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CONNECTIONS WITH TORSION, PARALLEL SPINORS AND
GEOMETRY OF SPIN(7) MANIFOLDS

Stefan Ivanov

Abstract. We show that on every Spin(7)-manifold there always exists a unique
linear connection with totally skew-symmetric torsion preserving a nontrivial spinor
and the Spin(7) structure. We express its torsion and the Riemannian scalar cur-
vature in terms of the fundamental 4-form. We present an explicit formula for the
Riemannian covariant derivative of the fundamental 4-form in terms of its exterior
differential. We show the vanishing of the Â-genus and obtain a linear relation
between Betti numbers of a compact Spin(7) manifold which is locally but not
globally conformally equivalent to a space with closed fundamental 4-form. A
general solution to the Killing spinor equations is presented.

1. Introduction

Riemannian manifolds admitting parallel spinors with respect to a metric
connection with totally skew-symmetric torsion recently become a subject of
interest in theoretical and mathematical physics. One of the main reasons is that
the number of preserving supersymmetries in string theory depends essentially
on the number of parallel spinors. In 10-dimensional string theory, the Killing
spinor equations in the string frame can be written in the following way [43],
(see eg [30, 29, 16])

∇ψ = 0,(1.1)

(dΨ− 1
2
H) · ψ = 0,(1.2)

where Ψ is a scalar function called the dilation, H the 3-form field strength, ψ
a spinor field and ∇ a metric connection with totally skew-symmetric torsion
T = H. The number of preserving supersymmetries is determined by the number
of solutions of these equations.

The existence of a parallel spinor imposes restrictions on the holonomy group
since the spinor holonomy representation has to have a fixed point. In the
case of torsion-free metric connections (Levi-Civita connections) the possible
Riemannian holonomy groups are known to be SU(n), Sp(n), G2, Spin(7) [28,
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46]. The Riemannian holonomy condition imposes strong restrictions on the
geometry and leads to considerations of Calabi-Yau manifolds, hyper-Kähler
manifolds, parallel G2-manifolds, parallel Spin(7) manifolds. All of them are
of great interest in mathematics (see [32] for precise discussions) as well as in
high-energy physics, string theory [37].

It just happens that the geometry of these spaces is too restrictive for various
questions in string theory [36, 41, 23]. It seems that a ’nice’ mathematical
generalization of Calabi-Yau manifolds, hyper-Kähler manifolds, parallel G2-
manifolds, parallel Spin(7) manifolds is to consider linear connections with skew-
symmetric torsion and holonomy contained in SU(n), Sp(n), G2, Spin(7).

A remarkable fact is that the existence (in small dimensions) of a parallel
spinor with respect to a metric connection with skew-symmetric torsion deter-
mines the connection in a unique way in the cases where its holonomy group
is a subgroup of SU, Sp, G2 provided additional differential conditions on the
structure are fulfilled [43, 16]. The uniqueness property leads to the idea that
it is worth to study the geometry of such a connection with torsion, besides its
interest in physics [37, 23], for purely mathematical reasons expecting to get
information about the curvature of the metric, Betti numbers, Hodge numbers,
Â-genus, etc. In fact, a connection with skew symmetric torsion preserving a
given complex structure on a Hermitian manifold was used by Bismut [3] to
prove a local index formula for the Dolbeault operator when the manifold is not
Kähler. Following this idea, a vanishing theorem for the Dolbeault cohomology
on a compact Hermitian non-Kähler manifold was found [1, 29, 30].

In this paper we study the existence of parallel spinors with respect to a metric
connection with skew-symmetric torsion in dimension 8 (for dimensions 4,5,6,7
see [43, 12, 29, 16, 17]). The first consequence is that the manifold should be a
Spin(7) manifold, i.e. its structure group can be reduced to the group Spin(7).
This is because the Euler characteristic X (S±) of at least one of the (negative
S− or positive S+) spinor bundles vanishes and therefore the structure group can
be reduced to Spin(7) [34]. Surprisingly, we discover that the converse is always
true in dimension 8. We show that the existence of a connection with totally
skew-symmetric torsion preserving a spinor in dimension 8 is unobstructed, i.e.
on every Spin(7) 8-manifold there always exists a unique linear connection with
totally skew-symmetric torsion preserving a nontrivial spinor ie with holonomy
contained in Spin(7). This phenomena does not occur in the cases of holonomy
groups SU, Sp, G2 (see the end of the paper). We find a formula for the torsion
3-form and for the Riemannian scalar curvature in terms of the fundamental
4-form. Our main result is the following

Theorem 1.1. Let (M, g,Φ) be an 8-dimensional Spin(7) manifold with funda-
mental 4-form Φ.
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i). There always exists a unique linear connection ∇ preserving the Spin(7)
structure, ∇Φ = ∇g = 0, with totally skew-symmetric torsion T given by

T = −δΦ− 7
6
∗ (θ ∧ Φ), θ =

1
7
∗ (δΦ ∧ Φ).(1.3)

