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ENDPOINT Lp-Lq ESTIMATES FOR SOME CLASSES OF
DEGENERATE RADON TRANSFORMS IN R

2

Sanghyuk Lee

Abstract. We study endpoint Lp-Lq estimates for the degenerate Radon trans-
forms in R 2 given by

Rf(t, x) =

∫
R

f(t + S(x, y), y)ψ(x, y)dy

where ψ is a smooth function supported in a small neighborhood of the origin.
Under the assumption S is a smooth function satisfying the left and right finite
type conditions (∂x∂n

y S(0, 0) �= 0 and ∂m
x ∂yS(0, 0) �= 0 for some n, m ≥ 1), we

obtain complete Lp-Lq estimates for R.

1. Introduction and statement of results

The generalized Radon transform R in the plane is defined by

Rf(P ) =
∫
MP

f(Q)χ(P, Q)dσP (Q)(1.1)

where MP are curves in R2, and dσP is a smooth density on MP varying
smoothly along P and χ is a compactly supported smooth function. The reg-
ularity properties of R have been studied in terms of Lp-Sobolev and Lp-Lq

estimates ([PS1], [PS2], [PS3]). Up to ε-loss, sharp bounds for both problems
were obtained by Seeger ([Se1], [Se2]). However, most endpoint estimates remain
unsettled.

In this note we study endpoint Lp-Lq estimates for the degenerate Radon
transform given by

Rf(t, x) =
∫
R

f(t + S(x, y), y)ψ(x, y)dy(1.2)

where S is a smooth function and ψ is a smooth cutoff function supported in a
small neighborhood of the origin. It was introduced by Phong and Stein [PS2] as
a semi-translation invariant model of the generalized Radon transform. These
models are given in (1.1) by the curves for P = (x, t)

Mx,t = {(s, y) : s = t + S(x, y)}.
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For real analytic S the best possible L2-regularity results for R were obtained by
Phong and Stein [PS3], and later the sharp Lp-Sobolev estimates were obtained
by Yang [Y] except some endpoints. For smooth S, Rychkov [Ry] obtained
L2-regularity only slightly weaker than that of [PS3].

The results for Lp-Lq estimates for R as well as Lp-Sobolev estimates can be
described in terms of the Newton polygon(see [Se2] and [Y]). Let S be a smooth
function given in a formal power series at the origin by S(x, y) =

∑
cα,βxαyβ .

We recall that the Newton polygon Γ(S) of S at the origin is the convex hull of⋃
(α,β),cα,β �=0((α, β) + R+ × R+)

where R+ = [0,∞). The reduced Newton polyon Γ̃(S) of S at the origin is defined
by Γ̃(S) = Γ(S′′xy) + (1, 1). Let E(S) be the collection of extreme points of Γ̃(S)
and let H(S) ⊂ [0, 1]× [0, 1] be the convex hull of the set

{(1, 1), (0, 0)} ∪
{

(
m + 1

m + n + 1
,

m

m + n + 1
) : (m, n) ∈ E(S)

}
.

As shown in [Se2], R is unbounded from Lp(R2) to Lq(R2) if (1/p, 1/q) lies
below H(S) and ψ(0, 0) �= 0; analogous statements involving suitable finite type
conditions also hold in the general case (1.1) (see [Se2]).

Under the assumption that S is real analytic, it was shown by the author [L2]
that the necessary condition above is sufficient (for earlier partial results see
[B], [L1], [PS2]). Let n, m be integers ≥ 2. Assuming left and right finite type
conditions of degree n and m, the critical L

n+1
2 -Ln+1 and L

m+1
m -L

m+1
m−1 estimates

were obtained by Bak, Oberlin and Seeger [BOS] in the general case (1.1). For
the semi-translation invariant model case, the left finite type condition of degree
n is read as

∂x∂n−1
y S(0, 0) �= 0 and ∂x∂j

yS(0, 0) = 0 for 1 ≤ j ≤ n− 2(1.3)

and the right finite type condition of degree m is equivalent to the condition

∂m−1
x ∂yS(0, 0) �= 0 and ∂i

x∂yS(0, 0) = 0 for 1 ≤ i ≤ m− 2.(1.4)

The result in [BOS] implies that if (1.3), (1.4) are satisfied, then the same L
n+1

2 -
Ln+1 and Lm+1-L

m+1
m−1 estimates for R hold for smooth S. However, the endpoint

estimates corresponding to other vertices remain open. The following is our main
result.

