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DEGENERATIONS OF MONOMIAL IDEALS

Heather Russell

Abstract. We describe the degenerations of monomial ideals in K[[x, y]] with
Aut(K[[x, y]])-orbit of dimension at most 3. In particular, we determine the mono-
mial ideals that any power of (x, y4) can degenerate to and make a conjecture
about all the ideals that the powers of (x, y4) can degenerate to. We also give
some numerical evidence linking the characteristics in which one ideal degenerates
to another with the enumeration of lattice paths.

1. Introduction

Let I be an ideal of finite colength n in the ring K[[x, y]] for an arbitrary field
K. Then I/(x, y)n corresponds to a point p in the Grassmanian parametrizing
codimension n subspaces of K[[x, y]]/(x, y)n. The automorphisms of K[[x, y]]
act on this Grassmanian. We will say that an ideal J is a degeneration of I
if J/(x, y)n corresponds to a point in the closure of the orbit of p under this
action. The question of how an ideal can degenerate is a generalization of both
the following two questions.

First, it is a generalization of a question about the stratification of local
Hilbert schemes by Hilbert functions [12]. Each stratum can be decomposed into
cells corresponding to ideals with given initial monomial ideal. The question is
which strata are in the closure of others.

Second, the question of how ideals can degenerate is a generalization of the
adjacency problem [1], the question of how a given type of singularity can de-
generate. If the local equation of the singularity is contained in an ideal, then
the local equation of any degeneration of the singularity is contained in a degen-
eration of that ideal.

In this paper, we answer the question of how the ideal I can degenerate
(modulo some computer programmable calculations for each individual ideal) in
the case where I is a monomial ideal with orbit of dimension 3 or less.

While our algorithmic answer still leaves a lot to be understood, we also study
some examples where some order seems to emerge out of the chaos.

2. Measuring Sequences

Following the notation of [10] rather than the more general notation of [9],
we will say that a monomial ideal I in K[[x, y]] has measuring sequence {a, b} if
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a and b are the smallest integers such that all automorphisms of K[[x, y]] fixing
both (x, ya) and y and all automorphisms fixing both x and (xb, y) also fix I.
This is equivalent to saying that a and b are the smallest integers such that I
is expressible in terms of (x, ya) and (xb, y). In characteristic zero, this means
I is expressible as a polynomial in these two ideals. In positive characteristic,
we can also use the Frobenius map. It was shown in [9] that the dimension of
the orbit of I is a + b − 2. Thus, if a = b = 1, then I is a power of the ideal
(x, y), an image of such an ideal under a power of the Frobenius map, or the
product of ideals of these types. These are the ideals that are invariant under
all automorphisms of K[[x, y]].

3. Reducing the problem via fiber bundles

If I is a monomial ideal of finite colength in K[[x, y]] with measuring sequence
{a, b}, we can assume without loss of generality that either a = b = 1 or a > 1.
The former case is very simple and has been discussed in the previous section.
The latter problem can be made simpler through the introduction of a fiber
bundle. If I is not invariant under the involution switching x and y, the auto-
morphisms fixing I also fix the ideal (x, y2). Thus the orbit of the pair of ideals
(I, (x, y2)) is isomorphic to the orbit of I. Moreover the closure of the former
orbit dominates the closure of the latter. In the case where I is invariant under
the involution of switching x and y, the orbit of the pair of ideals (I, (x, y2)) is
a double cover of the orbit of I. In both cases, the orbit of (I, (x, y2)) is a fiber
bundle with respect to projection to the orbit of (x, y2). Moreover the closure
is also a fiber bundle with respect to this projection. The fiber of the orbit is
the orbit of I under the stabilizer of (x, y2) and the fiber of the closure is the
closure of this fiber. We let F (I) denote the orbit of I under the stabilizer of
(x, y2) and F̄ (I) its closure. To understand how I degenerates, we need only
understand the boundary of F̄ (I).

4. Ideal notation

For the complicated ideals that come up in our examples, it will be convenient
to use the following notation. Given a sequence of non-negative integers

s = n1, . . . , nr

we will let I(s) denote the ideal

I(s) = (xr, xr−1yn1 , . . . , yn1+···+nr ).

Although this notation for monomial ideals using sequences may seem cumber-
some at first, in fact it makes the ideals easier to work with. For example for
computing colengths we have

col(I(n1, . . . , nr)) =
r∑

i=1

(r + 1− i)ni.
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Moreover, for multiplying ideals we have

I(n1, . . . , nr)I(m1, . . . , mk) = I(l1, . . . , lr+k)

where

li = min
α+β=i


 α∑

j=1

nj +
β∑

j=1

mj


 .

We use these two formulas repeatedly in the last section.

5. One-dimensional limits

In this section we will work over the ring R = K[[x1, . . . , xn]]. Let I be
a monomial of colength d in R. Given a family of automorphisms g(t) of R

parametrized by K, we get a map from A
1(K) into Hilbd(R) sending t to g(t)(I).

The closure of the graph in P1(K) × Hilbd(R) has a single point (∞, J) in the
boundary. We say that J is the flat limit of g(t)(I) as t goes to infinity. If
g(t) is of the special form mentioned in Theorem 5.1 below, we can find this
limit by giving R a grading preserved by g(t) and then taking the limits of the
homogeneous pieces of I.

The idea of this section is to take the limit J of a family of automorphisms g(t)
applied to a monomial ideal I in R by putting weights on the variables of R so
that these automorphisms preserve the homogeneous pieces of R with respect to
these weights. Thus each homogeneous piece of J is the limit of the correspond-
ing homogeneous pieces of the g(t)(I)’s. The process is quite straightforward in
characteristic 0, but slightly more subtle in positive characteristic.

We first develop some machinery for taking the limits of the homogeneous
pieces of the images of I. We then apply our results to the space F̄ (I) for I of
measuring sequence {3, 1} and {2, 2}, determining the boundary ideal. In the
next section we also apply these results to the measuring sequences {4, 1} or
{3, 2}.

