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PROOF AND INTERPRETATION OF A STRING DUALITY

Jian Zhou

Abstract. We announce the proof of a conjecture of Iqbal on the relationship
between multiple covering formula in Gromov-Witten theory with Wess-Zumino-
Witten theory. We interpret it in terms of localizations on moduli spaces of stable
maps to the projective line, using the recently proved Mariño-Vafa formula for
Hodge integrals.

1. Introduction

1.1. The string duality. Duality in physics literature means the equivalence
of different quantum field theories. For example, mirror symmetry is a duality in
string theory which through intensive researches in the past two decades is more
or less mathematically well understood; the physical Seiberg-Witten theory is
concerned with the equivalence of the Donaldson theory and the mathemati-
cal Seiberg-Witten theory. In recent years, many more dualities have arisen in
string theory. See e.g. [32] for an exposition. Most of the string dualities re-
main very mysterious, lacking mathematical understandings. We now announce
an approach to mathematically understand an important special case by some
techniques well-known in both mathematics and string theory. More precisely,
we will prove a conjecture by Iqbal [11] on a relationship between the Wess-
Zumino-Witten (WZW) theory and the multiple covering formula in enumera-
tive geometry of Calabi-Yau threefolds. We also give an interpretation in terms
of localization on moduli spaces of stable maps to P1, using the recently proved
Mariño-Vafa formula for Hodge integrals [24, 25]. The details of the proof and
its generalization to the proof of Iqbal’s conjecture in general local Calabi-Yau
toric geometry will appear in [42].

1.2. Multiple covering formula. Denote byMg,0(P1, d) the moduli space of
stable maps to P1 of degree d. Let O(−1)g

d be the bundle onMg,0(P1, d) whose
fiber at a map f : C → P

1 representing a point in the moduli space is given by

H1(C, f∗O(−1)).

Define

Kg
d =

∫
[Mg,0(P1,d)]vir

e(O(−1)g
d ⊕O(−1)g

d),
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and its generating series:

Finst(λ) =
∑
d>0

∑
g≥0

Kg
dλ2g−2td.

The multiple covering formula is the following identity proved in [7]:

Finst(λ) =
∑
d>0

1
d

td

(2 sin(dλ/2))2
.(1)

Equivalently,

Kg
d =




1
d3 , g = 0,
1

12d , g = 1,
|B2g|·d2g−3

2g·(2g−2)! , g ≥ 2.

The g = 0 case was established in [2, 27, 35, 20], the g = 1 case in [3, 10]. In
physics O(−1)⊕O(−1)→ P

1 is regarded as an open Calabi-Yau three-fold, and
Finst is the instanton piece of the free energy of the A-model closed string theory
on it.

1.3. Physical backgrounds. Relationship of the multiple covering formula
with the WZW theory is derived in physics literature by the following ideas:
geometric transition, Chern-Simons theory as string theory, ’t Hooft large N
expansion, relationship between Chern-Simons theory and WZW theory.

1.3.1. Conifold transition. There are two procedures to remove a rational dou-
ble point in a Calabi-Yau three-fold. Under suitable deformations the singular
point gets replaced by a copy of S3 which locally is the same as the zero section
in T ∗S3. One can also replace the singular point by a copy of P1 with normal
bundle O(−1) ⊕ O(−1). There are two different ways of doing this, and the
resulting spaces are related by a flop. Locally, one performs surgery on the P1

lying at the zero section of O(−1) ⊕ O(−1) by replacing it with a copy of S3,
then the resulting space can be identified with T ∗S3 (cf e.g. [9]). This process
is called the conifold transition in the physics literature.