Theorem 1.1. Suppose S is a smooth function satisfying both the left and right
finite type conditions (1.3), (1.4) with n = N + 1, m = M + 1, respectively, for
some N, M ≥ 1. Then if ψ is supported in a sufficiently small neighborhood of
the origin, there is a constant C, independent of (p, q), such that ‖Rf‖Lq(R2) ≤
C‖f‖Lp(R2) if (1/p, 1/q) ∈ H(S).

For the proof of theorem we make use of Puiseux decomposition of C∞ func-
tions due to Rychkov [Ry], and combine the argument in [L2] based on multi-
linear interpolation with the technique of Yang [Y]. The method in this note
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can also be used to simplify the proof of the result in [L2]. In section 2 we study
some damped estimates for R, which will be used in the proof of theorem. Also,
it seems to be interesting in its own right. In section 3, the proof of Theorem
1.1 is given.

2. Damping estimates

The L
n+1

2 -Ln+1, L
m+1

m -L
m+1
m−1 estimates for R are possible only when the left

finite type of degree n and right finite type of degree m, or the better type
conditions are satisfied. Even though these are not satisfied, the estimates cor-
responding to left and right finite type conditions can be obtained using suitable
damping factors which compensate some bad behavior near the degeneracy. In
view of the left finite type of degree n and the right finite type of degree m, the
degeneracies can be thought to be located in the sets

{(x, y) : ∂x∂n−1
y S(x, y) = 0}, {(x, y) : ∂m−1

x ∂yS(x, y) = 0},

respectively. So, it seems natural to use |∂x∂n
y S|a, |∂m

x ∂yS|b with suitable a, b > 0
as damping factors to recover the estimates associated to the left and right finite
type conditions.

Let I1, I2 be finite open intervals. For n ≥ 1, let us define Rn by

Rnf(t, x) =
∫
R

f(t + S(x, y), y)χI1×I2(x, y)|∂x∂n
y S(x, y)| 1

n+2 dy(2.1)

which has damping factor related to the left finite type of degree n + 1. By the
standard argument involving characteristic functions, taking S(x, y) = (x− y)l,
one can easily see that the exponent 1

n+2 over |∂x∂n
y S| is the best possible one

for L
n+2

2 -Ln+2 estimate. Interchanging the roles of x, y, the damped estimates
for the right finite type follow from duality.

When S is real analytic, the L3/2-L3 estimate for R1 can be deduced from the
damped oscillatory integral estimate in [PS4] and the argument in [PS2]. In the
case S is a polynomial, an improvement of this was obtained by Bak, Oberlin
and Seeger [BOS] in terms of Lorentz-spaces. Let Lp,q be the Lorentz space with
the (quasi-)norm denoted by ‖ · ‖p,q or ‖ · ‖Lp,q .

Proposition 2.1. Let S(x, y) be a smooth function on I1 × I2. Suppose that
∂M

x ∂yS(x, y) is either positive or negative on I1 × I2 for some positive integer
M , and suppose there are a constant B > 0 such that for N ≥ 1, the inequality

0 < sup
y∈I2

|∂x∂N
y S(x, y)| ≤ B inf

y∈I2
|∂x∂N

y S(x, y)|(2.2)

holds for all x ∈ I1. Then for 1 ≤ n ≤ N , there is a constant C = C(B, M, N, n)
such that for all f ∈ L

n+2
2 ,n+2(R2),

‖Rnf‖Ln+2(R2) ≤ C‖f‖
L

n+2
2 ,n+2(R2)

.
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Proposition 2.1 can be used to obtain estimate for R defined by some infinitely
degenerating S, for example, S(x, y) = e−1/xyl with I1, I2 = (0, ε), 0 < ε � 1.
When S is a polynomial in x, y, the condition (2.2) is trivially satisfied for some
N . Moreover, if S is a nontrivial analytic function defined on a neighborhood
of the origin, it can be shown that there is an interval (−δ, δ) such that for all
x ∈ (−δ, δ) (2.2) holds with I2 = (−δ, δ) with sufficiently small δ. One can see
it from the following.

