t ≥ 0, starting at the point x in the direction
ξ ∈ Ωx. This function is smooth on Ω(M)\∂0Ω(M). The function τ0 = τ |∂Ω(M)
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is equal zero on ∂−Ω(M) and is smooth on ∂+Ω(M). Its odd part with respect
to ξ

τ0
−(x, ξ) =

1
2

(
τ0(x, ξ)− τ0 (x,−ξ)

)
is a smooth function.

Definition 2.1. Let (M, g) be non-trapping with strictly convex boundary. The
scattering relation α : ∂Ω (M)→ ∂Ω (M) is defined by

α(x, ξ) = (γ(x, ξ, 2τ0
−(x, ξ)), γ̇(x, ξ, 2τ0

−(x, ξ))).

The scattering relation is a diffeomorphism ∂Ω (M) → ∂Ω (M) . Notice that
α|∂+Ω(M) : ∂+Ω (M) → ∂−Ω (M) , α|∂−Ω(M) : ∂−Ω (M) → ∂+Ω (M) are diffeo-
morphisms as well. Obviously, α is an involution, α2 = id and ∂0Ω (M) is the
hypersurface of its fixed points, α(x, ξ) = (x, ξ), (x, ξ) ∈ ∂0Ω (M) .

A natural inverse problem is whether the scattering relation determines the
metric g up to an isometry which is the identity on the boundary. This infor-
mation takes into account all the travel times not just the first arrivals.

In the case that (M, g) is a simple manifold, and we know the metric at the
boundary, knowing the scattering relation is equivalent to knowing the boundary
distance function ([M]). The key to the proof of Theorem 1.1 is to show that if
we know the scattering relation we can determine the DN map associated to the
Laplace-Beltrami operator of the metric. We proceed to define the DN map.

3. The Dirichlet-to-Neumann Map

Let (M, g) be a compact Riemannian manifold with boundary. The Laplace-
Beltrami operator associated to the metric g is given in local coordinates by

∆gu =
1√

det g

n∑
i,j=1

∂

∂xi

(√
det ggij ∂u

∂xj

)

where (gij) is the inverse of the metric g. Let us consider the Dirichlet problem

∆gu = 0 on M, u
∣∣∣
∂M

= f.

We define the DN map in this case by

Λg(f) = (ν,∇u|∂M )

The inverse problem is to recover g from Λg.
A similar obstruction holds for this problem as the one discussed in section

1. Namely

Λψ∗g = Λg(3.1)

where ψ is a C∞ diffeomorphism of M which is the identity on the boundary.
In addition in the two dimensional case the Laplace-Beltrami operator is

conformally invariant. More precisely

∆βg =
1
β

∆g
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for any function β, β �= 0. Therefore we have that for n = 2

Λβ(ψ∗g) = Λg

for any non-zero β satisfying β|∂M = 1.
Therefore the best that one can do in two dimensions is to show that we can

determine the conformal class of the metric g up to an isometry which is the
identity on the boundary That this is the case is a result proven in [LeU] for
simple metrics and for general connected two dimensional Riemannian manifolds
with boundary in [LaU].

More precisely we have:

Theorem 3.1. Let (M, g) be a connected, compact Riemannian surface with
boundary. Then (Λg, ∂M) determines uniquely the conformal class of (M, g).

As it was shown in [LaU] it is enough to measure the DN map in an open
subset of the boundary.

The connection in two dimensions between the DN map and the scattering
relation is given by

Theorem 3.2. Let (M, gi), i = 1, 2, be compact, simple two dimensional Rie-
mannian manifolds with boundary. Assume that αg1 = αg2 . Then Λg1 = Λg2 .

We discuss this result in more detail in the next section.

