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A NOTE ON STICKELBERGER ELEMENTS FOR CYCLIC
P-EXTENSIONS OVER GLOBAL FUNCTION FIELDS OF

CHARACTERISTIC P

Ki-Seng Tan

Abstract. We prove a special case of Tate’s refinement of a conjecture of Gross
concerning the Stickelberger element associated to a cyclic extension over a global
function field of characteristic p.

1. Introduction

In this note we make some initial progress toward Tate’s refinement [8] of
a conjecture of Gross [3] concerning the Stickelberger element associated to a
cyclic extension over a global function field of characteristic p.

Recall that Gross’s conjecture concerns the form of the Stickleberger element
which is an element in the integral group ring of the Galois group for an abelian
extension of a global field. In this note, we only consider the function field case.
To be precise, let us fix a global function field k of characteristic p, and let
S = {v0, . . . , vn} and T be fixed non-empty finite sets of places in k such that S
and T are disjoint.

Let L/k be an abelian extension unramified outside S and let G = Gal(L/k).
For v /∈ S, let Frv denote the Frobenius element in G. As modified by Gross,
the associated Stickelberger element θG [3, 7] is the unique element in the group
ring Z[G] such that for every non-trivial ring homomorphism χ : Z[G] −→ C,

χ(θG) = L(χ, 0),(1)

where, L(χ, s), s ∈ C is the modified L-function defined by

L(χ, s) =
∏

v/∈S

(1− χ(Frv)N(v)−s)−1 ×
∏

v∈T

(1− χ(Frv)N(v)1−s), (Re(s) > 1).

(2)
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In [3] Gross conjectures that if I is the augmentation ideal of Z[G], then θG

is in In and is congruent to h · RG modulo In+1. Here h = hS,T is the T -
modified class number of the S-integers of k and RG is the refined regulator .
This conjecture is the analogue of the class number formula (interpreted as a
statement about the order of vanishing of the zeta function at “s = 0” and the
first non-zero term in its Taylor expansion).

In [3], the refined regulator is defined as an element in In/In+1. We instead
choose to adopt Tate’s definition [8] and define the refined regulator as an element
in the group ring.

Here we describe Tate’s definition of the refined regulator. First, for each i,
let

degi : k∗vi
−→ Z

be the local valuation map which sends the local parameters to 1. Recall that
US,T , the group of S-units which are congruent to 1 modulo T , is torsion free.
Let {uj}1≤j≤n be a Z-basis of it. Then the classical regulator equals

±MS · det
1≤i,j≤n

(degi(uj)),

where the sign is determined by the ordering of the basis and MS is the index
of US,T as a subgroup of the free part of the S-units. We choose the ordering to
have the positive sign. For 0 ≤ i ≤ n, let Gi be the decomposition subgroup of
vi ∈ S, and let

fi : k∗vi
−→ Gi

be the local reciprocity law homomorphism. These local homomorphisms are
viewed as analogue of the local valuation maps, and the refined regulator is
defined.

Definition 1.1. We define

RG = det
1≤i,j≤n

(fi(uj)− 1) ∈ Z[G].(3)

The definition of RG depends on the choice of v0 in S.
For a subgroup H of G, let IH be the kernel of the homomorphism Z[G] −→

Z[G/H] induced from the natural quotient homomorphism. The following lemma
is obvious.

Lemma 1.1. ([8]) We have

RG ∈
∏

1≤i≤n

IGi .(4)

From now on, we assume that G is cyclic of order pm and

m0 ≤ m1 ≤ · · · ≤ mn ≤ m,

where
pmi = [G : Gi], i = 0, . . . n.
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Let

N = pm0 + · · ·+ pmn−1 .(5)

In [8], Tate, using the valuation criterion (see Lemma 2.1), proves that if
mn = m − 1, then θG and h · RG are both in IN where N is defined in (5),
and conjectures that, in the case where m0 = 0, they are congruent modulo
IN+1. Since N ≥ n, this is a refinement of the conjecture of Gross. Note that
in the case where m0 > 0 the congruence might not hold ([6]) and a more subtle
formulation is needed. For more discussions on Tate’s refinement, see [6, 2, 1].

Our main result (proved in Section 2) is that this congruence indeed holds for
the “m0 = 0” case.