Lemma 2.2. If F is an analytic function defined on a neighborhood of the origin
with ∂x∂yF �≡ 0, then there are constants C, δ > 0 and nonnegative integers
M, N ≥ 1, c, d such that

C−1|x|c ≤ |∂N
y ∂xF (x, y)| ≤ C|x|c, C−1|y|d ≤ |∂M

x ∂yF (x, y)| ≤ C|y|d(2.3)

if (x, y) ∈ (−δ, δ)× (−δ, δ).

Dividing (−δ, δ) × (−δ, δ) into (0, δ) × (0, δ), (0, δ) × (−δ, 0), (−δ, 0) × (0, δ),
(−δ, 0)×(−δ, 0), and using Lemma 2.2, we see that the conditions in Proposition
2.1 are satisfied on each of the decomposed. Hence, from Proposition 2.1 it
follows that ‖R1f‖3,3 ≤ C‖f‖ 3

2 ,3 if S is a (nontrivial) real analytic function
and I1, I2 = (−δ, δ). Interchanging the roles of x, y, we see the same estimate
also holds for the adjoint of R1. From duality we get ‖R1f‖3, 3

2
≤ C‖f‖ 3

2 , 3
2
.

Interpolation between these two estimates for R1 gives the following which is an
extension of Theorem 1.2 in [BOS].

Corollary 2.3. Let S(x, y) be an analytic function defined on a neighborhood
of the origin and let I1, I2 = (−δ, δ). If Γ̃(S) is not empty and δ is sufficiently
small, then there is a constant C such that

‖R1f‖L3,r(R2) ≤ C‖f‖
L

3
2 ,r(R2)

(2.4)

for all f ∈ L
3
2 ,r(R2) and 3

2 ≤ r ≤ 3.

Proof of Lemma 2.2. Using the Weierstrass preparation theorem (see [H], p.195-
196), the real-analytic function ∂yF can be written as

∂yF (x, y) = U(x, y)xayb(xn + cn−1(y)xn−1 + · · ·+ c0(y))(2.5)

where U , ci are real-analytic functions on a neighborhood of the origin with
U(0, 0) �= 0 and ci(0) = 0 for i = n − 1, . . . , 0. Since the reduced Newton
polygon of S at the origin is nonempty, a + n ≥ 1. Note that

∂n+a
x ∂yF (x, y) = (n + a)!U(x, y)yb + R(x, y)

where R(x, y) =
∑n−1

i=0 ci(y)yb∂n+a
x (xa+iU(x, y)). Since ci(0) = 0 for i =

0, . . . , n − 1, R(x, y) = O(|ybx| + |yb+1|). Therefore, if δ is sufficiently small,
then on the set (0, δ)× (0, δ)

C1|yb| ≥ |∂n+a
x ∂yF (x, y)| ≥ C2|yb|

for some C1, C2 > 0 because U(0, 0) �= 0. The same argument holds if we
interchange the roles of x, y. This completes the proof.
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2.1. Polynomial like functions on R. Now we consider a class of functions
introduced in [PS3]. Let I be a finite interval. We say F ∈ C∞(I) is polynomial
type of degree N on I with constant B if the inequality

0 < sup
x∈I
|F (N)(x)| ≤ B inf

x∈I
|F (N)(x)|(2.6)

holds. We denote by PB
N (I) this class of functions.