On any Spin(7) manifold there exists a ∇-parallel spinor φ corresponding to the
fundamental form Φ and the Clifford action of the torsion 3-form on it is

T · φ = −7
6
θ · φ.(1.4)

ii). The Riemannian scalar curvature Scalg and the scalar curvature Scal of the
Spin(7) connection ∇ are given in terms of the fundamental 4-form Φ by

Scalg =
49
18
||θ||2 − 1

12
||T ||2 +

7
2
δθ, Scal =

49
18
||θ||2 − 1

3
||T ||2 +

7
2
δθ.(1.5)

The proof relies on our explicit formula expressing the covariant derivative of
the fundamental 4-form Φ with respect to the Levi-Civita connection in terms
of the exterior derivative of Φ. The existence of such a relation was discovered
by R.L.Bryant [7] in his proof that the holonomy group of the Levi-Civita con-
nection is contained in Spin(7) iff dΦ = 0 (see also [39]). We prove ii) using the
Schrödinger-Lichnerowicz formula for the connection with torsion established in
[16] and the special properties of the Clifford action on the special spinor φ.

In the compact case, we use the formula for the Riemannian scalar curvature
to show that the Yamabe constant of one of the two classes of Spin(7) mani-
folds according to Fernandez classification [13] is strictly positive. Applying the
Atiyah-Singer index theorem [2], as well as the Lichnerowicz vanishing theorem
[35], we find a linear relation between the Betti numbers and show that the Euler
characteristic is equal to 3 times the signature.

In the last section we give necessary and sufficient conditions for the existence
of a solution to the Killing spinor equations (1.1), (1.2) in an 8-dimensional man-
ifold. We apply our general formula for the torsion of the connection admitting
a parallel spinor to the second Killing spinor equation. As a consequence, we ob-
tain a formula for the field strength (torsion) of a solution to both Killing spinor
equations in terms of the fundamental 4-form. We discover a relation between
a solution to both Killing spinor equations with non-constant dilation and the
conformal transformations of the Spin(7) structures. In fact we show that the
dilation function arises geometrically (from the Lee form of the structure) and
can be interpreted as a conformal factor. Our analysis on the two Killing spinor
equations in dimension 8 shows that the physics data (field strength H and the
dilation function Ψ) are determined completely by the properties of the parallel
spinor or equivalently by the geometry of the corresponding fundamental 4-form.

2. General properties of Spin(7) manifold

We recall some notions of Spin(7) geometry.
Let us consider R8 endowed with an orientation and its standard inner prod-

uct <, >. Let {e0, ..., e7} be an oriented orthonormal basis. We shall use the
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same notation for the dual basis. We denote by eijkl the monomial ei∧εj∧εk∧εl.
Consider the 4-form Φ on R8 given by

Φ = e0123 + e0145 + e0167 + e0246 − e0257 − e0347 − e0356(2.6)
+ e4567 + e2367 + e2345 + e1357 − e1346 − e1247 − e1256 .

The 4-form Φ is self-dual ∗Φ = Φ, where ∗ is the Hodge ∗-operator and the 8-form
Φ ∧ Φ coincides with the volume form of R8. The subgroup of GL(8, R) which
fixes Φ is isomorphic to the double covering Spin(7) of SO(7) [26]. Moreover,
Spin(7) is a compact simply-connected Lie group of dimension 21 [7]. The 4-
form Φ corresponds to a real spinor φ and therefore, Spin(7) can be identified
as the isotropy group of a non-trivial real spinor.

A 3-fold vector cross product P on R8 can be defined by < P (x∧y∧z), t >=
Φ(x, y, z, t), for x, y, z, t ∈ R8. Then Spin(7) is also characterized by

Spin(7) = {a ∈ O(8)|P (ax ∧ ay ∧ az) = P (x ∧ y ∧ z), x, y, z ∈ R8}.
The inner product <, > on R8 can be reconstructed from Φ [13, 25], which
corresponds with the fact that Spin(7) is a subgroup of SO(8).

A Spin(7) structure on an 8-manifold M is by definition a reduction of the
structure group of the tangent bundle to Spin(7); we shall also say that M is
a Spin(7) manifold. This can be described geometrically by saying that there
is a 3-fold vector cross product P defined on M , or equivalently there exists a
nowhere vanishing differential 4-form Φ on M which can be locally written as
(2.6). The 4-form Φ is called the fundamental form of the Spin(7) manifold M
[4].

Let (M, g,Φ) be a Spin(7) manifold. The action of Spin(7) on the tangent
space gives an action of Spin(7) on Λk(M) and so the exterior algebra splits
orthogonally into components, where Λk

l corresponds to an irreducible represen-
tation of Spin(7) of dimension l [13, 7]:

Λ1(M) = Λ1
8, Λ2(M) = Λ2

7 ⊕ Λ2
21, Λ3(M) = Λ3

8 ⊕ Λ3
48,

Λ4(M) = Λ4
+(M)⊕ Λ4

−(M), Λ4
+(M) = Λ4

1 ⊕ Λ4
7 ⊕ Λ4

27, Λ4
− = Λ4

35;

where Λ4
±(M) are the ±-eigenspaces of ∗ on Λ4(M) and [4, 7, 39]

Λ2
7 = {α ∈ Λ2(M)| ∗ (α ∧ Φ) = 3α}, Λ2

21 = {α ∈ Λ2(M)| ∗ (α ∧ Φ) = −α}
Λ3

8 = {∗(β∧Φ)|β ∈ Λ1(M)},Λ3
48 = {γ ∈ Λ3(M)|γ∧Φ = 0},Λ4

1 = {fΦ|f ∈ F(M)}
The Hodge star ∗ gives an isometry between Λk

l and Λ8−k
l .

