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MODULE CATEGORIES OVER REPRESENTATIONS OF SLq(2)
AND GRAPHS

Pavel Etingof and Viktor Ostrik

Abstract. We classify module categories over the category of representations of
quantum SL(2) in a case when q is not a root of unity. In a case when q is a
root of unity we classify module categories over the semisimple subquotient of the
same category.

1. Introduction

Let q be a root of unity of even order N > 4. Let Cq be the corresponding
fusion category of representations of the quantum group SLq(2). It is known
(see [Oc],[KO] and references therein) that indecomposable semisimple module
categories over Cq correspond to the ADE Dynkin diagrams with Coxeter number
h = N/2. This fact may be viewed as the “quantum McKay’s correspondence”.
More specifically, the module categories in question may be viewed as “quantum
finite subgroups in SLq(2)”, by analogy with finite subgroups of SL(2), which
define module categories over Rep(SL(2)) and are parametrized by the ADE
affine Dynkin diagrams by virtue of the classical McKay’s correspondence.

In this paper, we generalize this picture to the case of any nonzero complex
number q, not equal to ±i. Namely, let q be such a number. If q = ±1 or
q is not a root of unity, let Cq denote the category of representations of the
quantum group SLq(2). If q is a root of unity such that q4 �= 1, we let Cq
denote the fusion category attached to the quantum group SLq(2). We classify
indecomposable semisimple module categories over Cq with finitely many simple
objects. It turns out that such module categories are parametrized by connected
graphs equipped with bilinear forms satisfying some relations. In the case when
q is a root of unity of even order N > 4, this easily yields the classification of
[Oc],[KO]; so in particular we obtain a very simple proof of the result of [KO],
which does not involve vertex algebras and conformal inclusions (in fact, this
proof is close to the original approach of [Oc]).

A striking property of our classification is that while all connected graphs do
appear, trees appear only for special values of q, namely such that −q−q−1 is an
eigenvalue of the adjacency matrix that admits an eigenvector with nonvanishing
entries. Thus we discover somewhat unexpected “combinatorial” peculiarities of
SLq(2) at algebraic special values of q which are not roots of unity.
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On the contrary, we show that graphs with cycles appear for generic q (or,
equivalently, over C(q)). This explains why the only finite subgroups of SL(2)
which admit a continuous quantum deformation (into subgroups of SLq(2)) are
Z/nZ: for them, the corresponding affine Dynkin graph has a cycle (type Ãn−1),
while for other cases (types D̃n, Ẽn), this graph is a tree.

2. Main equation

2.1. Quantum SL(2). We will work over the field C of complex numbers. Let
q ∈ C be a nonzero number, q2 �= −1. Recall (see e.g. [K]) that the Hopf algebra
SLq(2) is defined by generators a, b, c, d and relations:

ba = qab, db = qbd, ca = qac, dc = qcd, bc = cb,

ad− da = (q−1 − q)bc, ad− q−1bc = 1,

∆
(

a b
c d

)
=

(
a b
c d

)
⊗

(
a b
c d

)
,

ε

(
a b
c d

)
=

(
1 0
0 1

)
, S

(
a b
c d

)
=

(
d −qb

−q−1c a

)
.

Let C̃q denote the tensor category of finite dimensional comodules over SLq(2).
Let 1 ∈ C̃q denote the unit object and let V ∈ C̃q be a two dimensional

comodule V with the basis x, y and the coaction given by

∆V

(
x
y

)
=

(
a b
c d

)
⊗

(
x
y

)
.

The following well known property of the object V will be crucial for us:
The object V ∈ C̃q is selfdual, moreover for any isomorphism φ : V → V ∗ the

composition

1 coevV−→ V ⊗ V ∗
φ⊗φ−1

−→ V ∗ ⊗ V
evV−→ 1 (1)

equals to −(q + q−1)id1.
Indeed, let δx, δy ∈ V ∗ be the dual basis to x, y ∈ V . By the definition

∆V ∗

(
δx

δy

)
=

(
d −q−1c
−qb a

)
⊗

(
δx

δy

)
.