Lemma 2.4. Let P ∈ PB
N (I) and n be an integer satisfying 1 ≤ n ≤ N . Then

for any (a, b) ⊂ I, there is a constant C = C(N, B, n), independent of particular
function P and a, b, such that

|a− b|n sup
x∈(a,b)

|P (n)(x)| ≤ C sup
x∈(a,b)

|P (x)|.(2.7)

Proof of Lemma 2.4. The following is an adaptation of the argument in [PS3].
By normalization we may assume that for all x ∈ I,

1 ≤ P (N)(x) ≤ B.(2.8)

Let µ = supx∈(a,b) |P (x)|. Then trivially (a, b) ∈ {x ∈ I : |P (x)| ≤ µ}.
First we consider the case when N = 1. Since P ′ ≥ 1 on the interval I, we

see that for some constant C, independent of P , I,

|a− b| ≤ Cµ = C sup
x∈(a,b)

|P (x)|

using the following well-known sublevel set estimates for smooth functions on R.

Lemma 2.5 (Sublevel set estimates, [C1] ). Let v be a smooth function on R
and k be a positive integer. If |v(k)| ≥ L on an interval I, then there is a
constant C, independent of v, L and I, such that

|{x ∈ I : |v(t)| ≤ λ}| ≤ C (λ/L)
1
k .

We now proceed by induction on N . Assume that Lemma 2.4 holds with N
replaced by N − 1. By Taylor’s expansion we see that for x, x + t ∈ (a, b),

P (x + t) =
N−1∑
k=1

P (k)(x)
tk

k!
+ O(tN ) sup

x∈(a,b)

|PN (x)|.

For any x ∈ (a, b), there is an h, |h| = b−a
2 , so that x + sh ∈ (a, b) for all

0 ≤ s ≤ 1. Integrating with t = hs, we see∫ 1

0

P (x + sh)ψ(s)ds =
N−1∑
k=0

P (k)(x)
hk

k!

∫ 1

0

skψ(s)ds + O(|b− a|N ).

Choose ψ so that
∫ 1

0
sψ(s)ds = 1 and

∫ 1

0
skψ(s)ds = 0 for k = 0, 2, 3, . . . , N − 1.

Since
∣∣∣∫ 1

0
P (x + sh)ψ(s)ds

∣∣∣ ≤ C supx∈(a,b) |P (x)| = Cµ, it follows that

|(b− a)P ′(x)| ≤ C(µ + |a− b|N ) ≤ Cµ = C sup
x∈(a,b)

|P (x)|
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because |a − b|N ≤ Cµ by Lemma 2.5 and the fact that 1 ≤ P (N)(x). Since
P ′ ∈ PB

N−1(I), Now we can apply induction hypothesis to P ′ to get that for
1 ≤ n ≤ N ,

|a− b|n sup
x∈(a,b)

|Pn(x)| = |a− b|n sup
x∈(a,b)

|(P ′)(n−1)(x)|

≤ C|a− b| sup
x∈(a,b)

|P ′(x)|

≤ C sup
x∈(a,b)

|P (x)|.

This completes the proof.

Remark 2.6. Suppose that F ∈ PB
N (I) and F is either decreasing or increasing

on (a, b) ⊂ I. Then for 1 ≤ n ≤ N , 0 ≤ θ ≤ 1,

|b− a|n|F (n)(a)|θ|F (n)(b)|1−θ ≤ C|F (b)− F (a)|(2.9)

with C = C(N, B, n). It follows from Lemma 2.4. Indeed, |F (n)(a)|θ|F (n)(b)|1−θ

≤ supx∈(a,b) |F (n)(x)|, and supx∈(a,b) |F (x) − F (a)| = |F (b) − F (a)| because F

is decreasing or increasing on I. Then, applying Lemma 2.4 to F (x)−F (a) and
interval (a, b), we get (2.9).

The following lemma is an extension of Lemma 3.1 in [BOS] which covers the
case n = 1.

Lemma 2.7. Let I be a finite interval. Suppose that P ∈ PB
N (I) and P ′ has

constant sign on (a, b) ⊂ I. Then for 1 ≤ n ≤ N , there is a constant C =
C(N, B, n), independent of P , a, b, such that for s ∈ I and α > 0,

∫
{t∈(a,b):α|P (n)(s)P (n)(t)|

1
n+2 >|P (t)−P (s)|}

|P (t)− P (s)|dt ≤ Cα
n+1

n |P (n)(s)| 1
n+2 .