If (M, g,Φ) is a Spin(7) manifold, then M is orientable and spin, with pre-
ferred spin structure and orientation. If S = S+ ⊕ S− is the spin bundle of M ,
then there are natural isomorphisms S+ ≡ Λ0

1 ⊕ Λ2
7 and S− ≡ Λ1

8 (see eg [32]).
In general, not every 8-dimensional Riemannian spin manifold M8 admits a

Spin(7) structure. We explain the precise condition [34].Denote by p1(M), p2(M),
X (M),X (S±) the first and the second Pontrjagin classes, the Euler character-
istic of M and the Euler characteristic of the positive and the negative spinor
bundles, respectively. It is well known [34] that a spin 8-manifold admits a
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Spin(7) structure if and only if X (S+) = 0 or X (S−) = 0. The latter conditions
are equivalent to [34]

p2
1(M)− 4p2(M) + 8X (M) = 0,(2.7)

for an appropriate choice of the orientation.
Let us recall that a Spin(7) manifold (M, g,Φ) is said to be parallel (torsion-

free [32]) if the holonomy of the metric Hol(g) is a subgroup of Spin(7). This is
equivalent to saying that the fundamental form Φ is parallel with respect to the
Levi-Civita connection ∇g of the metric g. Moreover, Hol(g) ⊂ Spin(7) if and
only if dΦ = 0 [7] (see also [39]) and any parallel Spin(7) manifold is Ricci flat
[4].

According to the Fernandez classification [13], there are 4-classes of Spin(7)
manifolds obtained as irreducible representations of Spin(7) of the space ∇gΦ.
Following [9] we consider the 1-form θ defined by

7θ = − ∗ (∗dΦ ∧ Φ) = ∗(δΦ ∧ Φ)(2.8)

We shall call the 1-form θ the Lee form of a given Spin(7) structure.
The 4 classes of Spin(7) manifolds in the Fernandez classification can be

described in terms of the Lee form as follows [9]: W0 : dΦ = 0; W1 : θ =
0; W2 : dΦ = θ ∧ Φ; W : W = W1 ⊕W2.

We shall call a Spin(7) structure of the class W1 (ie Spin(7) structures with
zero Lee form) a balanced Spin(7) structure.

In [9] Cabrera shows that the Lee form of a Spin(7) structure in the class
W2 is closed and therefore such a manifold is locally conformally equivalent to
a parallel Spin(7) manifold and it is called locally conformally parallel. If the
Lee form is not exact (i.e. the structure is not globally conformally parallel), we
shall call it strict locally conformally parallel. We shall see later (section 8) that
these spaces have very different topology than parallel ones.

Coeffective cohomology and coeffective numbers of Riemannian manifolds
with Spin(7) structure are studied in [45].

3. Examples:

Examples of Spin(7) manifolds are constructed relatively recently.
The first known explicit example of complete parallel Spin(7) manifold with

Hol(g) = Spin(7) was constructed by Bryant and Salamon [8, 24] on the total
space of the spin bundle over the 4-sphere.

The first compact examples of parallel Spin(7) manifolds with Hol(g) =
Spin(7) were constructed by Joyce[31, 32] by resolving the singularities of the
orbifold T 8/Γ for certain discrete groups Γ.

Most examples of Spin(7) manifolds in the Fernandez classification are con-
structed by using certain G2-manifolds. We recall that a G2-manifold N is a
7-dimensional manifold whose structure group can be reduced to the exceptional
group G2 or equivalently, there exists on N a distinguished associative 3-form γ.
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A G2-manifold is said to be nearly parallel, cocalibrated of pure type, calibrated
if dγ = const. ∗ γ; δγ = 0, dγ ∧ γ = 0; dγ = 0, respectively [14].

Any 8-manifold of type M = S1×N possesses a Spin(7) structure defined by
[39, 45, 10] Φ = η ∧ γ + ∗γ, where η is a non-zero 1-form on S1. The induced
Spin(7) structure on M is [10]

i) a strict locally conformally parallel if the G2 structure is nearly parallel;
ii) a balanced one if the G2-structure is cocalibrated of pure type or calibrated

or belongs to the direct sum of these classes.
There are many known examples of compact nearly parallel G2-manifolds: S7

[14], SO(5)/SO(3) [8, 39], the Aloff-Wallach spaces N(g, l) =SU(3)/U(1)g,l [11]
any Einstein-Sasakian and any 3-Sasakian space in dimension 7 [18, 19], some
examples coming from 7-dimensional 3-Sasaki manifolds [19, 20], the 3-Sasakian
non-regular spaces S(p1, p2, p3) [5, 6], compact nearly parallel G2-manifolds with
large symmetry groups are classified recently in [19]. The product of each of
these spaces by S1 gives examples of strict locally conformally parallel Spin(7)
structures.