It is easy to check that the map φ(x) = δy, φ(y) = −qδx is an isomorphism of
comodules. Finally, the composition in (1) equals to

1 �→ x⊗ δx + y ⊗ δy �→ δy ⊗ (−q−1y) + (−qδx)⊗ x �→ −q−1 − q.

Note that since V ∈ C̃q is irreducible, the isomosphism φ is unique up to
scaling, (so composition (1) equals −(q + q−1)id1 for any φ). From now on we
fix a choice of such isomorphism.

Equivalently, we can replace the isomorphism φ by two maps

α := (idV ⊗ φ−1) ◦ coevV : 1→ V ⊗ V, β := evV ◦ (φ⊗ idV ) : V ⊗ V → 1

such that:
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(1) The compositions V
α⊗idV−→ V ⊗V ⊗V

idV ⊗β−→ V and V
idV ⊗α−→ V ⊗V ⊗V

β⊗idV−→
V both equal to idV : V → V .

(2) The composition 1 α−→ V ⊗ V
β−→ 1 equals to −(q + q−1)id1.

Indeed, the map φ can be reconstructed from the pair (α, β) as the composi-

tion V
idV ⊗coevV−→ V ⊗ V ⊗ V ∗

β⊗idV ∗−→ V ∗.

2.2. Turaev’s construction: the generic case. Recall that in the case when
q is not a root of unity or q = ±1 the category C̃q is semisimple and we have
a unique isomorphism of the Grothendieck rings (as based rings) Gr(C̃q) 

Gr(C̃1) = Gr(Rep(SL(2)), see e.g. [K]. In other words, the category C̃q has
exactly one simple comodule in each dimension and tensor products of simple
comodules are decomposed in the same way as for SL(2).

In Chapter XII of [T] V. Turaev gave a topological construction of the category
C̃q. We reformulate his results in the following way:

Theorem 2.1. ([T]) Assume that q is not a root of unity or q = ±1. The triple
(C̃q, V, φ) has the following universal property: let D be an abelian monoidal
category, let W ∈ D be a right rigid object and Φ : W →W ∗ be an isomorphism
such that the composition morphism

1 coevW−→ W ⊗W ∗ Φ⊗Φ−1

−→ W ∗ ⊗W
evW−→ 1 (2)

equals to −(q + q−1)id1. Then there exists a unique tensor functor F : C̃q → D
such that F (V ) = W and F (Φ) = φ.

Sketch of proof. We will freely use the notation from Chapter XII of [T]. Let ᾱ =
(idW⊗Φ−1)◦coevW : 1→W⊗W, β̄ := evW ◦(Φ⊗idW ) : W⊗W → 1. Obviously,
the morphisms ᾱ and β̄ induce the homomorphisms Ek,l → Hom(W⊗k, W⊗l)
compatible with the compositions (here Ek,l are the skein modules, [T] XII.1.1).
In particular, for k = l we get the homomorphism Ek → End(W⊗k) where
Ek = Ek,k is the Temperley-Lieb algebra. Let fk ∈ Ek be the Jones-Wenzl
projectors (see [T] XII.4.1). Set a =

√−q and recall that Turaev defined the
category V(a) (see [T] XII.6) objects of which are sequences (j1, j2, . . . , jl) ∈
Z

l
≥0. Define the functor F̃ : V(a) → D by F ((j1, j2, . . . , jl)) = Im(fj1 ⊗ fj2 ⊗
· · ·⊗fjl

) ⊂W⊗(j1+j2+...+jl) and endow it with the obvious tensor structure; since
the morphisms in the category V(a) are defined in terms of the skein modules,
the functor F̃ is well defined on morphisms. Let us apply this construction
to the case D = C̃q, W = V, Φ = φ. We get the functor F̃q : V(a) → C̃q. The
calculations in [T] XII.8 show that the functor F̃q is an equivalence of categories.
Thus we can set F = F̃ ◦ F̃−1

q and the Theorem is proved.

Remark 2.2. (i) One can require from D to be only a Karoubian category, that
is an additive category where any projector has an image.