Proof of Lemma 2.4. Obviously, the set {t ∈ (a, b) : α|P (n)(s)P (n)(t)| 1
n+2 >

|P (t) − P (s)|} is contained in two minimal subintervals (t0, s) and (s, t1) of
(a, b). So for i = 0, 1,

α|P (n)(s)P (n)(ti)|
1

n+2 ≥ |P (s)− P (ti)|.(2.10)

It suffices to show that the integrals of |P (t) − P (s)| over the intervals (t0, s),
(s, t1) are bounded above by Cα

n+1
n |P (n)(s)| 1

n+2 . We only need to consider the
integral over [t0, s] since the argument is the same in both cases.

From the fact that P ′ has constant sign on (a, b), it follows that∫ s

t0

|P (t)− P (s)|dt ≤
∫ s

t0

∫ s

t

|P ′(v)|dv ≤ (s− t0)|P (s)− P (t0)|.

Since P ∈ PB
N (I) and P ′ is of constant sign on the interval [t0, s], using (2.9)

in Remark 2.6, we see that there is a constant C1 = C1(B, N, n) such that for
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1 ≤ n ≤ N ,

|s− t0|n|P (n)(t0)|
n+1
n+2 |P (n)(s)| 1

n+2 ≤ C1|P (s)− P (t0)|.
Form this it follows that

(s− t0)|P (s)− P (t0)| ≤ C
1/n
1 |P (n)(t0)|

−n−1
n(n+2) |P (n)(s)|

−1
n(n+2) |P (s)− P (t0)|

n+1
n .

Hence, (s − t0)|P (s) − P (t0)| ≤ Cα
n+1

n |P (n)(s)| 1
n+2 because of (2.10). This

completes the proof.

2.2. Proof of Proposition 2.1. We may assume f is nonnegative. For mea-
surable set E ⊂ R2, let E(x) be the sets {y : (x, y) ∈ E}. We decompose I1× I2

into measurable sets A1, . . . , AN−1 such that

I1 × I2 =
N−1⋃

1

Aj ,

and Aj(x) is an interval, and ∂x∂yS(x, y) has constant sign on Aj(x) for all
x ∈ I1 (discarding some harmless measure zero set). To do this, set px(y) =
∂x∂yS(x, y). Since p

(N−1)
x is positive or negative on I2 by (2.2), we can decom-

pose I2 into at most N −1 intervals I1
x, I2

x, . . . , on each of which px has constant
sign. Let Aj be the set of all (x, y) such that (x, y) ∈ Ij

x. Then, one can choose
the Ij

x, using smoothness of S, so that Aj is measurable.
To simplify notation, let us set

Dn(x, y) = |∂x∂n
y S(x, y)| 1

n+2 .

Define

TAf(t, x) =
∫

f(t + S(x, y), y)χA(x, y)Dn(x, y)dy.

For the proof of Proposition 2.1, it is sufficient to show that for A = A1, . . . , AN−1,

‖TAf‖n+2 ≤ C‖f‖n+2
2 ,n+2

By multilinear interpolation [C1], [J] (also see [B], [BOS]) the above follows from∫ n+2∏
1

TAfj(x, t)dxdt ≤ C‖f1‖1
n+2∏

2

‖fj‖n+1,1.(2.11)

Since the adjoint of TA is given by

T ∗Af(t, y) =
∫

f(t− S(x, y), x)χA(x, y)Dn(x, y)dx,

it is sufficient to show that for A = A1, . . . , AN−1,∫ n+2∏
2

TAfj(v − S(x, u), x)Dn(x, u)χA(x, u)dx ≤ C

n+2∏
2

‖fj‖n+1,1
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with C independent of v ∈ R and u ∈ I2. From now on, we assume A = Aj for
some j = 1, . . . , N − 1. Hölder’s inequality reduces it to showing(∫

|TAf(v − S(x, u), x)|n+1Dn(x, u)χA(x, u)dx

)1/(n+1)

≤ C‖f‖n+1,1.