Any minimal hypersurface N in R8 possesses a cocalibrated structure of pure
type G2 [14] and therefore M = N × S1 has a balanced Spin(7) structure de-
scribed above.

More general, any principle fibre bundle with one dimensional fibre over a G2-
manifold carries a Spin(7) structure [9]. In this way, a balanced Spin(7) structure
arises on a principle circle bundle over a 7-dimensional torus T 7 considered as a
G2-manifold [9].

4. Conformal transformations of Spin(7) structures

We need the next result which is essentially established in [13].

Proposition 4.1. [13] Let ḡ = e2fg, Φ̄ = e4fΦ be a conformal change of
the given Spin(7) structure (g,Φ) and θ̄, θ are the corresponding Lee 1-forms,
respectively. Then

θ̄ = θ + 4df(4.9)

Proof. We have [13] vol.ḡ = e8fvol.g, dΦ̄ = e4f (4df ∧ Φ + dΦ). We calculate

∗̄dΦ̄ = e4f (∗dΦ + 4 ∗ (df ∧ Φ)), ∗̄dΦ̄ ∧ Φ̄ = e8f (∗dΦ ∧ Φ + 28 ∗ df),

where we used the identity ∗(Φ ∧ γ) ∧ Φ = 7 ∗ γ, γ ∈ Λ1(M). We obtain
consequently that θ̄ = − 1

7 ∗̄(∗̄dΦ̄∧ Φ̄) = − 1
7 ∗ (∗dΦ∧Φ)− 4 ∗2 df = θ + 4df.

More generally, we have

Corollary 4.2. If the Lee 1-form is closed, then the Spin(7) structure is locally
conformal to a balanced Spin(7) structure.

Proposition 4.1 allows us to find a distinguished Spin(7) structure on a com-
pact 8-dimensional Spin(7) manifold.
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Theorem 4.3. Let (M8, g,Φ) be a compact 8-dimensional Spin(7) manifold.
Then there exists a unique (up to homothety) conformal Spin(7) structure g0 =
e2fg,Φ0 = e4fΦ such that the corresponding Lee 1-form is coclosed, δ0θ0 = 0.

Proof. We shall use the Gauduchon theorem for the existence of a distinguished
metric (Gauduchon metric) on a compact Hermitian or Weyl manifold [21, 22].
We shall use the expression of this theorem in terms of a Weyl structure (see
[44], Appendix 1). We consider the Weyl manifold (M8, g, θ,∇W ) with the Weyl
1-form θ where ∇W is a torsion-free linear connection on M8 determined by the
condition ∇W g = θ ⊗ g. Applying the Gauduchon theorem we can find in a
unique way a conformal metric g0 such that the corresponding Weyl 1-form is
coclosed with respect to g0. The key point is that by Proposition 4.1 the Lee
1-form transforms under conformal rescaling according to (4.9) which is exactly
the transformation of the Weyl 1-form under conformal rescaling of the metric
ḡ = e4fg. Thus, there exists a unique (up to homothety) conformal Spin(7)
structure (g0,Φ0) with coclosed Lee 1-form.

We shall call the Spin(7) structure with coclosed Lee 1-form the Gauduchon
Spin(7) structure.

Corollary 4.4. Let (M, g,Φ) be a compact Spin(7) manifold and (g, Φ) be the
Gauduchon structure. Then the following formula holds ∗ (dδΦ ∧ Φ) = −||dΦ||2.
Proof. Using (2.8), we calculate that

0 = 7δθ = ∗d(∗dΦ ∧ Φ) = ∗ (dδΦ ∧ Φ− ∗dΦ ∧ dΦ) = ∗ (
dδΦ ∧ Φ + ||dΦ||2.vol

)
.

Corollary 4.5. On a compact Spin(7) manifold with closed Lee form the first
Betti number b1 ≥ 1 provided the Gauduchon Spin(7) structure is not balanced.
In particular, on any strict locally conformally parallel Spin(7) manifold, b1 ≥ 1.

5. A formula for the covariant derivative of the fundamental form

In [7] R.L. Bryant proved that on a Spin(7) manifold (M, g,Φ) the holonomy
group Hol(g) of the metric g is contained in Spin(7) iff the fundamental form
Φ is closed i.e. ∇gΦ = 0 is equivalent to dΦ = 0. This shows that there is an
identification of ∇gΦ and dΦ (see also [39]). The aim of this section is to give
an explicit formula.