Given a finite set of non-negative integers T we define another set of integers
T ′ of the same cardinality , which we call the p-shift of T , where p is the charac-
teristic in which we are working. If p is 0 and the cardinality of T is n, let T ′ be
the set of integers from 0 to n− 1. If p is positive, we define T ′ by the following
algorithm. Write all of the numbers in T in base p. Let n be the largest number
of digits of any of these numbers. Add enough zeros at the beginning of each of
the numbers in T to make them all n digits long in base p. Let A = (ai,j) be
the matrix with each row corresponding to a number in T and the ith column
giving the ith digits of each of the numbers. Beginning with the first column
and working to the right, we change each of the columns of A as follows. Let
Ai be the matrix obtained after changing the first i− 1 columns. Let Mi be the
matrix obtained by deleting the ith column of Ai. Let Ai+1 be the matrix with
all columns except the ith the same as those of Ai and the entry in the jth row
and ith column giving the number of rows of Mi above the jth row identical to
the jth row. Thus, if all rows of Mi are distinct, the ith column of Ai+1 will
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have all entries zero. In any case, all rows of Ai+1 are distinct. Let T ′ be the
set of integers with base p expansions given by the rows of An+1. For example,
if T = {1, 100} and p = 3 then T ′ = {0, 9}.
Lemma 5.1. Let g(t) be the automorphism of K[x] sending x to x+t for t ∈ K.
Given a finite collection T of non-negative integers, let V (T ) be the subspace of
K[x] generated by the polynomials xe for exponents e ∈ T . The limit of g(t)V (T )
as t ∈ K goes to infinity is V (T ′) where T ′ is the p-shift of T .

Proof. Let T ′′ be the set such that V (T ′′) is the limit of g(t)V (T ) as t ∈ K goes
to infinity. If the characteristic of K is zero, the lemma holds because V (T ′′)
must be invariant under g(t). In the case of positive characteristic p, we proceed
by induction on the sum of the elements of T . If the sum is zero, the lemma
holds trivially. Suppose that there are subsets T1 and T2 of T of cardinality one
less than T with T ′1 �= T ′2. Then T ′1 ∪ T ′2 ⊂ T ′ and V (T ′′) contains the limits
of g(t)V (T1) and g(t)V (T2) as t goes to infinity. By the inductive hypothesis,
these are the sets V (T ′1) and V (T ′2). Thus T ′′ is forced to contain T ′1 and T ′2. If
the union of T ′1 and T ′2 is T ′, we are reduced to the case in which there are no
such subsets T1 and T2 of T .

Let n be the largest number of digits of any element of T base p. Let the
matrices Ai and Mi be as in the definition above of p-shift above for our set
T . Then the fact that we do not have subsets T1 and T2 with T ′1 �= T ′2 implies
that all rows of Mi occur exactly m times for some integer m. Otherwise, the
number of times some digit occurs as the first digit of an integer of T ′1 after
adding enough zeroes to the beginning of the integers to make them all n digits,
would depend on T ′1. Thus the first digits of the integers in T ′ range from 0 to
m − 1. Since V (T ′1) is a subspace of V (T ′′), the set T ′′ contains T ′1 and hence
differs from T ′ by at most one element a.

Let f be the wedge product of the polynomials (x + t)d for d ∈ T . Then
expanding f into the sum of wedge products of monomials, the term with the
highest coefficient of t is the wedge product of basis elements of V (T ′′). Let f1

be the wedge products of the basis elements of V (T1). Then, since T ′1 ⊂ T ′′, this
term is a multiple of the wedge product xa∧f1 where a is the element of T ′′ not
in T ′1. Thus a is the smallest number such that the coefficient of xa ∧ f1 in f is
non-zero, since the coefficient of this term will have the highest power of t.

For the rest of this proof, we will use bars to represent remainders modulo
xmpn−1

. So, for example V (T ) is spanned by the elements xd for d ∈ T less than
mpn−1. If a has first digit less than m, the coefficient of xa ∧ f1 in f is the same
as its coefficient in f̄ . Moreover, if f̄ is not identically zero, then the term with
the highest power of t is a multiple of xa∧f1. Thus the V (T ′′) would be the limit
as t goes to infinity of g(t)V (T ). We will now show that f̄ is not zero. Let S be
the set of remainders of elements of T modulo pn−1. Then it is enough to show
that for each r ∈ S the remainders of the m polynomials (xpn−1

+ tp
n−1

)j(x+ t)r

modulo xmpn−1
for jpn−1 + r ∈ T are independent. This follows from the fact

the coefficients of the remainders of the polynomials (xpn−1
+ tp

n−1
)j can be
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put into an m×m matrix obtained from a Vandermonde matrix by elementary
column operations not changing the determinant. Thus we see that f̄ is not
zero. Moreover, by a dimension count, we see that we can take the polynomials
xipn−1

(x + t)r for 0 ≤ i < m and r ∈ S as a basis for g(t)V (T ). Let Wi be the
span of these polynomials for a fixed i with r varying through S. Then

g(t)V (T ) = ⊕i=1Wi

and the limit as t goes to infinity of the direct sum of the Wi’s is the direct sum
of their limits. By our inductive hypothesis, the limit as t goes to infinity of Wi

is xipn−1
V (S′), where S′ is the p-shift of S. Hence, T ′′ is forced to be T ′ and

the lemma follows.

Theorem 5.1. Let I ⊂ R be a monomial ideal of finite colength. Let h be a
monomial not divisible by xi. For each t ∈ K, let g(t) be the element of Aut(R)
with

g(t)(xj) = xj

for j �= i and
g(t)(xi) = xi + th.

Let J be the flat limit of ideals g(t)(I). Then J is characterized by the following.
Let xj have weight ej, where ej is the vector having jth coordinate 1 and all
other coordinates 0. Let xi have the same weight as h. Then each graded piece
of J is the limit of the corresponding graded piece of I. Let M be a graded piece
of I and T be the set of integers a such that a basis of M is given by monomials
of the form xa

i hd−af for a ∈ T and f a monomial of minimal degree. Then the
corresponding graded piece of J has a basis of monomials of the form xa

i hd−af
for a ∈ T ′ where T ′ is the p-shift of TM described above.