By duality this follows from∫ ∫
f(v − S(x, u)+S(x, y), y)χA(x, y)G(x, y, u)dxdy(2.12)

≤ C‖f‖n+1,1‖gD
n

n+1
n (·, u)‖

L
n+1

n (R)

where G(x, y, u) = Dn(x, y)Dn(x, u)χA(x, u)g(x).
For (v, u) ∈ R× I2, define a map Φu,v : I1 × I2 → R

2 by

Φu,v(x, y) = (v − S(x, u) + S(x, y), y).(2.13)

We claim Φu,v has uniformly bounded multiplicity at most M on the set {(x, y) ∈
I1 × I2 : y �= u}. To see this, consider h(x) = −S(x, u) + S(x, y). Observe
h(M)(x) =

∫ y

u
∂M

x ∂yS. Since ∂M
x ∂yS(x, t) is either positive or negative on I1×I2,

we can see h(M) is also positive or negative if u �= y because so is ∂M
x ∂yS. This

means the map h(x) = −S(x, u) + S(x, y) has uniformly bounded multiplicity
at most M if u �= y. From this our claim follows.

Therefore, by the change of variables

(ξ, η) = Φu,v(x, y),

the left hand side of (2.12) is bounded by

C

∫∫
Φu,v(A)

f(ξ, η)G(x, y, u)
∂(x, y)
∂(ξ, η)

dξdη

where x, y are functions in η, ξ and ∂(x,y)
∂(ξ,η) denotes the absolute value of the

determinant of the Jacobian matrix of the map (ξ, η) → (x, y). By Hölder’s
inequality in Lorentz spaces (2.12) follows from

‖Dn(x, y)Dn(x, u)χA(x, u)g(x)
∂(x, y)
∂(ξ, η)

‖
L

n+1
n

,∞
ξ,η (Φu,v(A))

(2.14)

≤ C‖gD
n

n+1
n (·, u)‖n+1

n
.

For λ > 0, let us set

∆ =
{

(ξ, η) ∈ Φu,v(A) : Dn(x, y)Dn(x, u)χA(x, u)|g(x)|∂(x, y)
∂(ξ, η)

> λ

}
.

To get (2.14), it suffices to show

|∆| ≤ Cλ−
n+1

n

∫
|g(x)|n+1

n Dn(x, u)dx.(2.15)
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Since |∆| =
∫
∆

dξdη and ∂(ξ,η)
∂(x,y) = |∂xS(x, u) − ∂xS(x, y)|, reversing the change

of variables ((ξ, η)→ (x, y)), we see that

|∆| ≤ C

∫ ∫
∆̃

|∂xS(x, u)− ∂xS(x, y)|dydx(2.16)

where

∆̃ =
{

(x, y) ∈ A :
Dn(x, y)Dn(x, u)χA(x, u)|g(x)|

λ
>

∂(ξ, η)
∂(x, y)

}
.

From (2.2) we see that for all x ∈ I1, ∂xS(x, ·) ∈ PB
N (I2). Observe that

χA(x, u)χA(x, y) ≡ 0 unless both u and y are contained in A(x). Since ∂y∂xS(x, ·)
has constant sign on the interval A(x), we can apply Lemma 2.7 to ∂xS(x, ·) and
interval A(x) with u, y ∈ A(x). Then, we get for all x ∈ I1, 1 ≤ n ≤ N ,∫

∆̃(x)

|∂xS(x, u)− ∂xS(x, y)|dy ≤ C

( |g(x)|
λ

)n+1
n

Dn(x, u)(2.17)

since ∆̃(x) = {y ∈ A(x) : λ−1g(x)|∂x∂n
y S(x, y)∂x∂n

y S(x, u)| 1
n+2 > |∂xS(x, u) −

∂xS(x, y)|} if u ∈ A(x). Here C is depending only on N, B, n. We put (2.17)
in the right hand side of (2.16) and integrate in x to get (2.15). This completes
the proof.

3. Proof of theorem 1.1

To begin with, note that

∂x∂N
y S(0, 0) �= 0, ∂M

x ∂yS(0, 0) �= 0.