1.3.2. Relationship with Chern-Simons theory. In [37] Witten proposed a re-
lationship between the open string theory of T ∗M of a three-manifold M and
the Chern-Simons theory on M for SU(N), by large N ’t Hooft expansion.
Gopakumar and Vafa [8] conjectured that under the conifold transition, the
large N Chern-Simons theory on S3 is dual to the A-model closed string theory
on O(−1)⊕ (−1)→ P

1. See also [9]. This conjecture was further tested in [29].
In connection with Witten’s work [36] on relationship between Chern-Simons
theory and link invariants, this duality leads to the idea that both open and
string invariants are related to link invariants. This has been checked for many
cases [16, 31, 17, 28, 33]. Closed string invariants for more complicated geome-
tries, such as local toric del Pezzo surfaces, have been calculated also from the
Chern-Simons theory using geometric transition [5, 6, 1].
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1.3.3. WZW theory. Another important idea in the seminal paper [36] is the
relationship between Chern-Simons theory and WZW theory. In mathematics
WZW theory is the representation theory of affine Kac-Moody algebras. See
e.g. [15]. For a fixed integer k, there are only finitely many integrable highest
weight representations of level k of an affine Kac-Moody algebra up to equiva-
lences. Denote their characters by χ0(τ), . . . , χn(τ). Then there are holomorphic
functions Sij(τ), such that

χi(−1
τ

) =
∑

j

Sij(τ)χj(τ).

From this one can construction a representation of a double covering of SL(2,Z)
(cf. [34]).

1.4. Iqbal’s conjecture. In [11] Iqbal proposed a method to compute closed
string invariants in local toric Fano geometries by WZW theory by interpreting
the associated 5-brane web as a Feynman diagram.

1.4.1. General remarks on Feynman rules. In a quantum field theory one is
concerned with a certain Feynman integral which gives the correlation function
Z of the theory. The Feynman integral usually depends on a parameter λ called
the coupling constant. When λ is small, one is in the regime of weak coupling,
where perturbative method is applicable. More precisely, one can expand Z(λ)
as a power series

Z(λ) =
∑
g≥0

Zgλ
2g−2,

the coefficients of which received contributions from terms indexed by some
graphs, called the Feynman diagrams. Here g is the genus of the Feynman
diagram. The Feynman rule determines the contribution of a Feynman diagram
to the Feynman integral as follows: It is a product of factors indexed by the
edges and the vertices, divided by the order of the automorphism group of the
graph. The factor for an edge is called a propagator, and the factor for a vertex is
called an interaction vertex. One of the most important problems in a quantum
field theory is the determination of the Feynman diagrams and the Feynman
rule.

1.4.2. The conjecture. Recall the 5-brane web is a graph that encodes the rel-
evant toric geometry [18]. Motivated by a lattice model interpretation of the
calculations in [1], Iqbal [11] defines the propagators and vertices in terms of
WZW theory. He makes many conjectures for the partition functions of various
local toric geometries. To state his conjecture for O(−1)⊕O(−1)→ P

1, we need
some notations. For a partition η = (η1 ≥ · · · ≥ ηl > 0), define

κη = |η|+
l∑

i=1

ηi(ηi − 2i),
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and

Wη = qκη/4
∏

1≤i<j≤l

[ηi − ηj + j − i]
[j − i]

l∏
i=1

ηi∏
v=1

1
[v − i + l]

,

where

[x] = q
x
2 − q−

x
2 = e

√−1λ/2 − e−
√−1λ/2.

Here

q = e
√−1λ.

The series Wη arise in WZW theory as the leading term of certain coefficients
of the S matrix. See [1, 11] for details.

For example,

W(1) =
1

(q1/2 − q−1/2)2
,

W(2) =
q

1
2

(q − 1−1)2(q1/2 − q−1/2)2
,

W(1,1) =
q−

1
2

(q − 1−1)2(q1/2 − q−1/2)2
,

In general, by results from an earlier work [40],

Wη =
qκη/4∏

x∈η(qh(x)/2 − q−h(x)/2)
,

where x denotes a square in the Young diagram of η, and h(x) denotes its hook
length.