Proof. Since f and h are invariant under g(t), the proof reduces to Lemma 5.1.

Recall that F (I) is the orbit of an ideal I in R under the automorphisms of
R fixing the ideal (x, y2) and F̄ (I) is its closure. If I has measuring sequence
{3, 1} or {2, 2}, then F (I) is the A1 of ideals of the form g(t)(I) where g(t) is
the automorphism g(t)x = x+ ty2 and g(t)y = y or g(t)x = x and g(t)y = y+ tx
respectively. Hence the boundary point of F̄ (I) is the limit of g(t)I as t goes to
infinity.

Example: Consider the ideal (x, y3)n for n an arbitrary positive integer. On a
case by case basis, one can use Theorem 5.1 to show that this ideal degenerates
to I(2, 1, 1)m if n = 2m and to I(1, 1)I(2, 1, 1)m if n = 2m + 1. These ideals are
all integrally closed. To show this result for all n, one can use Proposition 7.1.
We leave this as an exercise.

By comparing dimensions of graded pieces, one can see that (x, y3)n+(y3n−1)
degenerates to an ideal generated by a single monomial of the same weight as
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y3n−1 over the ideal that (x, y3). This can only be the monomial x3m+1 if
n = 2m + 1 and x3m−1y if n = 2m. If n is odd, this ideal is integrally closed. If
n is even, it is not integrally closed.

6. Toric Varieties

The following theorem will serve as the basis of our study of degenerations of
monomial ideals in K[[x, y]] with 3-dimensional orbits.

Theorem 6.1. Let I be a monomial ideal in K[[x, y]] with finite co-length. If
the orbit of I under the automorphisms of K[[x, y]] has dimension 3, then either
the normalization of the closure F̄ (I) of the orbit of I under the subgroup of
those automorphisms stabilizing (x, y2) is a 2-dimensional toric variety, or the
this holds after changing I by exchanging x and y.

Proof. Let T be the 2-dimensional torus that acts by scaling x and y. By [9],
the ideal I has measuring sequence {a, b} where a+ b = 3. If a is greater than 1,
then the action of T on the orbit of I restricts to an action on F (I) since (x, y2)
is invariant under T . Otherwise, exchanging x and y exchanges a and b. The
action of T extends equivariantly to F̄ (I).

If I has measuring sequence {3, 1}, then F (I) is the A2 of ideals of the form
g(a, b)(I) where g(a, b)(x) = x+ay2 +by3 and g(a, b)(y) = y. If I has measuring
sequence {2, 2}, then F (I) is the A2 of ideals of the form g(a, b)(x) = x + ay2

and g(a, b)(y) = y + bx. From the theory of toric varieties ([3] p. 61), we know
that the boundary is a chain of rational curves, each separating limits of paths in
F (I) according to the limit of the ratio am : bn for some pair of integers m and n.
The intersections of these curves correspond to monomial ideals, since these are
the T -invariant ideals. For each of these boundary curves, the fan corresponding
to F̄ (I) has a ray going through the corresponding point (m, n). The other rays
in the fan are the rays through (−1, 0) and (0,−1) corresponding to the points in
F (I) with b = 0 and a = 0 respectively. We will use the notation ∆(I) to denote
this fan. Moreover, we will let I(m, n) denote the flat limit of g(a, b)(I) for a
and b functions of a parameter t with am asymptotic to a multiple of bn. We
will let I+(m, n) and I−(m, n) be the flat limits of I(m, n) as the ratio am : bn

tends to 1 : 0 and 0 : 1 respectively.
Next, we show how one can embed F (I) in a larger projective space using a

and b as coordinates in such a way that the closure of the image is F̄ (I). Let
V be the quotient of the sum of all ideals corresponding to points in F (I) by
the intersection of all such ideals. Then V is a finite dimensional vector space
over K. The space F (I) has an embedding in the Grassmannian of subspaces of
V of the appropriate dimension. This Grassmannian can in turn be embedded
in projective space by Plücker coordinates. The coordinates of this projective
space correspond to wedge products of monomials. By a homogeneity argument
as in Lemma 8.1, the coordinate functions are monomials in a and b.
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Next, we isolate the boundary of F̄ (I). This boundary is the intersection
of F̄ (I) with the subspace of the ambient projective space characterized by its
non-zero coordinates. Those non-zero coordinates can be found as follows. For
each non-zero coordinate function cambn, plot the exponent vector (m, n). The
convex hull is a polytope with an edge perpendicular to each ray in ∆(I). The
coordinate functions with exponent vector plotted on an edge are the only non-
zero coordinates for the points in the curve corresponding to the perpendicular
ray. The vertices of the convex hull correspond to the monomial ideals cor-
responding to points in F̄ (I). For each of these, the corresponding point has
only one non-zero coordinate, the one corresponding to the wedge product of
monomials in the ideal.

Example: Let I be the ideal (x, y4). Then V is the quotient space (x, y2)/(x, y2)2.
The generators of g(a, b)(I)/(x, y2)2 as a vector space are x + ay2 + by3 and
xy +ay3. Taking the wedge product of these two generators we get x∧xy +ax∧
y3+ay2∧xy+a2y2∧y3+by3∧xy. Plotting the exponent vectors of the coordinate
functions, we see that the convex hull is a triangle. Thus, the boundary is a single
irreducible curve corresponding to the edge through (2,0) and (0,1). Thus, this
curve parametrizes ideals with wedge product of generators a2y2 ∧ y3 + by3 ∧ xy
mod (x, y2)2. These are the ideals of the form (a2y2 − bxy, x2, xy2, y3). Using
the notation I(m, n), I+(m, n), and I−(m, n) introduced earlier in this section,
we have

(x, y4)(2, 1) = (a2y2 − bxy, x2, xy2, y3)

(x, y4)+(2, 1) = (x2, y2)

and
(x, y4)−(2, 1) = (x2, xy, y3).