By the result due to Bak, Oberlin and Seeger [BOS] there is nothing to prove
if Γ̃(S) has only the two extreme points (1, M) and (N, 1). In fact, it directly
follows from Proposition 2.1 and duality.

Let (α, β) be an extreme point of Γ̃(S) which is neither (1, M) nor (N, 1). For
the proof of Theorem 1.1 it suffices to show that L

α+β+1
α+1 -L

α+β+1
α estimate for R

since the number of extreme points of Γ̃(S) is obviously finite. We may assume
β ≥ α. In the case β < α, we consider the adjoint operator R∗ of R. Then (β, α)
is an extreme points of the reduced Newton polygon of S̃(x, y) = −S(y, x). By
duality we can derive the desired from L

α+β+1
β+1 -L

α+β+1
β estimate for R∗.

For 0 < δ � 1, let I = (0, δ) and

Q = I × I.

The methods in this note are not affected by the smoothness of ψ. So we divide
the neighborhood of the origin into subsets of four quadrants. Then, using
reflections x → −x, y → −y, we may replace χQ for ψ in (1.2) because the
(reduced) Newton polygon is not changed under reflections. From now on, our
analysis will be carried out on Q only.

Let

(A1, B1), (A2, B2), . . . , (Al, Bl)
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y-axis

δ

δ

y = Ci+1xγi+1

y = cix
γiy = Cix

γi y = Yi,j(x)

x-axis

Figure 1. Decomposition of Q = (0, δ)× (0, δ)

be the extreme points of Γ(S′′xy) with Bi > Bi+1. Obviously, (A1, B1) = (0, N −
1), (Al, Bl) = (M − 1, 0) and (α, β) = (An +1, Bn +1) for some n = 2, . . . , l− 1.
For i = 1, . . . , l − 1, we define

νi = Bi −Bi+1, γi =
Ai+1 −Ai

Bi −Bi+1
.

Note that 1/γi is the absolute value of the slope of the face joining two extreme
points (Ai, Bi) and (Ai+1, Bi+1). For convenience we also define

γ0 = 0, γl =∞.

By convexity of Γ̃(S), γi < γi+1, and one can easily see that for k = 2, . . . , l− 1,

Ak = A1 +
k−1∑
i=1

νiγi, Bk = Bl +
l−1∑
k

νi.(3.1)

We will use the following due to Rychkov [Ry].

Lemma 3.1 (Puiseux decomposition of C∞ functions). Let F be a real-valued
smooth function and (A1, B1), . . . , (Al, Bl) be the extreme points of Γ(F ), and let
νi = Bi −Bi+1, γi = Ai+1−Ai

Bi−Bi+1
for l = 1, . . . , l − 1. Then there is a neighborhood

U of the origin such that F admits in the region x, y > 0 a factorization of the
form

F (x, y) = U(x, y)
A1∏
i=1

(x−Xi(y))
Bl∏
i=1

(y − Yi(x))
l−1∏
i=1

νi∏
j=1

(y − Yi,j(x))(3.2)
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where

(1) U is a real valued smooth function with U(0, 0) �= 0,
(2) Xi, Yi are smooth on R+ ∩ U and Xi(x), Yi(x) = O(xN ) for any N > 0,
(3) Yi,j are continuous and Yi,j(x) = Ci,jx

γi + O(xγi+ε) for some small ε > 0
as x→ 0 with Ci,j �= 0.

Assuming δ is sufficiently small and replacing F by ∂x∂yS in Lemma 3.1, we
see that for (x, y) ∈ Q,

∂x∂yS(x, y) = U(x, y)
l−1∏
i=1

νi∏
j=1

(y − Yi,j(x))(3.3)

where U is a real valued smooth function with U(0, 0) �= 0 and Yi,j is a continuous
function on I with Yi,j(x) = ci,jx

γi + O(xγi+ε), ci,j �= 0, for some small ε > 0.
Additionally we set

µi = Ai+1 −Ai, δi = 1/γi.