Theorem 1.1. If mn = m− 1 and m0 = 0, then θG, h · RG ∈ IN , and

θG ≡ h · RG (mod IN+1).(6)

Theorem 1.1 is proved through making direct use of the fact that G is a p-
group. This allows us to work on Zp[G] which is just Z[G]⊗Z Zp. In particular,
if we let

IH,p = IH ⊗Z Zp,

then Theorem 1.1 is proved in Section 2 by using the valuation criterion (Lemma
2.1) in combination with the following result whose proof is postponed until
Section 3.

Theorem 1.2. If G is a cyclic p-group, then

θG ∈
∏

1≤i≤n

IGi,p,(7)

and

θG ≡ h · RG (mod IG,p ·
∏

1≤i≤n

IGi,p).(8)

2. The valuation criterion

We follow the notation in [8]. Assume that G is cyclic of order pm and Gn is
of order pm−1. Let σ generate G and put ρ = σpm−1

. Let χ be a character of G
of order pm so that ζ := χ(σ) is a primitive pmth root of unity. Put λ = ζ − 1.
The proof of the following lemma can be found in [6].

Lemma 2.1. (Tate,[8]) For j ≥ 1, the character χ induces an isomorphism

χ : Ij ∩ (ρ− 1)Z[G]/Ij+1 ∩ (ρ− 1)Z[G] ∼−→ (λ)j+pm−1−1/(λ)j+pm−1

(σ − 1)j−1(ρ− 1) �→ λj+pm−1−1

Assuming Theorem 1.2, we now easily prove Theorem 1.1.
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Proof. (of Theorem 1.1) From the assumption m0 = 0 and mn = m−1, we have

χ(
∏

1≤i≤n

IGi,p) ⊆ (λ)pm1+···+pmn
= (λ)N+pm−1−1,

and
χ(IG,p ·

∏

1≤i≤n

IGi,p) ⊆ (λ)1+pm1+···+pmn
= (λ)N+pm−1

.

3. The method of using Zp-extensions

In this section, we will frequently use the following version of Local Leopoldt
Theorem (cf. [5, 9]).

Lemma 3.1. Let v be a place of k and α ∈ k. If α1/p ∈ kv, the α1/p ∈ k.

Proof. If α1/p /∈ k, then k(α1/p) = k1/p. But since k is dense in kv, we can not
have k1/p ⊂ kv.

Let ΓS be the Galois group of the maximal pro-p abelian extension which is
unramified outside S. In [5], it is proved that ΓS is a product of countably many
copies of Zp (see also [9]). Therefore, we can extend L/k to an extension E/k
unramified outside S such that Gal(E/k) � Zp.

For each i = 0, . . . , n, let ki and Ei denote the completions at vi of k and E
respectively. Put Ni = NormEi/ki

(E∗i ). Then k∗i /Ni is either Zp, Z, or {0}.
Let Γ̃ be the p-completion of the group k∗\A∗k/

∏n
i=1Ni×

∏
v/∈S O∗v . Here, as

usual, A∗k denotes the group of ideles and O∗v denotes the group of local units
at v. Then Γ̃ is the Galois group of the maximal abelian pro-p-extension of
k over which the decomposition group at each vi, i = 1, . . . , n, is exactly the
p-completion of k∗i /Ni. Note that here we impose no condition at v0. We have
the natural homomorphism Ψ which maps the p-completion of

∏n
i=1 k∗i /Ni to Γ̃.

Lemma 3.2. With the Ψ as above, the following are true.
(1) The homomorphism Ψ is injective and the Zp-module Γ̃/ Im(Ψ) is torsion

free.
(2) There exists an abelian pro-p-extension F/k which satisfies the following.

(a) The field F contains E.
(b) The Galois group Γ := Gal(F/k) is isomorphic to Zd

p for some d.
(c) The decomposition group Γi at each vi, for i = 1, . . . , n, is exactly the

p-completion of k∗i /Ni.
(d) The natural homomorphism

∏n
i=1 Γi −→ Γ is injective and the co-

kernel is torsion free.

Proof. We first prove that Γ̃ is p-torsion free. Then, by the fact that it is a
quotient of ΓS , it is also a product of countably many copies of Zp. Now,
suppose that γ ∈ Γ̃ and γp = 1. If γ is represented by an idele z = (zv), then
there is an α ∈ k∗ and a u ∈ ∏n

i=1Ni ×
∏

v/∈S O∗v such that zp = α · u. In
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particular, in k∗0 we have zp
v0

= α. By Lemma 3.1, we have α = βp for some
β ∈ k∗. Since k∗0 and k∗i /Ni, i = 1, ..., n are p-torsion free, we have zviβ

−1 = 1,
for i = 0, ..., n. Also, we have zvβ−1 ∈ O∗v , for v /∈ S. This implies that γ = 1.