Let γ be an 1-form, γ ∈ Λ1(M). We use the same notation for the dual
vector field via the metric and denote by iγ the interior multiplication. The
next algebraic fact follows by direct computations

Proposition 5.1. For any 1-form γ the identity ∗(Φ ∧ γ) = iγΦ holds.
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Theorem 5.2. Let (M, g,Φ) be a Spin(7) manifold with fundamental 4-form Φ,
P be the corresponding 3-fold vector cross product and ∇g be the Levi-Civita con-
nection of g. Then the following formula holds for all vector fields X, Y, Z, V, W :

(∇g
XΦ)(Y, Z, V, W ) =

1
2
{δΦ(X, Y, P (Z, V, W ))− δΦ(X, Z, P (Y, V, W ))}

+
1
2
{δΦ(X, V, P (Y, Z, W ))− δΦ(X, W, P (Y, Z, V ))}(5.10)

− 1
12
{∗(δΦ ∧ Φ)(P (X, Y, P (Z, V, W ))− ∗(δΦ ∧ Φ)(P (X, Z, P (Y, V, W ))}

+
1
12
{∗(δΦ ∧ Φ)(P (X, V, P (Y, Z, W ))− ∗(δΦ ∧ Φ)(P (X, W, P (Y, Z, V ))}

Proof. We have the general formulas (see eg [33])

(∇g
XΦ)(Y, Z, V, W ) = XΦ(Y, Z, V, W )− Φ(∇g

XY, Z, V, W )(5.11)
−Φ(Y,∇g

XZ, V, W ) − Φ(Y, Z,∇g
XV, W )− Φ(Y, Z, V,∇g

XW ),

2g(∇g
XY, Z) = Xg(Y, Z) + Y g(X, Z)− Zg(X, Y )(5.12)

+ g([X, Y ], Z) + g([Z, X], Y )− g([Y, Z], X).

Let {e0, e1, ..., e7} be an orthonormal basis and the fundamental form Φ be given
by (2.6). We substitute (5.12) into (5.11). Using the expression (2.6) and keeping
in mind Proposition 5.1, we check that the right hand side of the obtained
equality coincides with the right hand side of (5.10) by long but straightforward
calculations evaluating the both sides on the basis e0, e1, ..., e7.

6. Proof of Theorem 1.1 part i)

Suppose that a connection ∇ determined by

g(∇XY, Z) = g(∇g
XY, Z) +

1
2
T (X, Y, Z),(6.13)

where T is a 3-form, satisfies ∇Φ = 0. Then we have

2(∇g
XΦ)(Y, Z, V, W ) = Φ(T (X, Y ), Z, V, W ) + Φ(Y, T (X, Z), V, W )(6.14)

+ Φ(Y, Z, T (X, V ), W ) + Φ(Y, Z, V, T (X, W ))

and consequently

δΦ = − ∗ d ∗ Φ =
7∑

i,j=0

(
(iej

iei
T ) ∧ (iej

iei
Φ)

)
(6.15)

Evaluating (6.15) on the orthonormal basis and using the expression of the fun-
damental 4-form (2.6) with respect to this basis we arrive to a linear system
of maximal rank of 56 linear equations with respect to 56 unknown variables
T (ei, ej , ek), i, j, k = 0, .., 7 since T is a 3-form. By the symmetries of the funda-
mental 4-form this system is separated into 8 linear systems and each of them
consists of 7 linear equations with respect to 7 unknown variables. Solving each
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of these systems explicitly and using the definition of the Lee form θ we obtain
(1.3).

For the converse, we define by (6.13) a connection ∇ with totally skew sym-
metric torsion T given by (1.3). Clearly ∇g = 0. Substitute (1.3) into (6.14)
and using Theorem 5.2 we get ∇Φ = 0.

Let φ be the spinor corresponding to Φ. Clearly φ is ∇ parallel. The Clifford
action T · φ depends only on the Λ3

8-part of T . Using (1.3) and the algebraic
formulas ∗(γ ∧ Φ) · φ = iγ(Φ) · φ = 7γ · φ we obtain (1.4). This proves part i).
Part ii) will be proved in the next section.

Further, we shall call the connection determined by Theorem 1.1 the Spin(7)-
connection of a given Spin(7) manifold.

Corollary 6.1. The Lee 1-form of any Spin(7) structure and the projections
π3

8(dΦ), π3
8(T ) onto the space Λ3

8 are given by θ = 6
7 ∗ (Φ ∧ T ), π3

8(dΦ) =
θ ∧ Φ, π3

8(T ) = − 1
6 ∗ (θ ∧ Φ) .

Keeping in mind Proposition 4.1, we get

Corollary 6.2. The torsion 3-form T of the Spin(7) connection ∇ changes by a
conformal transformation (go = e2fg,Φo = e4fΦ) of the Spin(7) structure (g, Φ)
by To = e4f

(
T − 2

3 ∗ (df ∧ Φ)
)
.

7. The Ricci tensor and the scalar curvature

In this section we give formulas for the Ricci tensor and the scalar curva-
ture of the connection ∇ on a Spin(7) manifold and, consequently, formulas
for the Ricci tensor and the scalar curvature of the metric g using the spe-
cial properties of the Clifford action on the ∇-parallel spinor. We apply the
Schrödinger-Lichnerowicz formula for the Dirac operator of a metric connection
with totally skew-symmetric torsion proved in [16] to the case of the unique
Spin(7)-connection ∇ on a Spin(7) manifold (M, g,Φ). Finally, we prove the
part ii) of Theorem 1.1.