Conjecture 1. [11] The instanton piece of the partition function of O(−1) ⊕
O(−1)→ P

1 is given by:

−Finst = log(1 +
∞∑

n=1

In)

=I1 + {I2 − 1
2
I2
1}+ {I3 − I2I1 +

1
3
I3
1}+ · · · ,

(2)

where

In =
∑
|η|=n

W2
η .

Using the explicit expressions forWη Iqbal has verified his conjecture in some
low degrees.
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1.5. Our results. We announce the following result. The details will appear
in [42]:

Theorem 1.1. Iqbal’s conjecture is true. Furthermore, we have

Finst = log(1 +
∞∑

n=1

(−1)nJn)

=− J1 + {J2 − 1
2
J2

1} − {J3 − J2J1 +
1
3
J3

1}+ · · · ,
(3)

where
Jn =

∑
|η|=n

WηWη′ .

Here η′ denotes the partition whose Young diagram is the conjugate of that of η.

1.5.1. Interpretation by localization. Even though our proof of (2) and (3) can
be presented in terms of only standard techniques from algebraic combinatorics
of symmetric functions (cf. §6), we arrive at it by localization onMg,0(P1, d) as
in the proof of (1) by Faber and Pandharipande [7]. We use the following key
ideas:

(1) the graphs arising in the localization calculations can be interpreted as
Feynman diagrams,

(2) localizations give rise to Feynman rules which involves Hodge integrals
exactly as in the Mariño-Vafa formula (cf. §7.1);

(3) one can use bosonic Fock space and Wick theorem to produce the local-
ization graphs (cf. Theorem 5.1).

The first two ideas first appear in [41]. The third is standard in string theory.
The bosonic Fock space can be realized as the space of symmetric function.

The key ingredients of our proof will be explained in the following sections.
The details will appear in a separate paper [42].

2. Combinatorial Preliminaries

We use Macdonald’s book [26] as our reference. Most of the result in this
section are proved in [40] for the purpose of getting initial values for the cut-
and-join equations for Hodge integrals in the Mariño-Vafa formula.

2.1. Partitions. A partition of a positive integer d is a sequence of integers
n1 ≥ n2 ≥ · · · ≥ nl > 0 such that n1 + · · ·+ nl = d. We write

|η| = d, l(η) = l, 'n(η) = (n1, . . . , nl).

Denote by mj(η) the number of j’s among n1, . . . , nl. Each partition η of d
corresponds to a conjugacy class Cη of Sd. Denote by C(2) the conjugacy class
of transpositions. The number of elements in Cη is

|Cη| = d!
zη

,
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where
zη =

∏
j

mj(η)!jmj(η).

Denote by (−1)g the sign of an element in Sd. It is easy to see that

(−1)g = (−1)|η|−l(η),

for g ∈ Cη.
Another way of representing a partition is by the Young diagrams: The Young

diagram of η has mj(η) rows of boxes of length j. The partition corresponding
to the transpose of the Young diagram of η will be denoted by η′. The number
of squares in the i-th row of η′ will be written as η′i. For a partition η, define

n(η) =
∑

i

(i− 1)ηi =
∑

i

(
η′i
2

)
.

For any square e ∈ η, denote by h(e) its hook length. Then one has (cf. [26]):∑
e∈η

h(e) = n(η) + n(η′) + |η|.(4)

2.2. Representations of symmetric groups. Each partition λ corresponds
to an irreducible representation Rλ of Sd. For example, R(d) corresponds to the
trivial representation, R(1d) corresponds to the sign representation. The value
of the character χRλ

on the conjugacy class Cη is denoted by χλ(η). Set

cη =
∑

g∈Cη

g.

Since cη lies in the center of the group algebra CSd, it acts as an scalar fρ(η) on
any irreducible representation Rρ. Now

dimRρ · fρ(η) = tr |Rρcη =
∑

g∈Cη

tr |Rρg = |Cη|χρ(η),

hence

fρ(η) = |Cη| χρ(η)
dimRρ

=
d!

dimRρ
· χρ(η)

zη
.