For i = 1, . . . , n, let xi ∈ k∗i , and let x̄ be the element determined by
(x1, . . . , xn) in the p-completion of

∏n
i=1 k∗i /Ni. If x̄ is in the kernel of Ψ, then

for each j = 1, 2, . . . , there exists αj ∈ K∗, u(j) ∈ ∏n
i=1Ni ×

∏
v/∈S O∗v and

y(j) ∈ A∗k such that in A∗k,

(x1, . . . , xn) = αj · u(j) · y(j)pj

.

In particular, we have
αj ∈ (k∗0)pj

,

and by Lemma 3.1, we have
αj ∈ (k∗)pj

.

Consequently, the element x̄ is p-divisible in the p-completion of
∏n

i=1 k∗i /Ni,
hence is trivial. This shows that Ψ is injective. If there is a γ ∈ Γ̃ obtained
from an idele z = (zv) such that γp = Ψ(x̄), then for each j = 1, 2, . . . , there are
αj ∈ K∗, u(j) ∈∏n

i=1Ni ×
∏

v/∈S O∗v and y(j) ∈ A∗k such that

(x1, . . . , xn) = zp · αl · u(j) · y(j)pj

.

Again, by Lemma 3.1, we have

αj ∈ (k∗)p,

and consequently, there is a w̄ in the p-completion of
∏n

i=1 k∗i /Ni such that
x̄ = w̄p. Therefore, γ ·Ψ(w̄)−1 is in the p-torsion of Γ̃. Since Γ̃ is p-torsion free,
we have γ = Ψ(w̄). This completes the proof of (1). Also, since Γ̃ is a product of
countably many copies of Zp, then by (1), we can find an abelian pro-p-extension
F0/k which satisfies conditions (b), (c), (d). Then we put F = F0E.

Now we pay off our last debt and prove Theorem 1.2.

Proof. (of Theorem 1.2) Let F/k satisfy conditions (a), (b), (c), (d), in Lemma
3.2, and let Γ = Gal(F/k). Since θG is functorial with respect to G, through the
projective limit, we can define the Stickelberger element θΓ ∈ Z[[Γ]] ([9]). Also,
the refined regulator RΓ ∈ Z[[Γ]] is defined. If there is an i ∈ {1, . . . , n} such
that k∗i /Ni = {0}, then vi splits completely and (see [3])

θΓ = 0 = RΓ,

and there is nothing to prove. We assume that k∗i /Ni �= {0}, for every i =
1, . . . , n. Then ZpΓi � Zp. Choose a Zp-basis γ1, . . . , γd of Γ, such that ZpΓi =
Zpγi, for i = 1, . . . , n, and put ti = γi − 1 for i = 1, . . . , d. Then in this
case, the ring Zp[[Γ]] is just the formal power series ring Zp[[t1, . . . , td]] and
the ideals ĪΓ,p := ker(Zp[[Γ]] −→ Zp) and ĪΓi,p := ker(Zp[[Γ]] −→ Zp[[Γ/Γi]]),
i = 1, . . . , d, of Zp[[Γ]] are just (t1, . . . , td) and (ti). Here, as before, the natural
ring homomorphisms are induced from the quotient homomorphisms

Γ −→ {0},
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and
Γ −→ Γ/Γi.

For each i, let Fi be the fixed field of Γi. Since vi splits completely in Fi, the
natural homomorphism Zp[[Γ]] −→ Zp[[Γ/Γi]], maps both θΓ and h ·RΓ to zero.
This shows that as power series, both θΓ and h · RΓ are divisible by ti for every
i ∈ {1, . . . , n}. Therefore, we have

θΓ ∈ t1t2 . . . tn · Zp[[t1, . . . , td]] =
n∏

i=1

IΓi,p.

Applying the quotient map Γ −→ G, we get the inclusion (7).
In this case, Gross’s Conjecture has been proved [9], so that θΓ − h · RΓ is in

In+1
Γ,p . Since it is also divisible by t1 . . . tn, we have

θΓ − h · RΓ ∈ IΓ,p ·
n∏

i=1

IΓi,p .

Congruence (8) then can be obtained by applying the quotient map Γ −→ G.
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