7. Correspondences

In the previous section, we saw how to find the orbits of certain ideals. How-
ever, we did not make use of the relations among such orbits. In this section
we describe some correspondences that allow us to do this. The basic idea is to
look at the orbit of a sequence of monomial ideals (I1, . . . .In) under the auto-
morphisms of K[[x, y]]. As in the case of single ideals, we can assign a measuring
sequence to the sequence of ideals. This measuring sequences determines this
orbit up to a double cover ([9]). Moreover, adding the ideal (x, y2) into the
sequence, the closure of the orbit of the sequence of ideals is a fiber bundle over
the orbit of (x, y2). We will call the fiber F̄ (I1, . . . , In). It is a correspondence
in the product of the F̄ (Ij)’s. This correspondence can be used to show that
relations that hold among the Ij ’s continue to hold for their degenerations. In
particular, we have the following proposition.

Proposition 7.1. Given ideals I1, I2, and I3 with I1I2 ⊂ I3, for any point
P ∈ F̄ (I1, I2, I3), we have π1(P )π2(P ) ⊂ π3(P ) where πi is projection to F̄ (Ii).
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Proof. Let Vi be the finite dimensional vector space obtained by taking the
quotient of the sum of all ideals in F (Ii) by the intersection of all ideals in
F (Ii). Consider the incidence correspondence

Γ = {(α1, α2, α3, (a1, a2, a3)) ∈ V1 × V2 × V3 × F̄ (I1, I2, I3) :

αi ∈ ai, α1α2 = α3}.
Then the set

{(α1, α2, α3, (a1, a2, a3)) ∈ V1 × V2 × V3 × F (I1, I2, I3) : αi ∈ ai}
is contained in Γ and hence so is its closure

{(α1, α2, α3, (a1, a2, a3)) ∈ V1 × V2 × V3 × F̄ (I1, I2, I3) : αi ∈ ai}.

We will be using the above proposition as well as a few more below as our
basic tools. This next proposition encapsulates the information we can obtain
from Theorem 5.1.

Proposition 7.2. Given an ideal I in K[[x, y]] with measuring sequence {4, 1}
or {3, 2}, we define the automorphism g(a, b) as in the beginning of the previous
section (depending on the measuring sequence of I). Then, we have

I+(0,−1) = I−(1, 0) = lim
t→∞ g(0, t)(I),

I−(−1, 0) = lim
t→∞ g(t, 0)(I),

I+(1, 0) = lim
t→∞ g(t, 0)I−(1, 0).

Moreover, if the characteristic of K is not 2 and the measuring sequence of I is
{4, 1}, then

I−(−1, 0) = I+(2, 1)
and

I−(2, 1) = lim
t→∞ g(0, t)I+(2, 1).

If the measuring sequence of I is {3, 2}, then in all characteristics

I+(1, 0) = lim
t→∞ g(t, 0)(I)

and
I−(0, 1) = lim

t→∞ g(0, t)I+(0, 1).

Proof. One can verify by hand that

(x, y3)+(0,−1) = (x, y3)−(1, 0) = (x, y3),

(x, y4)−(−1, 0) = (x, y4)+(2, 1) = (x2, y2),
(x2, y)−(−1, 0) = (x2, y)+(0, 1) = (x2, y).

Except for the ideal in the second line in characteristic 2, these ideals are not
invariant under the action of the automorphisms of R fixing (x, y2). Thus the
proposition follows.
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Proposition 7.3. Let I be an ideal in K[[x, y]] constructed from the ideals
(x, y4) and (x, y) (respectively (x, y3) and (x2, y)). Consider K[[x, y]] as a graded
ring by letting x have weight n − m and y have weight 2n − 3m (respectively,
letting x have weight n + m and y have weight n + 2m). Then each graded piece
of the monomial ideal I+(m, n) has the same dimension as the respective graded
piece of the monomial ideal I−(m, n).

Proof. The ideal I(m, n) is the direct sum of homogeneous pieces. Thus, the
dimensions of each graded piece of the monomial ideals I+(m, n) and I−(m, n)
must be the same as those of I(m, n).

The idea of the next proposition is that while the exponent vector correspond-
ing to a monomial ideal in F̄ (I) may be some work to calculate, one can more
easily calculate the vector going from two such exponent vectors corresponding
to two ideals. From the relative position of the two exponent vectors, one may
be able to argue that they are vertices joined by an edge in the convex hull of
all the exponent vectors of coordinate functions embedding F (I) as described
earlier.

Proposition 7.4. Let I be an ideal of measuring sequence {4, 1} or {3, 2}.
Given ideals I1 = I+(m1, n1) and I2 = I+(m2, n2) with

m1

n1
<

m2

n2
,

let p1 be the product of the monomials in I1 not in I2 and let p2 be the product
of monomials in I2 not in I1. Let α and β be the integers such that

p1

p2
=

xα

yβ
.

If it is not possible to express
2α− β

3α− β

as the median of two distinct fractions strictly between
m1

n1
and

m2

n2

then I1 = I−(2α− β, 3α− β) and I2 = I−(2α− β, 3α− β).

Proof. The idea behind this proposition is that if the points P1 and P2 corre-
sponding to I1 and I2 have certain relative positions in the polygon from which
the fan ∆(I) is derived, then the convexity of the polygon forces the edge join-
ing them to be an edge of the polygon. In particular, if the edge to the left of
P1 has left endpoint P3 distinct from P2, then by convexity, the slopes of the
line segments joining P3 to P1 and P2 must be between the slopes of the line
segments of the edges of the polytope to the right of P1 and to the left of P2.
This translates into the statement of the proposition.
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In the following theorem, we apply the techniques we have developed so far
to determine the monomial ideals that the ideal (x, y4)n can degenerate for any
positive integer n. In addition, we give a conjecture describing all the ideals
that (x, y4)n can degenerate to. We also describe the obstruction to proving this
conjecture.