See [40] for the following properties of these numbers:

Proposition 2.1. Each fρ(η) is an integer. Furthermore,

fρ(2) =
1
2
κρ,(5)

fρ′(η) = (−1)|η|−l(η)fρ(η),(6)
1
2

∑
e∈ρ

h(e)− n(ρ) =
1
2
(fρ(2) + |ρ|).(7)
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2.3. A technical result. Denote by Λ the space of symmetric functions. Let
pi be the i-th Newton function. I.e.,

pi(x1, . . . , xn, . . . ) = xi
1 + · · ·+ xi

n + · · · ,
where x1, . . . , xn, . . . are formal variables. For a partition η = (η1 ≥ · · · ≥ ηl >
0), define

pη = pη1 · · · pηn .

Then {pη} form a basis of Λ. The following result proved in [40] for other
purposes plays an essential role in our proof of (2) and (3).

Theorem 2.1. we have the following identity:

log


∑

n≥0

∑
|ρ|=n

e
1
2 fρ(2)

√−1λ∏
e∈ρ 2

√−1 sin(h(e)λ/2)
χρ(η)

zη
pη


 =

∑
d≥0

√−1pd

2d sin(dλ/2)
.(8)

Let us briefly recall the proof. Denote by sρ the Schur function associated to
a partition ρ. Recall the following facts about Schur functions [26]:

sρ(x) =
∑

η

χρ(η)
zη

pη(x),(9)

sρ(1, q, q2, . . . ) =
qn(ρ)∏

e∈ρ(1− qh(e))
,(10)

∑
n≥0

tn
∑
|ρ|=n

sρ(x)sρ(y) =
1∏

i,j(1− txiyj)
.(11)

Combining these three identities, one gets:

∑
n≥0

tn
∑
|ρ|=n

qn(ρ)∏
e∈ρ(1− qh(e))

χρ(η)
zρ

pη =
1∏

i,j(1− txiqj−1)
.(12)

When q = e−
√−1λ, and t =

√−1q1/2, the left-hand side of (12) can be identified
with ∑

n≥0

∑
|ρ|=n

e
1
2 fρ(2)

√−1λ∏
e∈ρ 2

√−1 sin(h(e)λ/2)
χρ(η)

zρ
pη.

On the other hand, take logarithm of the right-hand side of (12), one gets:

log
1∏

i,j(1− txiqj−1)
=

∑
d≥1

√−1pd

2d sin(dλ/2)
.

3. Heisenberg Algebra and Free Boson System

We recall in this section some standard results from bosonic string theory.
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3.1. Heisenberg algebra and bosonic Fock space. The space Λ admits an
action of the Heisneberg algebra as follows. Define operators {βn}n∈Z on Λ by:

βn(f) =




p−nf, n < 0,

0, n = 0,

n ∂
∂pn

f, n > 0.

For a partition η of length l define:

βη = βη1 · · ·βηl
, β−η = β−η1 · · ·β−ηl

.

Then we have:

[βm, βn] = mδm,−n,

βn1 = 0, n ≥ 0,

pη = β−η1.

In other words, Λ is the bosonic Fock space in which 1 is the vacuum vector |0〉.
Define a Hermitian metric on Λ such that

〈pµ, pν〉 = zµδµν .

Then in this metric, one has:

β∗n = β−n,

for n ∈ Z.