(ii) Theorem 2.1 implies immediately that the categories C̃q and C̃q−1 are
equivalent. Of course this is well known. Another fact of a similar kind is
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the following. Let C̃±q ⊂ C̃q be the full subcategories with objects which are
direct sums of odd/even dimensional simple comodules depending on ±. Clearly,
C̃q = C̃+q ⊕ C̃−q . Moreover, C̃+q ⊗ C̃+q ⊂ C̃+q , C̃+q ⊗ C̃−q ⊂ C̃−q , C̃−q ⊗ C̃+q ⊂ C̃−q ,
C̃−q ⊗ C̃−q ⊂ C̃+q . In other words, the category C̃q is Z/2Z−graded. Now one can
twist the associativity isomorphism in C̃q by changing the sign of the associativity
isomorphism (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) when X, Y, Z ∈ C̃−q . Let us denote
the category twisted in such a way by C̃tw

q . It follows from Theorem 2.1 that the
category C̃tw

q is equivalent to C̃−q. This is also well known; moreover both facts
above remain true when q is a root of unity.

(iii) One should be very careful with universal properties of tensor categories:
for example the universal category with an object X such that X ⊗ X = 1
does not exist. We expect that when q is a root of unity the universal abelian
category in a sense of Theorem 2.1 does not exist. In contrast the universal
Karoubian category clearly exists (it coincides with Karoubian envelope of the
skein category from [T] XII.2) and coincides with the category of tilting modules
Tq ⊂ C̃q (this is a consequence of the quantized Schur-Weyl duality, see [D]).

(iv) One can restate Theorem 2.1 in the following way: the tensor functors
F : C̃q → D are in the one to one correspondence with objects W ∈ D together
with an isomorphism Φ : W → W ∗ such that the composition (2) equals to
−q − q−1.

2.3. Turaev’s construction: the roots of unity case. In the case when q
is a root of unity of order N ≥ 3 the category C̃q is not semisimple, see [K].
Let Tq denote the full additive (nonabelian) subcategory of C̃q whose objects are
direct summands of V ⊗n; clearly the subcategory Tq is closed under the tensor
product (the category Tq is the category of tilting modules, see e.g. [BK]). It is
well known that the additive subcategory Iq of Tq generated by indecomposable
modules of zero quantum dimension is a tensor ideal and thus the quotient
Cq = Tq/Iq is a well defined semisimple tensor category, see [BK]. The object
V ∈ C̃q can be considered as an object of Cq and for the isomorphism φ : V → V ∗

the composition (2) equals to −q − q−1. But the universal property of the
category Cq is a little bit more delicate. Let D be an abelian monoidal category,
W ∈ D be a right rigid object and Φ : W → W ∗ be an isomorphism such that
the composition (2) equals to −q− q−1. In the same way as in the discussion of
Theorem 2.1 we have homomorphisms Ek,l → Hom(W⊗k, W⊗l) where Ek,l are
the skein modules. Set N∗ = N if N is odd and N∗ = N/2 if N is even. Recall
that the last Jones-Wenzl idempotent which is possible to define is fN∗−1, see
[T] XII.4.3.

Theorem 2.3. Assume that q is a root of unity of order N ≥ 3. The triple
(Cq, V, φ) has the following universal property: let D be an abelian monoidal
category, let W ∈ D be a right rigid object and Φ : W →W ∗ be an isomorphism
such that the composition morphism

1 coevW−→ W ⊗W ∗ Φ⊗Φ−1

−→ W ∗ ⊗W
evW−→ 1 (2)
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equals to −(q + q−1)id1. In addition let us assume that the image of fN∗−1

in Hom(W⊗N∗−1, W⊗N∗−1) is zero. Then there exists a unique tensor functor
F : Cq → D such that F (V ) = W and F (Φ) = φ.

In other words, the tensor functors F : Cq → D are in bijection with objects
W ∈ D together with an isomorphism Φ : W → W ∗ such that the composition
(2) equals to −q − q−1 and the image of fN∗−1 in Hom(W⊗N∗−1, W⊗N∗−1) is
zero.