Theorem 7.1. Let I denote the monomial ideal (x, y4) in K[[x, y]]. The mono-
mial ideals that In can degenerate to (up to exchanging x and y) can be de-
scribed as follows. Let J(w1, w2, w) denote the monomial ideal generated by
monomials xcyd with cw1 + cw2 ≥ w. Then up to permuting variables there are
[3(n + 1)/2] monomial ideals that In can degenerate to, including itself. These
are In, (x2, y2)n and the ideals J((r + 1)2, r2, 2(r + 1)rn) for 2 ≤ r ≤ n and
r = 2s for 2 ≤ s ≤ n.

Proof. We will show that the rays in the fan ∆(In) are those through the points
(−1, 0), (0,−1), (2, 1), (4m, 2m − 1) for 0 ≤ m ≤ n − 1 and (2m + 1, m) for
3 ≤ 2m+3 ≤ n. The monomial ideals that In can degenerate to are in bijection
with the [3(n + 1)/2] cones in between the rays of ∆(In) (up to exchanging x
and y). Translating the ideals J((r + 1)2, r2, 2(r + 1)rn) into sequence notation,
it remains to prove the following.

1. In−(−1, 0) = In+(2, 1) = (x2, y2)n.
2. In−(2, 1) = I(1, . . . , 1︸ ︷︷ ︸

n

, 2, 1, . . . , 1︸ ︷︷ ︸
n−1

) = In+(4n− 4, 2n− 3).

3. Let s = 3, 2, 2, 2. Define the sequence tn corresponding to a boundary
ideal of F (In) inductively by letting t0 be the empty sequence, t1 = 1, 2,
t2 = 2, 2, 2 and tn = tn−3s for n ≥ 3. Then In+(0,−1) = In−(1, 0) = I(tn).

4. Let
s0 = 2, 1, . . . , 1︸ ︷︷ ︸

m−1

, 2, 1, . . . , 1︸ ︷︷ ︸
m

, 2, 1, . . . , 1︸ ︷︷ ︸
m

, 2, 1, . . . , 1︸ ︷︷ ︸
m

, 2,

and

sn = 1, . . . , 1︸ ︷︷ ︸
m−n

, 2, 1, . . . , 1︸ ︷︷ ︸
m

, 2, 1, . . . , 1︸ ︷︷ ︸
m

, 2, 1, . . . , 1︸ ︷︷ ︸
m

, 2, 1, . . . , 1︸ ︷︷ ︸
i

for 1 ≤ n ≤ m.
Define tn inductively by

tn =




the empty sequence for n = 0
1, . . . , 1︸ ︷︷ ︸

n

, 2, 1, . . . , 1︸ ︷︷ ︸
n−1

for 1 ≤ n ≤ m + 1

1, . . . , 1︸ ︷︷ ︸
n−m−2

, 2, 1, . . . , 1︸ ︷︷ ︸
m

, 2, 1, . . . , 1︸ ︷︷ ︸
m

, 2, 1, . . . , 1︸ ︷︷ ︸
n−m−2

for m + 2 ≤ n ≤ 2m + 2,

tn−2m−3sj for j + 1 ≡ n (mod m + 1)
and n ≥ 2m + 3.

Then In+(4m, 2m− 1) = In−(2m + 1, m) = I(tn).
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5. Let

sn =




2, 1, . . . , 1︸ ︷︷ ︸
m−1

, 2, 1, . . . , 1︸ ︷︷ ︸
m−1

, 2 for n = 0,

1, . . . , 1︸ ︷︷ ︸
m−n

, 2, 1, . . . , 1︸ ︷︷ ︸
m−1

, 2, 1, . . . , 1︸ ︷︷ ︸
n

for 1 ≤ n ≤ m,

1, . . . , 1︸ ︷︷ ︸
2m−n

, 2, 1, . . . , 1︸ ︷︷ ︸
m

, 2, 1, . . . , 1︸ ︷︷ ︸
n−m−1

for m + 1 ≤ n ≤ 2m,

tn =




the empty sequence for i = 0
1, . . . , 1︸ ︷︷ ︸

n

, 2, 1, . . . , 1︸ ︷︷ ︸
n−1

for 1 ≤ n ≤ m

tn−m−1sj for j + m + 1 ≡ n (mod 2m + 1)
and n ≥ m + 1.

Then In+(2m− 1, m− 1) = In−(4m, 2m− 1) = I(tn).
Since I+(2, 1) = (x2, y2), by Proposition 7.1, In+(2, 1) = (x2, y2)n for all n.

By induction on n, for n ≥ 2 the ideal In−(2, 1) contains

In−1+(2, 1)I+(2, 1) = I(1, . . . , 1︸ ︷︷ ︸
n

, 2, 1, . . . , 1︸ ︷︷ ︸
n−2

, 2).

Proposition 7.3 shows that In−(2, 1) contains y2n+1. Checking colengths, this
forces

In−(2, 1) = I(1, . . . , 1︸ ︷︷ ︸
n

, 2, 1, . . . , 1︸ ︷︷ ︸
n−1

).

By Proposition 7.2, we have I2+(0,−1) = I2+(1, 0) = I(2, 2, 2), I3+(0,−1) =
I3−(1, 0) = I(3, 2, 2, 2), and I3+(1, 0) = I(1, 2, 2, 2, 1). By Proposition 7.1 it
follows that In+(0,−1), In−(1, 0), and In+(1, 0) are as claimed.

We will verify the rest by induction on n. We have verified the theorem for
n = 1 in the example in the previous section. Supposing that F (Ik) is as claimed
for k < n we will verify that F (In) is as claimed. The fourth claim holds for all
m, except possibly m ≤ n−2 and m = n−3

2 , by Proposition 7.1. For n > 2m+3
and ti as defined in (4) we have

I(tn) = I(t2m+3)I(tn−(2m+3)) + I(tm+1)I(tn−(m+1)).

For m + 2 < n < 2m + 3 and ti as defined in (4) we have

I(tn) = I(tm+2)I(tn−(m+2)) + I(tm+1)I(tn−(m+1)).