Let D, Ric, Scal be the Dirac operator, the Ricci tensor and the scalar cur-
vature of the Spin(7) connection defined as usually by

D =
7∑

i=0

ei.∇ei , Ric(X, Y ) =
7∑

i=0

R(ei, X, Y, ei), Scal =
7∑

i=0

Ric(ei, ei).

The relations between the Ricci tensor Ricg and the scalar curvature Scalg of
the metric are (see [29, 16])

Ricg = Ric +
1
2
δT +

1
4
(i(.)T, i(.)T ), Scalg = Scal +

1
4
||T ||2,(7.16)

where (, ) and ||.||2 denote the inner product on tensors induced by g and the
corresponding norm. In particular, Ric is symmetric iff the torsion 3-form is
coclosed, δT = 0.

Let σT be the 4-form defined by σT = 1
2

∑7
i=0(ieiT ) ∧ (ieiT ). We take the

following result from [16].
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Theorem 7.1. [16] Let Ψ be a parallel spinor with respect to a metric connection
∇ with totally skew- symmetric torsion T on a Riemannian spin manifold M .
The following formulas hold

3dT ·Ψ− 2σT ·Ψ + Scal Ψ = 0,
1
2
iXdT ·Ψ +∇XT ·Ψ−Ric(X) ·Ψ = 0,(7.17)

D(T ·Ψ) = dT ·Ψ + δT ·Ψ− 2σT ·Ψ.

If M is compact, then for any spinor field ψ the following formula is true

∫
M

||Dψ||2 dV ol =
∫

M

(||∇ψ||2 + (dT · ψ, ψ) + 2(σT · ψ, ψ) + Scal||ψ||2) dV ol.

(7.18)

In particular, if the eigenvalues of the endomorphism dT + 2σT + Scal acting
on spinors are nonnegative, then every ∇-harmonic spinor is ∇-parallel. If the
eigenvalues are positive, then there are no ∇ parallel spinors.

We apply Theorem 7.1 to the ∇-parallel spinor φ corresponding to the fun-
damental 4-form Φ on a Spin(7) manifold to get

Proposition 7.2. Let (M, g,Φ,∇) be an 8-dimensional Spin(7) manifold with
the Spin(7) connection ∇ of torsion T . The Ricci tensors Ric, Ricg are given by

Ric(X) = −1
2
∗ (iXdT ∧ Φ)− ∗ (∇XT ∧ Φ) ,(7.19)

Ricg(X, Y ) =
1
2

(iXdT ∧ Φ, ∗Y ) + (∇XT ∧ Φ, ∗Y ) +
1
2
δT (X, Y ) +

1
4
(iXT, iY T ).

(7.20)

7.1. Proof of Theorem 1.1 ii). Let φ be the ∇-parallel spinor corresponding
to the fundamental 4-form Φ. Then the Riemannian Dirac operator Dg and the
Levi-Civita connection ∇g act on φ by the rule

∇g
Xφ = −1

4
(iXT ) · φ, Dgφ = −3

4
T · φ =

7
8
θ · φ,(7.21)

where we used (1.4). We are going to apply the well known Schrödinger-
Lichnerowicz (S-L) formula [35, 42]

(Dg)2 = �g +
1
4
Scalg, �g = −

∑ (
∇g

ei
∇g

ei
−∇g

∇ei
ei

)

to the ∇-parallel spinor field φ.
Using (7.21) we calculate as a consequence that

(Dg)2φ =
7
8
Dg(θφ) =

(
49
64
||θ||2 +

7
8
δθ

)
· φ +

7
8
dθ · φ +

7
16

(iθT ) · φ,(7.22)

where we used the general identity Dgθ + θDg = dθ + δθ − 2∇θ.
We compute the Laplacian �g in the general.
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Lemma 7.3. Let φ be a parallel spinor with respect to a metric connection ∇
with skew symmetric torsion T on a Riemannian manifold (M, g). For the Rie-
mannian Laplacian acting on φ we have

�gφ = −1
4
δT · φ− 1

16

(
2σT − 1

2
||T ||2

)
· φ.(7.23)

Proof of Lemma 7.3. We take a normal coordinate system such that
(∇eiei)p = 0, p ∈M . We use (7.21) to get

�gφ =
1
4

∑
i

(
∇ei

iei
T ) · φ− 1

16
(iei

T ) · (iei
T ) · φ

)
.

Applying the properties of the Clifford multiplication we obtain (7.23) and
Lemma 7.3 is proved.