Remarks on proof. As it is explained in Remark 2.2 (iii) we have a unique
tensor functor F : Tq → D such that F (V ) = W and F (Φ) = φ. So one just
needs to check that this functor maps Iq to zero. But it is well known (see e.g.
[BK]) that the tensor ideal Iq is generated by Im(fN∗−1) in a sense that any
object of Iq is isomorphic to a direct summand of Im(fN∗−1)⊗T where T ∈ Tq.

Remark 2.4. In [T] only the case of even N is considered. We note that the
construction of [T] works without any change for odd N as well. The only
difference is that the resulting semisimple category is not modular.

2.4. Main equation. Define

Cq =
{ C̃q if q is not a root of unity or q = ±1;
Tq/Iq if q is a root of unity, q �= ±1.

The aim of this note is to classify the semisimple module categories with finitely
many simple objects over the category Cq. Here is our main result:

Theorem 2.5. (i) Assume that q is not a root of unity or q = ±1. The semi-
simple module categories with finitely many simple objects over the category Cq
are classified by the following data:

1) A finite set I;
2) A collection of finite dimensional vector spaces Vij, i, j ∈ I;
3) A collection of nondegenerate bilinear forms Eij : Vij ⊗ Vji → C,

subject to the following condition: for each i ∈ I we have∑
j∈I

Tr(Eij(Et
ji)
−1) = −q − q−1. (3)

Proof. LetM be a semisimple module category over Cq with finitely many simple
objects. Let I be the set of the isomorphism classes of simple objects inM. The
structure of module category on M is the same as the tensor functor F : Cq →
Fun(M,M) where Fun(M,M) is the category of additive functors from M
to itself, see [O]. Recall that the category Fun(M,M) is identified with the
category of I × I−graded vector spaces with obvious “matrix” tensor product.
By Remark 2.2 (iv) the functors F : Cq → Fun(M,M) are bijective to the objects
V̄ = (Vij) ∈ Fun(M,M) together with an isomorphism Φ : V̄ → V̄ ∗ = (V ∗ji)
(equivalently, this is a collection of nondegenerate bilinear forms Eij : Vij⊗Vji →
C) such that the morphism (2) equals to −q − q−1. It is obvious that the last
condition is equivalent to the condition (3). The theorem is proved.
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3. Solutions of the main equation

3.1. Deformations. Let us fix a finite set I, the numbers aij = dimVij =
dimVji and try to analyze the corresponding solutions of the main equation. It
is convenient to represent these data as a graph Γ = (I, {aij}) with the set of
vertices I and aij edges joining the vertices i and j (the matrix A = (aij) is
the adjacency matrix of this graph). We are going to classify the graphs with
respect to the deformation behavior of solutions of the main equation. If we fix
the vector spaces Vij of dimensions aij , the set of solutions of equation (3) is
clearly an affine algebraic variety M. The group G =

∏
i,j GL(Vij) acts naturally

on M. Since we are interested in the solutions of the main equation only up to
isomorphism we define the set of solutions of the main equation to be the set
M/G of orbits of G on M. In general M/G has no structure of an algebraic
variety; so let M//G denote the quotient in the sense of the invariant theory,
that is M//G is the set of closed G−orbits on M. Now M//G has a structure
of an algebraic variety; we will see that the natural map M/G→M//G is finite
to one and is one to one on an open nonempty subset of M//G. Thus we define
the dimension of the set of solutions of the main equation to be equal to the
dimension of the variety M//G. In such situation we will say that M/G is a
moduli space (even if it is not an algebraic variety).

Definition 3.1. (i) We will say that a graph is super-rigid if the main equa-
tion (3) admits only finitely many solutions for finitely many values of q
and no solutions for other values of q.

(ii) We will say that a graph is rigid if the main equation (3) admits only
finitely many solutions for all but finitely many values of q.

(iii) We will say that a graph is non-rigid if it is not rigid.

Remark 3.2. One says that a graph is strictly rigid if the main equation admits
only finitely many solutions for all values of q. We will see later that the graph
� ��

�

❅ is rigid. On the other hand it is easy to see that it is not strictly rigid: for
q + q−1 = 1 it admits infinitely many solutions of the main equation.