The fifth claim holds for m except m ≥ n− 1 and m = n−1
2 by Proposition 7.1.

For n > 2m + 1 and ti as defined in (5)

I(tn) = I(t2m+1)I(tn−(2m+1)) + I(tm+1)I(tn−(m+1)).

For m + 1 < n < 2m + 1 and ti as defined in (5) we have

I(tn) = I(tm)I(tn−m) + I(tm+1)I(tn−(m+1)).
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Using the inductive hypothesis on n, it remains to verify (4) for 3 ≤ n ≤ m+2,
(5) for 3 ≤ n ≤ m + 1, (4) for n = 2m + 3 ≥ 5 and (5) for n = 2m + 1 ≥ 5. We
begin with the first two of these claims. We have already shown that

In−(2, 1) = I(1, . . . , 1︸ ︷︷ ︸
n

, 2, 1, . . . , 1︸ ︷︷ ︸
n−1

)

and
In−(4n− 8, 2n− 5) = I(1, 2, 1, . . . , 1︸ ︷︷ ︸

n−3

, 2, 1, . . . , 1︸ ︷︷ ︸
n−3

, 2, 1).

It remains to find the monomial ideals in between these two ideals. By Propo-
sition 7.1 these ideals contain the ideal

I(1, 2)I(1, . . . , 1︸ ︷︷ ︸
n−1

, 2, 1, . . . , 1︸ ︷︷ ︸
n−2

) = I(1, . . . , 1︸ ︷︷ ︸
n

, 2, 1, . . . , 1︸ ︷︷ ︸
n−2

, 2).

This forces

I+(n, (2n− 5, 4n− 8)) = I(2, 1, . . . , 1︸ ︷︷ ︸
n−2

, 2, 1, . . . , 1︸ ︷︷ ︸
n−2

, 2).

By Proposition 7.4, there are no ideals between this ideal and the ideal In−(2, 1).
Thus these two ideals are on the boundary divisor corresponding to the ray
through the point (4n− 4, 2n− 3).

For n ≥ 5, it remains to prove (4) for n = 2m + 3 and (5) for n = 2m + 1
assuming they hold for all smaller n. Let r be an integer greater than 1 and let
n = 2r + 1. Given that

In−(2(n− 3), n− 4) =


I(1, 2, 2, 2, 1, 2, 2, 2) if r = 2
I(1, 2, 1, . . . , 1︸ ︷︷ ︸

r−2

, 2, 1, . . . , 1︸ ︷︷ ︸
r−2

, 2, 1, . . . , 1︸ ︷︷ ︸
r−2

, 2, 1, . . . , 1︸ ︷︷ ︸
r−1

, 2, 1) if r > 2,

In+(2(n− 1), n− 2) = I(1, . . . , 1︸ ︷︷ ︸
r−1

, 2, 1, . . . , 1︸ ︷︷ ︸
r

, 2, 1, . . . , 1︸ ︷︷ ︸
r

, 2, 1, . . . , 1︸ ︷︷ ︸
r−1

),

and that any ideal between these two must contain

I(1, . . . , 1︸ ︷︷ ︸
r

, 2, 1, . . . , 1︸ ︷︷ ︸
r−1

, 2, 1, . . . , 1︸ ︷︷ ︸
r−1

, 2, 1, . . . , 1︸ ︷︷ ︸
r−1

)

Proposition 7.3 forces

In−(2(n− 1), n− 2) = I(1, . . . , 1︸ ︷︷ ︸
r

, 2, 1, . . . , 1︸ ︷︷ ︸
r−1

, 2, 1, . . . , 1︸ ︷︷ ︸
r−1

, 2, 1, . . . , 1︸ ︷︷ ︸
r

)

and

I+(n, (n− 4, 2(n− 3)) = I(2, 1, . . . , 1︸ ︷︷ ︸
r−2

, 2, 1, . . . , 1︸ ︷︷ ︸
r−1

, 2, 1, . . . , 1︸ ︷︷ ︸
r−1

, 2, 1, . . . , 1︸ ︷︷ ︸
r−1

, 2).
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Since there can be no ideals between these last two ideals, they both lie on the
boundary divisor corresponding to the ray through the point (n − 2, n−3

2 ). By
induction on n, we have proved the theorem.

The following conjecture describes the entire boundary of the space F̄ (In).

Conjecture 7.1. Let I be the ideal (x, y4). Recall that the rays in the fan
∆(In) are those through the points (−1, 0), (0,−1), (2, 1), (4m, 2m − 1) for
0 ≤ m ≤ n − 1 and (2m + 1, m) for 3 ≤ 2m + 3 ≤ n. Given a ray through a
point (4m, 2m− 1), let f = b2m−1x2m+1 + a4my2m+3. Then

In(4m, 2m− 1) =
∑

i

f iJ(2m + 3, 2m + 1, 4(m + 1)(n− (m + 1)i)).

Given a ray through (2m + 1, m) in ∆(In), let

f = (bmxm+1 + a2m+1ym+2x)4.

Then

In(2m + 1, m) =
∑

i

f iJ(m + 2, m + 1, (2m + 3)(n− (2m + 3)i)).

Moreover
In(2, 1) = (x, y)2n+3(x2, a2y − bxy)n.

The difficulty in proving this conjecture is not in finding all of the ideals for
a specific ray. This can always be done by Proposition 7.1. Rather, it is in
finding the coefficients for the polynomial f corresponding to each given ray.
This involves taking determinants of large matrices. We describe these matrices
in the next section.