4. From the scattering relation to the Dirichlet to Neumann map

The proof of Theorem 1.1 is reduced then to the proof of Theorem 3.2. In fact
from Theorem 3.2 and Theorem 3.1 we get that we can determine the conformal
class of the metric up to an isometry which is the identity on the boundary. Now
by Theorem 1.3 we have that the conformal factor must be one proving that the
metrics are isometric via a diffeomorphism which is the identity at the boundary.
In other words dg1 = dg2 implies that αg1 = αg2 . By Theorem 3.2 Λg1 = Λg2 .
By Theorem 3.1, there exists a diffeomorphism ψ : M −→ M , ψ|∂M = Identity
and a function β �= 0, β|∂M = identity such that g1 = βψ∗g2. By Mukhometov’s
theorem β = 1 showing that g1 = ψ∗g2 proving Theorem 1.1.

Before starting the proof of Theorem 3.2 we recall that Michel [M1] has proven
that for two dimensional manifolds Riemannian manifolds with strictly convex
boundary one can determine from the boundary distance function, up to the
natural obstruction, all the derivatives of the metric at the boundary. This
result was generalized to any dimensions in [LSU]. More precisely we have

Theorem 4.1. Let (M, g) be a connected Riemannian manifold with strictly
convex boundary. Then the C∞-jet of the metric g at the boundary is uniquely
determined by the boundary distance function dg in the following sense. If ∂M is
strictly convex with respect to another metric g′ on M , then the equality dg = dg′

implies the existence of a diffeomorphism ϕ : M → M which is the identity on
the boundary, ϕ|∂M = Id, and such that the metrics g and g′′ = ϕ∗g′ satisfy the
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following: In any local coordinate system (x1, . . . , xn) defined in a neighborhood
of a boundary point, we have Dαg|∂M = Dαg′′|∂M for every multi-index α.

The proof of Theorem 3.2 consists in showing that from the scattering rela-
tion we can determine the traces at the boundary of conjugate harmonic func-
tions, which is equivalent information to knowing the DN map associated to the
Laplace-Beltrami operator. The steps to accomplish this are outlined below. It
relies on a connection between the Hilbert transform and geodesic flow.

We embed (M, g) into a compact Riemannian manifold (S, g) with no bound-
ary. Let ϕt be the geodesic flow on Ω(S) and H = d

dtϕt|t=0 be the geodesic
vector field. Introduce the map ψ : Ω(M)→ ∂−Ω(M) defined by

ψ(x, ξ) = ϕτ(x,ξ)(x, ξ), (x, ξ) ∈ Ω(M).

The solution of the boundary value problem for the transport equation

Hu = 0, u|∂+Ω(M) = w

can be written in the form

u = wψ = w ◦ α ◦ ψ.

Let uf be the solution of the boundary value problem

Hu = −f, u|∂−Ω(M) = 0,

which we can write as

uf (x, ξ) =

τ(x,ξ)∫
0

f(ϕt(x, ξ))dt, (x, ξ) ∈ Ω(M).

In particular

Hτ = −1.

The trace

If = uf |∂+Ω(M)(4.2)

is called the geodesic X-ray transform of the function f . By the fundamental
theorem of calculus we have

IHf = (f ◦ α− f)|∂+Ω(M).(4.3)

In what follows we will consider the operator I acting only on functions that
do not depend on ξ, unless otherwise indicated. Let L2

µ(∂+Ω(M)) is the real
Hilbert space, with scalar product given by

(u, v)L2
µ(∂+Ω(M)) =

∫
∂+Ω(M)

µuvdΣ, µ = (ξ, ν).

Here the measure dΣ = d(∂M) ∧ dΩx where d(∂M) is the induced volume form
on the boundary by the standard measure on M and

dΩx =
n∑

k=1

(−1)k+1ξkdξ1 ∧ ... ∧ ˆdξk ∧ ... ∧ dξn.
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As usual the scalar product in L2(M) is defined by

(u, v) =
∫

M

uv
√

detgdx.