If a graph Γ is a disjoint union of two subgraphs, the cooresponding module
category over Cq is clearly a direct sum of module subcategories corresponding
to the subgraphs. Thus from now on we will study only connected graphs. For a
graph Γ we define its underlying simply laced graph as a graph Γ̄ with the same
set of vertices and the vertices i �= j are joined by exactly one edge if vij �= 0
and are not joined otherwise (in particular Γ̄ has no loops).

For a graph Γ = (I, {aij}) we define the generalized number of cycles L(Γ)
by formula

L(Γ) =
1
2

∑
i �=j

aij +
∑

i

[
aii

2
]− |I|+ 1

where [·] denotes the integer part. Note that in a case when Γ has no loops L(Γ)
is just the number of cycles in Γ. We will see later that the number L(Γ) is the
expected dimension (that is, the difference of the number of variables and the
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number of equations) of the set of solutions of the main equation. Moreover, we
will see that L(Γ) coincides with (properly understood) dimension of the set of
solutions of the main equation.

Definition 3.3. (i) A connected graph is called a generalized tree if L(Γ) = 0.
(ii) A connected graph is called an unicyclic graph if L(Γ) = 1.

Remark 3.4. (i) A connected graph is a generalized tree if aij ≤ 1 and its
underlying simply laced graph is a tree (note that the possibility aii �= 0 is
allowed).

(ii) A connected graph is an unicyclic graph if either aij ≤ 1 and its underlying
simply laced graph has exactly |I| edges or its underlying simply laced graph is
a tree, aij ≤ 3, aij ≥ 2 for exactly one pair of vertices i, j and aij = 3 implies
i = j.

Theorem 3.5. (i) For any graph there exists a solution of the main equation
with some q �= ±i.

(ii) A connected graph is super-rigid iff it is a generalized tree.
(iii) A connected graph is rigid but not super-rigid iff it is an unicyclic graph.

Proof. 1) A quadruple (Vij , Vji, Eij , Eji) consisting of two vector spaces Vij , Vji

and two nondegenerate bilinear forms Eij : Vij⊗Vji → C and Eji : Vji⊗Vij → C

is isomorphic to the quadruple (Vij , V
∗
ij , 〈·, ·〉, 〈S·, ·〉) where 〈·, ·〉 : Vij ⊗ V ∗ij → C

is the canonical pairing and S : Vij → Vij is an invertible linear operator; two
such quadruples are isomorphic if and only if the corresponding operators S
have the same Jordan form. Thus the moduli space Q(aij) of such quadruples
with dim(Vij) = dim(Vji) = aij has dimension aij . The image of the map
Q(aij)→ A

2, x = Tr(Eij(Et
ji)
−1), y = Tr(Eji(Et

ij)
−1) depends on aij : if aij = 1

this is the hyperbola xy = 1; if aij = 2 this is (A2−{xy = 0})∪ (0, 0); if aij ≥ 3
this is A2.

2) Recall here the classification of nondegenerate bilinear forms, see [B], 5.6:
any pair (V, E) consisting of a vector space V and nondegenerate bilinear form
E : V ⊗ V → C is up to isomorphism uniquely determined by the operator
SE = E(Et)−1 : V ∗ → V ∗; the operator SE is conjugated to S−1

E and moreover
the number of Jordan cells of size k with eigenvalue (−1)k is even. Thus the
moduli space Q̃(a) of such pairs with dim(V ) = a has dimension [a/2] (in the
same sense as before); the image of the map Q̃(a)→ A

1, (V, E) �→ Tr(E(Et)−1)
is just the point 1 for a = 1 and the entire A1 for a ≥ 2.

Thus we see that L(Γ) is really the expected dimension of the set of solutions
of the main equation. It is clear that the actual dimension of the set of solutions
of the main equation is greater or equal to L(Γ) if this set is nonempty..