8. Matrices and lattice paths

In the examples we have seen so far, the degenerations of the ideals have
not depended on the characteristic of the field we were working in. However,
this is something that we do not expect to happen in general. In this section,
we consider some examples where the degenerations of ideals do depend on the
characteristic. We will show that certain ideals can degenerate to others in
exactly those characteristics not dividing the determinants of certain matrices.
Considering the size and complexity of these matrices in the examples we will
study, their determinants have relatively simple proven or conjectural formulas.
These nice formulas all have interpretations in terms of the enumeration of lattice
paths. Recall that a lattice path from the lattice point (a, b) to the lattice point
(c, d) is a sequence of lattice points of minimal length starting at (a, b) and
ending at (c, d) so that the distance between any two successive lattice points is
1. Unfortunately, a deeper reason for this connection to lattice paths remains
elusive. Some of the matrices we will study will be binomial matrices, where the
interpretation of the determinant in terms of the enumeration of lattice paths
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was given by Gessel and Viennot [4]. For other matrices, the relation to lattice
paths comes from the fact that absolute values of the determinants form familiar
sequences.

The following Theorem gives us a way of relating the characteristics in which
a one dimensional limit of an ideal as in Theorem 5.1 has the same monomial
generators as in characteristic zero to the enumeration of lattice paths. In par-
ticular, for monomial ideals with orbit of dimension 2, the theorem determines
the characteristics in which the monomial ideal in the boundary has the same
generators as in characteristic 0.

Theorem 8.1. Let g(t) be an automorphism of R with g(t)y = y and g(t)x =
x + th where h is a monomial not divisible by x. Let x have the same weight
as h. Given a monomial ideal I ⊂ R, let M be a graded piece of I and T be
the set of integers a such that a basis of M is given by monomials of the form
xahd−af for a ∈ T and f a monomial of minimal degree. Then the limit of
g(t)M has the same monomial generators in characteristic p as in characteristic
0 if and only if for each graded piece M , p does not divide the number of sets of
non-intersecting lattice paths of cardinality |T | such that the ith lattice path goes
from (0, mi) to (i− 1, i− 1), where the mi’s are the elements of T in ascending
order.

Proof. The p-shift of a set T is the same as the 0-shift of T (i.e. p-shift in
characteristic 0) if and only if the characteristic p does not divide the divide the
determinant of the binomial matrix((

ai

bj

))

where the ai’s are the elements of T in descending order and the bi’s are the
elements of the 0-shift of T in descending order. This determinant is the number
of n-tuples of non-intersecting lattice path such that the ith lattice path goes
from (0, ai) to (bi, bi).

The p-shift of T is the same as the 0-shift of T in exactly those characteristics
not dividing the coefficient of the wedge product of powers of x with exponents
in the 0-shift of T in the wedge product of powers of (x + t) with exponents
in T . This coefficient is the determinant of the binomial matrix above. The
lattice path interpretation follows from Theorem 1 of [4]. The rest follows from
Theorem 5.1.

In many cases these generators do not depend on the characteristic. For
example, we have the following corollary.

Corollary 8.1. If T is a set of consecutive integers, then the p-shift of T is
independent of the characteristic p. In particular, if I is an ideal corresponding
to a sequence s, then if s consists of 2’s 3’s and 4’s, the monomial generators
of I−(1, 0) are independent of characteristic. Moreover, if s is a sequence of 3’s
and 4’s, the monomial generators of I−(−1, 0) are independent of characteristic.
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Proof. There is a unique n-tuple of non-intersecting lattice paths such that the
ith one goes from (0, i− 1 + k) to (i− 1, i− 1) for a fixed positive integer k.

We now turn our attention to ideals corresponding to a sequence s of the form

s = 4, . . . , 4︸ ︷︷ ︸
n1

, 3, 4, . . . , 4︸ ︷︷ ︸
n2

and their degenerations. Let I = I(s). From the corollary above, we know that

I−(0,−1) = I(1, . . . , 1︸ ︷︷ ︸
2n2+2

, 2, 0, . . . , 2, 0︸ ︷︷ ︸
n1

)

in all characteristics. By Proposition 7.2, in all characteristics except charac-
teristic 2, I−(2, 1) can be found by taking a one-dimensional limit of I−(0,−1).
This one-dimensional limit is mn1+2n2+2(xn1 , mn1+1) in all characteristics except
2 and those dividing the determinant of the n1 by n1 binomial matrix((

2(n1 + n2 + 2− i)
n1 − 2i + j + 1

))
.

By Theorem 26 (3.13) of [6], the determinant of this matrix is

2(n1+1
2 )f(n1, n1 + n2 + 1)/f(n1, n1)

where

f(r, n) =
[ 2r−1

4 ]∏
i=0

(
2(n− i)

2r − 4i− 1

)
.

By Theorem 1 of [4], this is the number of n1-tuples of non-intersecting lattice
paths such that the ith one goes from (2i−1, 2n1 +2n2 +2+ i) to (n1 + i, n1 + i).
This gives us a lattice path interpretation for the characteristics other than two
in which I can degenerate to mn1+2n2+2(xn1 ,mn1+1). The following conjecture
gives a lattice path interpretation in all characteristics.

Conjecture 8.1. Let I be the ideal

I(4, . . . , 4︸ ︷︷ ︸
n1

, 3, 4, . . . , 4︸ ︷︷ ︸
n2

).

Then I degenerates to mn1+2n2+2(xn1 ,mn1+1) in exactly those characteristics
not dividing the number of n1-tuples of non-intersecting lattice paths such that
the ith one goes from (2i− 1, n1 + n2 + 1 + i) to (n1 + i, n1 + i).

The number of lattice paths in the conjecture is the determinant of the n1 by
n1 matrix ((

n1 + n2 + 2− i

n1 − 2i + j + 1

))
.

This follows from Theorem 2.7.1 of [11]. By Theorem 26 (3.13) of [6], the
determinant of this matrix is f(n1, n1 + n2 + 1)/f(n1, n1).
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We note that for n1 equal to 2 or 3, there is another lattice path interpretation
for the determinants. Recall that one lattice path is said to dominate another
if it lies above that lattice path and shares the same endpoints, but no other
points. Let K(p, q) be the sum of squares of numbers of lattice paths dominating
each lattice path from the origin to (p, q). It was shown in [8] that

K(p, q) =
(p + q + 1)!(2p + 2q + 1)!

(p + 1)!(2p + 1)!(q + 1)!(2q + 1)!
.