3.2. Vacuum expectation values and Wick theorem. Following physi-
cists’ notations, we will write the inner product of A|0〉 with |0〉 as

〈0|A|0〉,
where A is a linear operator on Λ. It is called the vacuum expectation value
(vev) of A, and will simply be denoted as

〈A〉.
We will be interested in the vev of operators of the form βµβ−ν which is given
by the Wick Theorem:

〈βµβ−ν〉 = δµ,νzµ.(13)

As a consequence one has:〈
exp(

∑
n≥1

antn

n
βn) exp(

∑
n≥1

a−ntn

n
β−n)

〉
= exp


∑

n≥1

ana−n

n
t2n


 .(14)
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4. Chemistry of Two-Colored Labelled Graphs

4.1. Two-colored labelled graphs. For a graph Γ, denote by E(Γ) the set
of edges of Γ, V (Γ) the set of vertices of Γ. The genus of the graph is given by:

g(Γ) = 1− |V (Γ)|+ |E(Γ)|.(15)

Recall the valence val(v) of a vertex v is the number of edges incident at v. Since
every edge has two vertices, one has the following identity:∑

v∈V (Γ)

val(v) = 2|E(Γ)|.(16)

We refer to a labelled graph with the following property as a two-colored
labelled graph. Each vertex v is labelled by i(v) = ±; each edge e is assigned a
degree de ∈ N, and its two vertices are marked by + and − respectively. The
degree of the graph is defined by:

d(Γ) =
∑

e∈E(Γ)

de.(17)

Denote by Gg({±}, d) the set of not necessarily connected two-colored labelled
graphs of genus g and degree d. The set of connected ones will be denoted by
Gg({±}, d)◦.

The two-colored labelled graphs will be regarded as Feynman diagrams. The
following are some low degree examples of connected two-colored labelled graphs
(up to degree 3):

+�������	 −�������	1

+�������	 −�������	2 +�������	 −�������	
1

1
−�������	 +�������	 −�������	1 1 +�������	 −�������	 +�������	1 1

+�������	 −�������	3 −�������	 +�������	 −�������	1 2 +�������	 −�������	 +�������	1 2

+�������	 −�������	
1

2
+�������	 −�������	 +�������	

1

1

1 −�������	 +�������	 −�������	
1

1

1 +�������	 −�������	
1
1
1

+�������	 −�������	 +�������	−�������	

+�������	

1
1

1 −�������	 +�������	 −�������	+�������	

−�������	

1
1

1 +�������	 −�������	 +�������	 −�������	1 1 1

Such graphs appear in the localization onMg,0(P1, d).
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4.2. Chemistry of two-colored labelled graphs. For the discussions below,
we introduce some terminologies. We will refer to a vertex together with all the
edges incident at it as an atom. If i(v) = ±, then we will say the vertex is a
±-atom. The edges will be referred to as the chemical bonds. The degree of a
bond is the degree of the edge. An ±-atom of type (d1, . . . , dn) is a vertex v such
that i(v) = ±, and edges incident at it have degrees d1, . . . , dn. For a partition
µ, denote by n±µ(Γ) the number of ±-atoms of type µ in Γ. The following result
is proved in [42]:

Lemma 4.1. For any Γ ∈ Gg({±}, d), we have:∏
µ

β
nµ(Γ)
−µ =

∏
µ

β
n−µ(Γ)
−µ ,(18)

d(Γ) =
∑

µ

n+(µ)(Γ)|µ| =
∑

µ

n−µ(Γ)|µ|,(19)

2g(Γ)− 2 =
∑

µ

n+(µ)(Γ)(lµ − 2) +
∑

µ

n−µ(Γ)(lµ − 2).(20)

We write

{nµ}µ ∼ {n−µ}µ
if they satisfy (18).

4.3. Automorphism group of two-colored labelled graphs. An automor-
phism of a two-colored labelled graph Γ consists of two one-to-one correspon-
dences: fV : V (Γ) → V (Γ) and fE : E(Γ) → E(Γ), with the following require-
ments.

• i(fV (v)) = i(v), for all v ∈ V (Γ);
• dfE(e) = de, for all e ∈ E(Γ);
• if v1, v2 ∈ V (Γ) are the two vertices of an edge e ∈ E(Γ), then fV (v1) and

fV (v2) are the two vertices of fE(e).