Now let us show that for any choice of the graph Γ there exists a solution of
the main equation. Let (ri)i∈I be an eigenvector of the matrix A = (aij) with
eigenvalue λ and such that

∏
i∈I ri �= 0 (such eigenvector exists, for example one

can take the Frobenius-Perron eigenvector). Now choose bilinear forms Eij in
such a way that Tr(Eij(Et

ji)
−1) = aijrj/ri (this is possible in view of the remarks
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above). It is clear that in this way we get a solution of the main equation with
λ = −q − q−1. If λ is the Frobenius-Perron eigenvalue we have λ > 0 and thus
q �= ±i. Thus (i) is proved.

Now assume that the graph Γ is not a generalized tree. Thus either ai0j0 ≥ 2
for some i0, j0 ∈ I, or our graph contains a cycle of length M ≥ 3.

Case 1: i0 = j0. Consider the matrix Ã(u) = (ãij) where ãij = aij except
ãi0i0 = u ∈ C. For real positive u the Frobenius-Perron eigenvalue of the matrix
Ã(u) depends nontrivially on u since Tr(Ã(u)) = u + Tr(A) − ai0i0 . Thus for
generic u the matrix Ã(u) has an eigenvector (ri(u))i∈I with

∏
i∈I ri �= 0 and

with an eigenvalue λ(u) depending nontrivially on u. Thus λ(u) takes all values
from C except finitely many. Now a choice of Eij such that Tr(Eij(Et

ji)
−1) =

ãij(u)rj(u)/ri(u) (this choice is possible by 1) and 2) above) gives a solution of
the main equation with −q − q−1 = λ(u). Thus our graph is not super-rigid.

Case 2: i0 �= j0. In this case consider the matrix Ã(u) = (ãij) where ãij = aij

except ãi0j0 = u ∈ C. Since Tr(Ã(u)2) depends on u nontrivially the same
arguments as above show that our graph is not super-rigid.

Case 3: the graph has a cycle of length M ≥ 3. Let (i0, j0) be an edge from the
cycle. Consider the matrix Ã(u) = (Ãij) where Ãij = Aij except ãi0j0 = u ∈ C
and ãj0i0 = u−1. Now Tr(Ã(u)M ) depends on u nontrivially and our graph is
not super-rigid.

Now we are going to prove that a generalized tree is super-rigid.

Definition 3.6. An eigenvalue λ of the matrix A = (aij) is called nondegenerate
if there exists a λ−eigenvector (ri)i∈I such that

∏
i∈I ri �= 0.

The following lemma is well known in graph theory, see [F]. We give a proof
for the reader’s convenience.

Lemma 3.7. (i) Let A be the adjacency matrix of a connected graph. Then
A has a nondegenerate eigenvalue.

(ii) If A corresponds to a generalized tree then a nondegenerate eigenvalue has
multiplicity 1.

Proof. (i) The Frobenius-Perron eigenvalue (and its Galois conjugates) is always
nondegenerate.

(ii) Let λ be an eigenvalue of the matrix A. We are going to prove that
an λ−eigenvector (ri)i∈I with

∏
i∈I ri �= 0 is unique up to proportionality if it

exists. This would imply the statement of Lemma since a small perturbation
preserves the property

∏
i∈I ri �= 0.

The vector (ri)i∈I satisfies
∑

i �=j,aij=1

ri =
{

λrj if ajj = 0,
(λ− 1)rj if ajj = 1,

(the sum is over all edges of the underlying simply laced graph with vertex
j). Let us introduce new variables parametrized by the oriented edges of the
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underlying simply laced graph, yij = ri/rj . These variables satisfy

yijyji = 1,
∑

i �=j,aij=1

yij =
{

λ if ajj = 0,
λ− 1 if ajj = 1.

(4)

Now the result is a consequence of the following
Sublemma. For any choice of (λj)j∈I the system of equations

yijyji = 1,
∑

i �=j,aij=1

yij = λj (5)

has at most one solution.
Proof of Sublemma. The proof is by induction in |I|. Choose a vertex

j0 of valency 1 of the underlying simply laced graph (which is a tree). Then
there is only one variable yij0 and it is uniquely defined from the equation yij0 =∑

i �=j0,aij0=1 yij0 = λj0 . Then the variable yj0i = 1/yij0 is also uniquely defined
and all other variables satisfy the system of equations of the same form with
smaller |I|. The Sublemma and the Lemma are proved.