The operator I is a bounded operator from L2(M) into L2
µ(∂+Ω(M)). The

adjoint I∗ : L2
µ(∂+Ω(M))→ L2(M) is given by

I∗w(x) =
∫

Ωx

wψ(x, ξ)dΩx,

where wψ = w ◦ α ◦ ψ.
We will study the solvability of equation I∗w = h with smooth right hand

side. Let w ∈ C∞(∂+Ω(M)). Then the function wψ will not be smooth on Ω(M)
in general. We have that wψ ∈ C∞(Ω(M) \ ∂0Ω(M)). We give below necessary
and sufficient conditions for smoothness of wψ on Ω(M).

We introduce the operators of even and odd continuation with respect to α:

A±w(x, ξ) = w(x, ξ), (x, ξ) ∈ ∂+Ω (M) ,

A±w(x, ξ) = ± (α∗w) (x, ξ), (x, ξ) ∈ ∂−Ω (M) .

The scattering relation preserves the measure |(ξ, ν)|dΣ and therefore the
operators A± : L2

µ(∂+Ω(M))→ L2
|µ| (∂Ω (M)) are bounded, where L2

|µ| (∂Ω (M))
is real Hilbert space with scalar product

(u, v)L2
|µ|(∂Ω(M)) =

∫
∂Ω(M)

|µ|uvdΣ, µ = (ξ, ν).

The adjoint of A± is a bounded operator A∗± : L2
|µ| (∂Ω (M)) → L2

µ(∂+Ω(M))
given by

A∗±u = (u± u ◦ α)|∂+Ω(M).

Using A∗− formula (4.3) can be written in the form

IHf = −A∗−f0, f0 = f |∂Ω(M).(4.4)

The space C∞α (∂+Ω (M)) is defined by

C∞α (∂+Ω (M)) = {w ∈ C∞ (∂+Ω (M)) : wψ ∈ C∞ (Ω (M))}.
We have the following characterization of the space of smooth solutions of the
transport equation

Lemma 4.1.

C∞α (∂+Ω(M)) = {w ∈ C∞(∂+Ω(M)) : A+w ∈ C∞(∂Ω(M))}.
Now we can state the main theorem for solvability for I∗.

Theorem 4.2. Let (M, g) be a simple, compact two dimensional Riemannian
manifold with boundary. Then the operator I∗ : C∞α (∂+Ω(M)) → C∞(M) is
onto.
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The proof of Theorem 4.2 in [PU] uses the fact that I∗I is a pseudodifferential
operator or order -1 on any open subset of a simple manifold.

Now we define the Hilbert transform:

Hu(x, ξ) =
1
2π

∫
Ωx

1 + (ξ, η)
(ξ⊥, η)

u(x, η)dΩx(η), ξ ∈ Ωx,(4.5)

where the integral is understood as a principal value integral. Here ⊥ means a
90o degree rotation. In coordinates (ξ⊥)i = εijξ

j , where

ε =
√

det g

(
0 1

−1 0

)
.

The Hilbert transform H transforms even (respectively odd) functions with
respect to ξ to even (respectively odd) ones. If H+ (respectively H−) is the even
(respectively odd) part of the operator H:

H+u(x, ξ) =
1
2π

∫
Ωx

(ξ, η)
(ξ⊥, η)

u(x, η)dΩx(η),

H−u(x, ξ) =
1
2π

∫
Ωx

1
(ξ⊥, η)

u(x, η)dΩx(η)

and u+, u− are the even and odd parts of the function u, then

H+u = Hu+, H−u = Hu−.

We introduce the notation H⊥ = (ξ⊥,∇) = −(ξ,∇⊥), where ∇⊥ = ε∇
and ∇ is the covariant derivative with respect to the metric g. The following
commutator formula for the geodesic vector field and the Hilbert transform is
very important in our approach.

Theorem 4.3. Let (M, g) be a two dimensional Riemannian manifold. For any
smooth function u on Ω(M) we have the identity

[H,H]u = H⊥u0 + (H⊥u)0(4.6)

where

u0(x) =
1
2π

∫
Ωx

u(x, ξ)dΩx

is the average value.