The following result is prove in [42] by Wick Theorem:

Lemma 4.2. Suppose {nµ}µ and {n−µ}µ are two collections of nonnegative
integers, labelled by partitions, which contain only finitely many nonzero integers
and satisfy (18). Then we have:〈∏

µ

1
nµ!

(
βµ

zµ

)nµ

·
∏
µ

1
n−µ!

(
β−µ

zµ

)n−µ
〉

=
∑
Γ

1
|AutΓ | ·

∏
e∈E(Γ) de

,

where the sum is taken over all graphs Γ ∈ Gg({±}, d) which satisfy:

{n±µ(Γ)} ∼ {n±µ}µ.
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5. Generalized Vertex Operators and Feynman Rule

5.1. Generalized vertex operators. Introduce

Y±(β) =
∑
d>0

∑
|µ|=d

w±µ
β±µ

zµ
λl(µ)−2t

d
2 ,

X±(β) = eY±(β).

In the following, we will see that the exponent of t is the degree, hence t will be
referred to as the degree tracking parameter. Similarly, the exponent of λ will
give 2g− 2, hence λ will be referred to as the genus tracking parameter. We will
consider the correlation function

Z = 〈X+(β)X−(β)〉,
and the free energy:

F = log Z.

5.2. Feynman rule. Now we regard X±(β) and Y±(β) as collections of ±-
atoms. Taking the vevs

〈Y+(β)Y−(β)〉
can be regarded as chemical reactions in which +-atoms are joined to −-atoms
by the chemical bonds. This is exactly the context of Wick theorem. The
following result is proved in [42] by Wick Theorem. It plays an essential role in
our interpretation by localizations.

Theorem 5.1. The following identities hold:

Z =
∑
d≥0

∑
g≥0

λ2g−2
∑

Γ∈Gg({±},d)

1
|AΓ|

∏
v∈V (Γ)

wv

∏
e∈E(Γ)

we,(21)

F =
∑
d>0

∑
g≥0

λ2g−2
∑

Γ∈Gg({±},d)◦

1
|AΓ|

∏
v∈V (Γ)

wv

∏
e∈E(Γ)

we.(22)

Here for a vertex v of type η with i(v) = ±,

wv = w±(η1,...,ηl);

for an edge e,
we = tde .

6. Proof of Iqbal’s Conjecture in the Case of Multiple Covering
Formula

Now we have all the ingredients to prove (2) and (3). We begin with the
former. We compute

Z(λ, t) = 〈eY+(β)eY−(β)〉,
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for

Y±(β) =
∑
n≥1

(−1)n−1

n

n∏
j=1

∑
νj

∑
|ηj |=|νj |

χηj (C(νj))
zνj

· Wηj t
|νj |
2 β±νj

by two different methods. We begin with the fact that:

X±(β) = eY±(β) = 1 +
∑

ν

∑
|η|=|ν|

χη(C(ν))
zν

· Wηt
|ν|
2 β±ν .

Now by (8),

X±(β) = exp


∑

d≥1

√−1t
d
2 β±d

2d sin(dλ/2)


 .

Hence by (14),

Z =

〈
exp


∑

d≥1

√−1t
d
2 βd

2d sin(dλ/2)


 exp


∑

d≥1

√−1t
d
2 β−d

2d sin(dλ/2)


〉

= exp


−∑

d≥0

td

d(2 sin(dλ/2))2


 .

On the other hand,

Z = 〈X+(β)X−(β)〉

=

〈
1 +

∑
ν

∑
|η|=|ν|

χη(C(ν))
zν

· Wηt
|ν|
2 βν




·

1 +

∑
ν

∑
|η|=|ν|

χη(C(ν))
zν

· Wηt
|ν|
2 β−ν


〉

= 1 +
∑

ν

∑
|η1|=|ν|

∑
|η2|=|ν|

χη1(C(ν))
zν

Wη1 ·
χη2(C(ν))

zν
Wη2t

|ν|zν

=
∑

|η1|=|η2|=d

δη1,η2Wη1W2t
d

= 1 +
∑
d>0

td
∑
|η|=d

W2
η .