For n1 = 2 the determinant of the matrix above is K(1, n2 + 1) and for n1 = 3
it is K(2, k + 1).

This conjecture can be verified (or shown to be false) for any individual value
of n1. We will verify it for n1 equal to 1, 2, 3, and 4 in Theorem 8.2. But, first
we lay the necessary groundwork.

Recalling the method of finding the closure of F̄ (I) by coordinate functions
cambn, we observe that these coordinate functions are determinants of matri-
ces with rows corresponding to monomials in I and columns corresponding to
monomials in the wedge product of monomials corresponding to the coordinate.
The difficulty is not in finding the powers of a and b in the coordinate function,
which can be determined by the lemma below, but in finding the coefficient c.

Example: Let I be the ideal (x, y4). The monomials in I not common to all
ideals in F (I) are x and xy. The monomials in (x2, xy, y3) not common to all
ideals in F (I) are y3 and xy. Thus, the coordinate function for the embedding of
F (I) corresponding to the ideal (x2, xy, y3) is the determinant of a 2× 2 matrix
with rows corresponding to g(a, b)(x) and g(a, b)(xy), columns corresponding to
y3 and xy, and entries giving the respective coefficients. This is the matrix[

b 0
a 1

]
.

Without writing down any matrix, we could have have predicted that the
determinant would be of the form cb for some integer c using the following
lemma.

Lemma 8.1. Let I be an ideal in K[[x, y]] with measuring sequence {4, 1} (re-
spectively {3, 2}). Let K[[x, y, a, b]] be a graded ring by giving x weight (1, 0),
y weight (0, 1), a weight (1,−2) and b weight (1,−3) (respectively (-1,1)). The
product of monomials corresponding to the rows must have the same weights as
the product of the monomials corresponding to the columns times the determi-
nant.

Proof. The weights are chosen so that g(a, b) sends monomials to homogeneous
elements.

There seems to be no easy way to predict the coefficients of such matrices.
This is the obstruction to proving the conjecture in the previous section. This
coefficient can however be picked out by setting a and b equal to 1 in the matrix
before taking the determinant.
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Notation: Given two monomial ideals I and J of the same colength in K[[x, y]],
let α(I, J) denote the coefficient of the coordinate function corresponding to J
for the embedding of F (I). We specify the sign of α(I, J) as follows. Let x have
weight 2 and y have weight one. Give monomials in x and y the ordering such
that higher weights come before lower weights and such that among monomials
of the same weight, those with higher power of y come first. We make the
convention that α(I, J) is the coefficient of the term having a wedge product of
monomials in J in descending order in the wedge product of g(a, b) images of
monomials in I in descending order.

If I corresponds to a sequence of 2’s 3’s and 4’s and J corresponds to a
sequence of 1’s and 2’s, we can describe the matrix whose determinant gives
α(I, J). Let v(1) and v(2) be the vectors giving the numbers of monic monomials
in I and J of each weight, starting with the highest weight for which I has any
such ideals and going in descending order to the lowest such weight. Let v(i, j)
be the jth entry of v(i). Let v(3) be the vector of ascending positive integers with
the number of m’s being two less than the mth to last element in the sequence
corresponding to I. Let Mk(n1, n2) be the n1 by n2 matrix with entry

(
k

j−i

)
in the ith row and jth column. Let M(v(1), v(2), v(3)) be the matrix made up
of rows and columns of submatrices and the submatrix in the ith row and jth

column of submatrices being(
v(3, i)
j − i

)
M(v(3,i)

j−i )+i−j(v(1, i), v(2, j)).

An example is given in Figure 1. The determinant of this matrix is
α(I(4, 4, 4), I(1, 1, 1, 2, 1, 1)). From Theorem 7.1, we know this has to be a unit.

Theorem 8.2. Conjecture 8.1 holds for n1 from 0 to 4.

Proof. Let In1,n2 be the ideal

I(4, . . . , 4︸ ︷︷ ︸
n1

, 3, 4, . . . , 4︸ ︷︷ ︸
n2

)

and Jn1,n2 be the ideal mn1+2n2+2(xn1 , mn1+1).
By Theorem 5.1 and Proposition 7.2 the ideal I−n1,n2

(2, 1) is Jn1,n2 in charac-
teristic zero. Therefore, In1,n2 degenerates to Jn1,n2 in exactly those character-
istics not dividing α(In1,n2 , Jn1,n2). The matrix having α(In1,n2 , Jn1,n2) as its
determinant, as described above, is a block lower triangular matrix with only
the last block possibly having a nontrivial determinant. If n1 = 0, all blocks are
trivial. Otherwise, the last block is the matrix M(v(1), v(2), v(3)) where v(1),
v(2) and v(3) are the vectors of length 2n1 given by

v(1) = 2n1 − 1, 2n1 − 1, 2n1 − 3, 2n1 − 3, . . . , 3, 3, 1, 1,

v(2) = 2n1, 2n1 − 1, . . . , n1 + 2, n1 + 1, n1 − 1, n1 − 2, . . . , 1, 0
and

v(3) = n2 + 1, n2 + 1, n2 + 2, n2 + 2, . . . .
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


1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 2 2 0 0 0 1 2 1 0 0 0 0
0 1 0 0 0 0 0 2 2 0 0 0 1 2 1 0 0 0
0 0 1 0 0 0 0 0 2 2 0 0 0 1 2 0 0 0
0 0 0 0 0 0 1 0 0 0 0 2 2 0 0 1 2 0
0 0 0 0 0 0 0 1 0 0 0 0 2 2 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 2 2 0 0 0
0 0 0 0 0 0 1 0 0 0 0 3 3 0 0 3 6 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 3 3




Figure 1. M((5,5,3,3,1,1), (6,5,4,2,1,0), (1,1,2,2,3,3))

The determinant of the matrix M(v(1), v(2), v(3)) is a polynomial in n2 and
hence it is enough to check finitely many values to verify the theorem for each
value of n1. We have checked these for n1 ≤ 4.
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