Now we can prove Theorem 3.2.

Separating the odd and even parts with respect to ξ in (4.7) we obtain the
identities:

H+Hu−HH−u = (H⊥u)0, H−Hu−HH+u = H⊥u0.

Let (M, g) be a non-trapping strictly convex manifold. Take u = wψ, w ∈
C∞α (∂+(Ω)). Then

2πHH+wψ = −H⊥I∗w
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and using the formula (4.4) we conclude

2πA∗−H+A+w = IH⊥I∗w,(4.7)

since wψ|∂Ω(M) = A+w.
Let (h, h∗) be a pair of conjugate harmonic functions on M ,

∇h = ∇⊥h∗, ∇h∗ = −∇⊥h.

Notice, that δ∇ = � is the Laplace-Beltrami operator and δ∇⊥ = 0. Let
I∗w = h. Since IH⊥h = IHh∗ = −A∗−h0

∗, where h0
∗ = h∗|∂M , we obtain from

(4.7)

2πA∗−H+A+w = −A∗−h0
∗.(4.8)

The following theorem gives the key to obtain the DN map from the scattering
relation.

Theorem 4.4. Let M be a 2-dimensional simple manifold.Let w ∈ C∞α (∂+Ω(M))
and h∗ the harmonic continuation of the function h0

∗. Then the equation (4.9)
holds iff the functions h = I∗w and h∗ are conjugate harmonic functions.

Proof. The necessity has already been established. Using (4.3) and (4.7) the
equality (4.8) can be written in the form

IH⊥h = IHq,

where q is an arbitrary smooth continuation onto M of the function h0
∗ and

h = I∗w. Thus, the ray transform of the vector field ∇q +∇⊥h equal 0.
The next step is to show that this field this field is potential, that is, ∇q +

∇⊥h = ∇p and p|∂M = 0. This was proven in [An] for simple manifolds. Then
functions h and h∗ = q − p are conjugate harmonic functions and h∗|∂M = h0

∗.
This concludes the proof of Theorem 4.4.

In summary we have the following procedure to obtain the DN map from
the scattering relation. For an arbitrary given smooth function h0

∗ on ∂M we
find a solution w ∈ C∞α (∂+Ω(M)) of the equation (4.8). Then the functions
h0 = 2π(A+w)0 (notice, that 2π(A+w)0 = I∗w|∂M ) and h0

∗ are the traces of
conjugate harmonic functions. It is easy to see that this gives the DN map.

5. Reconstruction of the sound speed and the conformal factor

In this section we prove Theorem 1.4. We first start with the a general simple
manifold.

Let (M, g) be a a simple two-dimensional compact Riemannian manifold with
boundary. We have that ∫

M

fI∗w
√

detgdx = (If, w)(5.9)
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where in the right hand side the inner product is in L2
µ(∂+Ω(M)). A conformal

Killing vector field X satisfies the equation
1
2
(∇iXj +∇jXi) = gij

δX

2
(5.10)

where∇ denotes the covariant derivative and δ is the divergence. For such vector
field we have

Hg(X, ξ) =
1
2
δX.(5.11)

We remark that the right hand side of (5.13) does not depend on ξ. We also
note that the local 1-parameter flow generated by the vector field X consists of
local conformal isometries of the metric g.

From (4.8) we have that the geodesic X-ray transform I(δX) is given by

I(δX) = −2A∗−(X0, ξ), where X0 = X|∂M .(5.12)

Then putting f = δX in (5.11) with X solution of (5.12) we get for arbitrary w:∫
M

(X,∇I∗w)
√

det gdx = − 2
π

(A∗−(X, ξ), w)−
∫

∂M

(X, ν)(A+w)0dΓ.(5.13)

Now we specialize to the case of M a bounded domain of Euclidean space
with smooth boundary. We provide M with the Riemannian metric g given by

ds2 =
1

c2(x)
dx2(5.14)

where c(x) is a smooth and positive function on M . In other words the metric
g is conformal to the Euclidean metric, gij = δij/c2. The function c(x) models
the sound speed (index of refraction) of the medium M . We denote by ρ = 1/c2.