Hence we have:

−
∑
d≥0

td

d(2 sin(dλ/2))2
= log


1 +

∑
d>0

td
∑
|η|=d

W2
η


 .(23)

This is exactly (2).



PROOF AND INTERPRETATION OF A STRING DUALITY 225

Identity (3) is proved in the same fashion by computing

Z(λ, t) = 〈eY+(β)eY−(β)〉,(24)

for

Y±(β) =
∑
n≥1

(−1)n−1

n

n∏
j=1

∑
νj

∑
|ηj |=|νj |

χηj (C(νj))
zνj

· Wηj t
|νj |
2 (±1)l(νj)β±νj(25)

by two different methods.

7. Interpretation by localizations on Mg,0(P1, d)

In this section we explain how to interpret (3) in terms of localizations on
Mg,0(P1, d).

7.1. Mariño-Vafa formula. A key observation is that by taking suitable
choices the localization techniques yield exactly the same Hodge integrals as in
the Mariño-Vafa formula. (This idea was first used by the author in [41] to
compute BPS numbers in local P2 and P1×P1 geometry.) So we will now recall
this formula as formulated in [38].

The open string theory forO(−1)⊕O(−1)→ P
1 have been studied in different

approaches. In [12] and [19] localization calculations have been carried out.
In [28] and many other related works, duality with Chern-Simons theory with
Wilson loop observables was used. By comparing with the results of [12], Mariño
and Vafa proposed a remarkable formula for Hodge integrals which we come to
recall. For a partition η of length l, introduce the following generating series for
Hodge integrals:

Cη(λ;α, β) =
∑
g≥0

λ2g

∫
Mg,h

Λ∨g (1)Λ∨g (α)Λ∨g (β)∏h
i=1

1
ni

( 1
ni
− ψi)

,

where Λ∨g (α) =
∑g

i=0(−1)iαg−iλi. Here the leading term is

|η|h−3 ·
l∏

i=1

η2
i(26)

in all cases. We will often write Cη(λ;α, β) as Cη(α, β) for simplicity of notations.
Then the Marino-Vafa formula is:

Cη(p,−p− 1)

=λ2−l(η) · 1
(p(p + 1))l(η)−1

·
l(η)∏
i=1

ηi · ηi!∏ηi−1
j=1 (j + ηip)

·
∏

j mj(η)!
√−1

l(η)

·
∑
n≥1

(−1)n

n

∑
∪n

j=1µj=η

n∏
j=1

∑
|νj |=|µj |

χνj (C(µj))
zµj

· e
√−1pκνj λ/2 · Wνj .

(27)

Some low degree cases of this formula has been proved by the author [39] (see
[38] for the announcement). In [40] we propose to prove the general case based
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on the cut-and-join equation. This has been carried in joint work with Chiu-Chu
Liu and Kefeng Liu [24, 25]. See [30] for a different approach.

7.2. From Localization on Mg,0(P1, d) to Feynman Rule. The localiza-
tions on the moduli spaceMg,0(P1, d) involve the description of the fixed point
set components on the moduli spaces and the computation of the equivari-
ant Euler class of their normal bundles; furthermore, one has to study the
restriction of the equivariant Euler classes of O(−1)g

d to the fixed point com-
ponents. Such calculations have been carried out in various contexts in e.g.
[14, 10, 20, 21, 22, 23, 4, 12, 19, 39]. As in [41] we formulate the results as
Feynman rules.

We use the following T (= S1)-action on P1:

e
√−1t · [z0 : z1] = [z0 : e

√−1tz1].

It has two fixed points

p0 = [1 : 0], p1 = [0 : 1].

At each fixed point pi, the induced action on the tangent space is given by:

e
√−1t · v = e

√−1(j−i)tv,

where {i, j} = {0, 1}. It is easy to see that

j − i = (−1)i.