Observe that in the case of a generalized tree the main equation has exactly
the form of system (4). Thus it is obvious that the only possible values of λ are
the nondegenerate eigenvalues of A. So the Sublemma implies that a generalized
tree is super-rigid. Thus (ii) is proved.

Now we claim that for any graph Γ the dimension of the space of solutions of
the main equation is exactly L(Γ). Indeed, let us choose a spanning tree T of the
underlying simply laced graph Γ̄. Now let us choose any values of parameters
attached to all edges not belonging to T ; in particular for any edge ij from T
choose any values of aij − 1 eigenvalues of the matrix S (see 1) above). Thus
we have chosen L(Γ) parameters. Now the main equation reduces to the system
of the shape (5) for the rest of parameters (we have one parameter for each
edge of the tree T ). Now the Sublemma implies that we have only finitely many
solutions for these parameters. Henceforth we see that the expected dimension
L(Γ) coincides with the actual dimension (understood as it is explained above)
of the set of solutions of the main equation.

Now it is clear that if a graph is a unicyclic graph if and only if it is rigid
(indeed, the set of solutions of the main equation has dimension 1 and it maps
dominantly under the projection to the variable q). The Theorem is proved.

Corollary 3.8. For any value of |I| there are only finitely many rigid (and
hence super-rigid) graphs.

Recall that the ultraspherical polynomials Pn(x) are defined recursively by

P1(x) = 1, P2(x) = x, Pn+2(x) = xPn+1(x)− Pn(x), n ≥ 1.

It is a classical fact that the classes of simple objects in Gr(Cq) are given by
Pn([V ]), see e.g. [K].
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Corollary 3.9. Let A be an indecomposable symmetric matrix with nonnegative
entries. Then either Pn(A) = 0 for some n (all such matrices are explicitly
known and are classified by ADET graphs, see below) or Pn(A) has nonnegative
entries for all n.

Proof. Let λ be the Frobenius-Perron eigenvalue of A. All indecomposable ma-
trices with λ < 2 are classified and it is well known that for such matrices
Pn(A) = 0 for some n, see e. g. [EK]. Hence we can assume that λ ≥ 2. Then
the construction from the proof of Theorem 3.5 gives us a module category over
Cq with q + q−1 = λ (and thus q is not a root of unity) where the object V
is represented by the vector space valued matrix of dimension A. Since Pn(A)
gives an action of some object in Cq, it is nonnegative.

Consider the case q = 1. In this case C1 ∼= Rep(SL(2)). Any finite subgroup
G ⊂ SL(2) gives rise to a module category Rep(G) over Rep(SL(2)). As it
is known from the McKay correspondence, the corresponding graph is then an
affine ADE Dynkin diagram. Observe that the graphs of type D̃n, Ẽn are super-
rigid while the graph of type Ãn is just rigid. This explains the fact that among
finite subgroups of SL(2) only the cyclic subgroups corresponding to Ãn admit
a continuos deformation in the “quantum” direction.

3.2. Examples. In this section we will assume that q is not a root of unity.
Recall that the module categories over C with one simple object are the same
as fiber functors (= tensor functors C → Vec). We see from Theorem 2.5 that
the fiber functors on Cq are classified by a vector space V and a bilinear form
E : V ⊗ V → C such that Tr(E(Et)−1) = −q − q−1. This is exactly the result
of J. Bichon, see [Bi] who classified all Hopf algebras H such that the category
of comodules over H is tensor equivalent to Cq. Thus our Theorem 2.5 can
be considered as a generalization of Bichon’s result: we classify all weak Hopf
algebras H such that the category of comodules over H is tensor equivalent to
Cq.