Further, substituting (7.22) and (7.23) into the S-L formula, multiplying the
obtained result by φ and taking the real part, we arrive at(

49
64
||θ||2 +

7
8
δθ

)
||φ||2 =

(
1
32
||T ||2 +

1
4
Scalg

)
||φ||2 − 1

8
(σT · φ, φ).(7.24)

On the other hand, using (1.4), we get

D(T · φ) = −7
6
D(θ · φ) = −7

6
(
d∇θ · φ + δθ · φ)

,

where d∇ is the exterior derivative with respect to the Spin(7) connection ∇.
Now, (7.17) gives
− 7

6

(
d∇θ · φ + δθ · φ)

= dT · φ − 2σT · φ + δT · φ. Multiplying the last equality
by φ and taking the real part, we obtain − 7

6δθ||φ||2 = (dT · φ, φ)− (2σT · φ, φ).
Consequently, (7.17) and (7.16) imply(

−7
2
δθ − 1

4
||T ||2 + Scalg

)
||φ||2 + 4(σT · φ, φ) = 0.(7.25)

Finally, we get (1.5) from (7.24) and (7.25). Thus, the proof of Theorem 1.1 is
completed.

Corollary 7.4. On a balanced Spin(7) manifold the Ricci tensor Ric is sym-
metric and the Riemannian Ricci tensor and scalar curvatures are given by

Ric(X, Y ) =
1
2

(iX(dδΦ) ∧ Φ, ∗Y ) , Scal = −1
3
||δΦ||2;

Ricg(X, Y ) =
1
2

(iX(dδΦ) ∧ Φ, ∗Y ) +
1
4
(iXT, iY T ), Scalg = − 1

12
||δΦ||2.(7.26)

In particular the Riemannian scalar curvature on a balanced Spin(7)-manifold
is non-positive and vanishes identically if and only if the Spin(7)-structure is co-
closed, δΦ = 0 and therefore parallel.

A balanced Spin(7)-manifold has harmonic fundamental form, dδΦ = 0 or
equivalently it has closed torsion 3-form, dT = 0 if and only if the Spin(7)-
structure is co-closed, δΦ = 0 and therefore parallel.



182 STEFAN IVANOV

Proof. In the case of a balanced structure, the torsion 3-form T satisfies T = −δΦ
by Theorem 1.1. Clearly, δT = 0 and Ric is a symmetric tensor. The Clifford
multiplication of a 3-form by the spinor φ depends only on its projection in the
space Λ3

8. The 3-form T belongs to Λ3
48 by Corollary 6.1 and hence, ∇T , as a 3-

form, also belongs to Λ3
48 since the Spin(7) connection preserves the fundamental

4-form and therefore it preserves also the splitting Λp
l . Hence, the Clifford action

of ∇T on the special spinor φ is trivial. The rest of the claim follows from
Theorem 1.1 and Proposition 7.2.

8. Topology of compact Spin(7) manifold

In this section we apply our results to obtain information about Betti num-
bers, Â-genus and the signature of certain classes of Spin(7) manifolds. We use
essentially the solution of the Yamabe conjecture [40] as well as the fundamen-
tal Atiyah-Singer Index theorem [2] which gives a topological formula for the
index of any linear elliptic operator. On a Spin(7) manifold M this reads as ind

D= Â(M) = indDg, where Â(M) is a topological invariant called Â-genus, ind
D= dimKerD+ − dimKerD−, D± : Γ(S±)→ Γ(S∓) are the Dirac operators of
a linear connection on M .

First, we notice that the expression of the Â-genus in terms of Betti numbers
proved by Joyce [31, 32] for a parallel compact Spin(7) manifold holds for any
compact Spin(7) manifold.

Proposition 8.1. On a compact Spin(7) manifold (M, g,Φ) the Â-genus is
given by

24Â(M) = −1 + b1 − b2 + b3 + (b4)+ − 2(b4)−,(8.27)

where bi are the Betti numbers of M and (b4)+ (resp. (b4)−) is the dimension
of the space of harmonic self-dual (resp. anti-self dual) 4-forms.

Proof. The proof goes as in [32] following the reasoning of [38]. We recall the
basic identities. The formula for the signature τ(M) and the Â-genus in terms
of Pontrjagin classes are [27]

45 ((b4)+ − (b4)−) = 45τ(M) = 7p2(M)− p2
1(M),(8.28)

45.27Â(M) = 7p2
1(M)− 4p2(M).

Combining (8.28) with (2.7) gives (8.27).

We state the main result of this section

Theorem 8.2. Let M be a compact connected spin 8-manifold with a fixed ori-
entation. If it admits a strict locally conformally parallel Spin(7) structure (g,Φ),
then M admits a Riemannian metric gY with strictly positive constant scalar
curvature, ScalgY > 0.

Consequently, the following formulas hold
i). Â(M) = 0;
ii).X (M) = 3τ(M);
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iii). b2 + 2(b4)+ − b3 − (b4)− ≥ 0 with equality iff b1 = 1.
In particular, M does not admit a metric with holonomy

Hol(g) = Spin(7);SU(4);Sp(2);SU(2)× SU(2).

Proof. Let θ be the Lee form of (g,Φ). We need the following algebraic lemma.

Lemma 8.3. On a Spin(7) manifold the inequality ||T ||2 ≥ 7
6 ||θ||2 holds.