The above T -action induces T -actions on Mg,0(P1, d). The fixed point com-
ponents of Mg,n(P1, d)T are very easy to describe. They are in one-to-one
correspondence with a set Gg(P1, d) of decorated graphs described below. Each
vertex v of the graph Γ ∈ Gg(P1, d) is assigned an index i(v) ∈ {0, 1}, and a
genus g(v). The valence val(v) of v is the number of edges incident at v. If two
vertices u and v are joined by an edge e, then i(u) �= i(v), and e is assigned a
degree de. Denote by E(Γ) the set of edges of Γ, V (Γ) the set of vertices of Γ.
The genus of the graph is given by

g(Γ) = 1− |V (Γ)|+ |E(Γ)|.
The decorations of Γ are required to satisfy the following conditions:∑

e∈E(Γ)

de = d,
∑

v∈V (Γ)

g(v) + g(Γ) = g.

Let f : C → P
1 represent a fixed point. When 2g(v) − 2 + val(v) > 0 the

vertex v corresponds to a connected component Cv of genus g(v), with val(v)
nodal points. The component Cv is mapped by f to the fixed point pi(v). When
2g(v)− 2 + val(v) ≤ 0, Cv is simply a point. There are only two cases: g(v) = 0
and val(v) = 1, g(v) = 0 and val(v) = 2. They will be referred to as the
type I and type II unstable vertices respectively. Each edge e corresponds to a
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component of C, isomorphic to P1. Each Ce is mapped to P1 with degree de,
which in suitable coordinates is given by:

[u0 : u1] �→ [ude
0 : ude

1 ].

Define
MΓ =

∏
v∈V (Γ)

Mg(v),val(v).

In this product, M0,1 and M0,2 are interpreted as points. There are natural
morphisms

τΓ :MΓ →Mg,0(P1, d).

Its image is MΓ/AΓ, where for AΓ we have an exact sequence:

0→
∏

e∈E(Γ)

Zde → AΓ → Aut(Γ)→ 1.

Given a graph Γ in Gg(P1, d), we call the labelled graph obtained from Γ by
ignoring the markings of g(v) of the vertices the type of Γ. Denote by G(P1, d)
the set of types of graphs in Gg(P1, d). Clearly Gg(P1, d) is exactly Gg({±}, d)
discussed above.

For k ∈ Z, a lifting of the T -action to Lk = OP1(k) is determined by the
weights a0 of Lk|[1:0] and a1 of Lk|[0:1]. It is easy to see that a0 − a1 = k.
Following [10], we say Lk is given the weights [a0, a1]. For example, the induced
action on TP1 has weights [1,−1], the cotangent bundle has weights [−1, 1].

For the two copies of O(−1), we use weights [p,−p−1] and [−p−1, p] respec-
tively to carry out the localization. Then we take the limit p → 0. This makes
sense because of the following observation. By localization we get an expression
of Finst as formal power series in t and λ whose coefficients are polynomials in p.
But Finst itself is independent of p, hence even though we obtain the expression
originally for integral p, it actually holds for all complex numbers of p, hence we
can take the limit. (It is interesting to compare with [7] where the localization
was done directly for p = 0 to prove (1).) As a result, we get the following:

Theorem 7.1. [42] We have the following Feynman rule:

Finst(λ, t) =
∑
g≥0

∑
d>0

λ2g−2td
∑

Γ∈Gg({±},d)

λ2g(Γ)−2

|AΓ|
∏

e∈E(Γ)

We

∏
v∈V (Γ)

Wv,(28)

where

We = tde/2,

Wv = (−1)i(v) val(v)λ2−val(v) · zµ(v)

·
∑
n≥1

(−1)n−1

n

∑
∪n

j=1νj=µ(v)

n∏
j=1

∑
|ηj |=|νj |

χηj (C(νj))
zνj

· Wηj .

By Theorem 5.1, this exactly corresponds to (24) and (25).
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