Observe that a graph with one vertex is rigid iff dim(V ) ≤ 3 and is super-rigid
iff dim(V ) = 1 (the last case gives q which is a primitive root of unity of order
3). Here is a list of rigid graphs with |I| = 2 (we wrote possible values of q + q−1

over the super-rigid graphs):
��� � ��� �� �� � �� �� � � � �� �� �� � �

±1
�� �

(−1±√5)/2
� �� �
−2

Now we are going to discuss the case of super-rigid graphs. Let Γ = (I, {aij})
be a generalized tree. We have the following consequence of Lemma 3.7:

Proposition 3.10. A solution of the main equation (3) for a generalized tree
exists if and only if −q − q−1 is a nondegenerate eigenvalue of A = (aij). In
such a case the solution is unique.

Observe that since an eigenvalue of symmetric matrix is real we have

Corollary 3.11. If the category Cq has a module category corresponding to a
super-rigid graph then either |q| = 1 or q is real.
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We present here a few examples. Here is a list of generalized trees with
≤ 4 vertices; under any graph we wrote possible values of λ = −q − q−1 or an
algebraic equation for λ; we omitted all values of q being a root of unity (thus
some graphs are omitted too; see the next subsection for them).

� �� �

2
� �� �

2
� �� ��

2
� �� � ��

1±√2
� �� � �

λ3 − 2λ2 − λ + 1

� �� � � �

1±√13
2

� � �� � �

1±√2
� �� � �

λ4 − λ3 − 3λ2 + λ + 1

� �� � �� �

λ3 − 3λ2 + 3

� �� �� �

1
2 ±

√
7±2
√

5
2

� �� �� �

2
� �� � �� �

λ4 − 3λ3 + 4λ− 1

� �� � � �� �

3±√5
2

� �� �

�

�

λ3 − 2λ2 − 2λ + 2

� �� �

�

�

λ4 − 2λ3 − 2λ2 + 4λ− 1

� ��

�

�

2
� ��

�

�

1±√13
2

� �� � �

�

�

3±√5
2

� ��

�

�

�

�

1±√13
2

� ��

�

��

�

�

1±√3

3.3. The roots of unity case. In this case we recover the Ocneanu-Kirillov-
Ostrik classification of the module categories over Cq (the quantum “McKay
correspondence”), see [Oc], [KO], [O]. Let q be a root of unity of order N ≥ 3.
Recall here that the irreducible based modules over the based ring Gr(Cq) are
classified by the ADET Dynkin diagrams with the Coxeter number N∗, see [DZ],
[EK]. In the pictures below the subscript is the number of vertices and h is the
Coxeter number:

� �. . . � �

An

h = n + 1
� �. . . � � �

�Dn

h = 2n− 2
� � �

�

� �

E6

h = 12
� � �

�

� � �

E7

h = 18
� � �

�

� � � �

E8

h = 30
� �. . . � ��

Tn

h = 2n + 1

Theorem 3.12. Let q be a primitive root of unity of order N ≥ 3.
(i) Assume that N is even. The indecomposable module categories over the

category Cq are classified by the ADE Dynkin diagrams with the Coxeter number
N∗ = N/2.

(ii) Assume that N is odd. The indecomposable module categories over the
category Cq are classified by the ADET Dynkin diagrams with the Coxeter number
N∗ = N .

Proof. It is clear that any module category M over Cq gives rise to a based
module Gr(M) over Gr(Cq). Such based modules were classified in [DZ], [EK]
and the answer is given precisely by ADET Dynkin diagrams with the Coxeter
number N∗. Conversely, we know that any generalized tree with nondegenerate
eigenvalue q + q−1 gives rise to a unique module category over Tq. It is well
known that the class of the object Im(fN∗−1) in Gr(C̃q) is given by PN∗([V ]),
see e.g. [BK] (recall that PN∗ is an ultraspherical polynomial). On the other
hand in Gr(Cq) we have the relation PN∗([V ]) = 0, see loc. cit. Thus we can
apply Theorem 2.3. Observe that −q − q−1 is a nondegenerate eigenvalue of
the adjacency matrix of the corresponding graph Γ in all cases except when
N is even and Γ = Tn (actually in all cases −q − q−1 is Galois conjugate to
the Frobenius-Perron eigenvalue). Thus by Proposition 3.10 we have a unique
solution of the main equation. The Theorem is proved.
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