The equality is attained if and only if the Spin(7) structure is locally conformally
parallel.

The proof of Lemma 8.3 follows from Theorem 1.1 and the equality 0 ≤
||T + 1

6 ∗ (θ ∧ Φ)||2 = ||T ||2 − 7
6 ||θ||2.

Lemma 8.3 gives ||T ||2 = 7
6 ||θ||2 since the structure is locally conformally

parallel. Theorem 1.1 leads to the formula

Scalg =
21
36
||θ||2 +

7
2
δθ .(8.29)

According to the solution of the Yamabe conjecture [40] there is a metric gY =
e2fg in the conformal class of g with constant scalar curvature, ScalgY = const.
Consider the locally conformally parallel Spin(7) structure (gY = e2fg, ΦY =
e4fΦ). Equality (8.29) is true also for the structure (gY ,ΦY ). An integration of
the last equality over a compact M gives

ScalgY .V olgY
=

21
36

∫
M

||θ||2 dV olgY
> 0,

since the structure is strictly locally conformally parallel. Then, by the Lich-
nerowicz vanishing theorem [35], indDgY = 0 and Â(M) = 0 by the index the-
orem. Condition ii) follows exactly as in [38] from (8.28) and (2.7). Statement
iii) is a consequence of (8.27) and Corollary 4.5. We derive the last assertion by
contradiction with the already proved vanishing of the Â-genus and the result of
Joyce [31, 32] claiming non-vanishing of the Â-genus for a Riemannian manifold
with Riemannian holonomy groups listed in the condition of the theorem.

Remark Information for the Â-genus on a compact Spin(7) manifold can be
obtained if the eigenvalues of the endomorphism dT+2σT +Scal acting on spinors
are known according to Theorem 7.1. In particular, if the eigenvalues are non-
negative (they cannot be positive since there always exists a parallel spinor), then
the holonomy group Hol(∇) will determine the Â genus in the simply connected
case since the index of D is given by the ∇-parallel spinors. For example, if
Hol(∇) =Spin(7); SU(4); Sp(2); SU(2)× SU(2), then Â = 1; 2; 3; 4, respectively
by pure algebraic arguments, namely by considering the fixed spinors by the
action of the holonomy representation of ∇ on spinors.

9. Solutions to the Killing spinor equations in dimension 8

We consider the Killing spinor equations (1.1) and (1.2) in dimension 8. The
existence of a non-trivial ∇-parallel spinor is equivalent to the existence of a
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Spin(7) structure (g,Φ) [34]. Then the 3-form field strength H = T is given by
Theorem 1.1. Involving the second Killing spinor equation (1.2) we have

Theorem 9.1. In dimension 8 the following conditions are equivalent:
i) The Killing spinor equations (1.1) and (1.2) admit solution with dilation

Ψ;
ii) There exists a Spin(7) structure (g, Φ) with closed Lee form θ = − 12

7 dΨ
and therefore it is locally conformal to a balanced Spin(7) structure.

The 3-form field strength H = T and the Riemannian scalar curvature Scalg

are given by

T = −δΦ + 2 ∗ (dΨ ∧ Φ),(9.30)

Scalg = 8||dΨ||2 − 1
12
||T ||2 − 6�Ψ,(9.31)

where �Ψ = δdΨ is the Laplacian.
The solution is with constant dilation if and only if the Spin(7) structure is

balanced.

Proof. We apply Theorem 1.1. Let ∇ be a connection with torsion 3-form T .
Let φ be an arbitrary ∇-parallel spinor field such that (2dΨ − T ) · φ = 0. The
spinor field φ defines a Spin(7) structure Φ which is ∇-parallel. On the other
hand, the connection preserving Φ with torsion any 3-form is unique given by
Theorem 1.1. Comparing (1.4) with the second Killing spinor equation (1.2) we
find 12

7 dΦ = −θ. Inserting the last equality into (1.3) and (1.5), we get (9.30)
and (9.31) which completes the proof.

A similar formula as (9.30) was derived in [23] as a necessary condition.
Theorem 9.1 allows us to obtain a lot of compact solutions to the Killing spinor

equations. If the dilation is a globally defined function, then any solution is
globally conformal equivalent to a balanced Spin(7) structure. For example, any
conformal transformation of a compact 8-dimensional manifold with Riemannian
holonomy group Spin(7) constructed by Joyce [31, 32] is a solution with a globally
defined non-constant dilation.

Summarizing we obtain

Corollary 9.2. Any solution (M8, g,Φ) to the Killing spinor equations (1.1),
(1.2) in dimension 8 with non-constant globally defined dilation function Ψ comes
from a solution with constant dilation by a conformal transformation ie (g =

e
6
7Ψg0,Φ = e

12
7 Φ

0 ), where (g0,Φ0) is a balanced Spin(7) structure.

Note added to the proof. It has been shown in [15] that if an n-ddimensional
G-structure with structure group G satisfying certain weak conditions admits a
G-connection with totally skew-symmetric torsion then the G-structure has to
be a Spin(7)-structure in dimension 8.
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