As mentioned earlier the classical inverse kinematic problem consists in deter-
mining c(x) by knowing the lengths of geodesics joining points on the boundary
of ∂M which corresponds to the first arrival times of waves going through the
domain. The distance function will be denoted by dc(x, y);x, y ∈ ∂M . This
problem arose in Geophysics in order to determine the inner structure of the
Earth by measuring the travel times of seismic waves. Herglotz and Wieckert
and Zoeppritz considered the case where M is spherically symmetric and the
sound speed is smooth and depends only on the radius. Under the condition
that d

dr ( r
c(r) ) > 0 then one can reconstruct c(r) from the lengths of geodesics.

Notice that this implies that the metric is simple.
We will develop a (linear) method of reconstruction of the sound speed from

dc and then prove Theorem 1.4. In this case the vector field X as in (5.12) is a
Cauchy-Riemann vector field, more exactly its contravariant components satisfy
the Cauchy-Riemann equations

∂X1

∂x1
=

∂X2

∂x2
,

∂X1

∂x2
+

∂X2

∂x1
= 0.

Let h be an arbitrary harmonic function. (In our case ∆g = c2∆e and con-
sequently ∆eh = 0). By Theorem 4.2 we know that we can find find a solution
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w ∈ C∞α (∂+Ω(M)) of equation (4.7), where h0
∗ is the trace of the conjugate

harmonic function. Then h = I∗w. Thus we can calculate the integral in the
left hand side of (5.13) for a holomorphic vector field X and harmonic function
h. We denote by

SX,h[ρ] =
∫

M

(X,∇h)ρ(x)dx(5.15)

(since
√

g = ρ) which is known if we know the scattering relation.
The problem of finding ρ is then reduced to find enough holomorphic vector

fields u and harmonic functions h so that the product of the gradients is dense
in an appropriate space. This is similar to a question considered by Calderón
for the linearized inverse conductivity problem at a constant conductivity [Ca].
See [U] for further developments.

We choose

X1 = ζ2e
<x,ζ>, X2 = ζ1e

<x,ζ>, h = e<x,σ>(5.16)

with complex vector ζ, σ ∈ C2; ζ · ζ = σ · σ = 0 with σ �= −ζ. Here <, >
denotes the standard Euclidean inner product. We remark that we can write for
ζ ∈ C2; ζ · ζ = 0, in the form

ζ = η + ik, with η, k ∈ R2 satisfying |k| = |η|, < k, η >= 0.

Substituting (5.18) in (5.17) we obtain:

SX,h[ρ] = (ζ2σ1 + ζ1σ2)
∫

M

ρ(x)e<x,ζ+σ>dx.(5.17)

Therefore we get

SX,h[ρ]
(ζ2σ1 + ζ1σ2)

=
∫

M

ρ(x)e<x,ζ+σ>dx.(5.18)

Now by taking the limit

limσ→−ζ

SX,h[ρ]
(ζ2σ1 + ζ1σ2)

=
∫

M

ρ(x)e2i<x,k>dx(5.19)

we recover the Fourier transform of ρ.

Thus we have given a recovery procedure to obtain the conformal factor ρ
from the scattering relation.

Now let us consider the general case in Theorem 1.4. We can find a conformal
diffeomorphism φ : (M̃, g) −→ (D, e) where D is the unit disk and e denotes the
Euclidean metric. Therefore in the argument above we replace xi, i = 1, 2 by
φ(xi), i = 1, 2 and we proceed in a completely analogous fashion. This concludes
the proof of Theorem 1.4.
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