Interchanging the roles of x, y in Lemma 3.1, we also have

∂x∂yS(x, y) = V (x, y)
l−1∏
i=1

µi∏
j=1

(x−Xi,j(y))(3.4)

where V is a real valued smooth function with V (0, 0) �= 0 and Xi,j is a contin-
uous function on I with Xi,j(y) = di,jy

δi + O(yδi+ε), di,j �= 0, for some small
ε > 0. Since Yi,j(x) = ci,jx

γi + O(xγi+ε), it is possible to choose Ci, ci > 0 such
that for i = 1, . . . , l − 1,

2cix
γi < |Yi,j(x)| < Ci

2
xγi

if x ∈ I with sufficiently small δ.
Now we decompose Q into regions Ni (near the zero branches) and Ai (away

from the zero branches) by setting

Ni = {(x, y) ∈ Q : cix
γi < y < Cix

γi}, i = 1, . . . , l − 1,

Ai = {(x, y) ∈ Q : Cix
γi < y < ci−1x

γi−1}, i = 1, . . . , l

where we set c0 = Cl = 1. (See figure 1). We define a weighted operator T [·, w]
by

T [f, w](t, x) =
∫

f(t + S(x, y), y)w(x, y)χQ(x, y)dy.

Proposition 3.2. If δ is sufficiently small, then there is a constant C such that
for i = 1, . . . , l − 1,∥∥∥T [f, χNi |S′′xy|−1/(An+Bn)]

∥∥∥
An+Bn

An

≤ C ‖f‖An+Bn
An

(3.5)
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and for i = 1, . . . , n− 2, n, . . . , l,∥∥∥T [f, χAi |S′′xy|−1/(An+Bn)]
∥∥∥

An+Bn
An

≤ C ‖f‖An+Bn
An

(3.6)

where S′′xy = ∂x∂yS.

Since |∂x∂M
y S|, |∂N

x ∂yS| > c > 0 on Q with small δ, using Proposition 2.1
(with n = 1), we have ∥∥∥T [f, |S′′xy|1/3]

∥∥∥
3
≤ C ‖f‖ 3

2
.

By interpolation (complex) between this and the estimates (3.5), (3.6), we see
that for i = 1, . . . , l − 1,

‖T [f, χNi ]‖An+Bn+3
An+1

≤ C‖f‖An+Bn+3
An+2

and for i = 1, . . . , n− 2, n, . . . , l,

‖T [f, χAi
]‖An+Bn+3

An+1
≤ C‖f‖An+Bn+3

An+2
.

Since Q = (
⋃l

i=1Ai) ∪ (
⋃l−1

i=1Ni), Rf =
∑l

i=1 T [f, χAi ] +
∑l−1

i=1 T [f, χNi ]. To
finish the proof of Theorem 1.1, we have to show (recall An = α−1, Bn = β−1)
that ∥∥T [f, χAn−1 ]

∥∥
α+β+1

α

≤ C ‖f‖α+β+1
α+1

.(3.7)

3.1. Proof of Proposition 3.2. The proof Proposition 3.2 is to be given by
combining Lemma 3.4 (below) with the following which is a form of Schur’s
lemma given in Yang [Y].

Lemma 3.3. Let Tf(x) =
∫

K(x, y)f(y)dy and 1 < p <∞. Suppose∫
|K(x, y)|y−1/pdy ≤ Cx−1/p,

∫
|K(x, y)|x−1+1/pdx ≤ Cy−1+1/p.

Then, there is a constant C such that ‖Tf‖p ≤ C ‖f‖p.
The following can be shown by the argument in [Y] using (3.3), (3.4) but for

the convenience of readers we give a proof of this.

Lemma 3.4. Let αn = 1/(An + Bn) and 1/pn = An/(An + Bn). Then for
k = 1, . . . , l − 1 and n = 2, . . . , l − 1,

Ik,n(x) =
∫

χNk
(x, y)|S′′xy(x, y)|−αny−1/pndy ≤ Cx−1/pn ,(3.8)

Ik,n(y) =
∫

χNk
(x, y)|S′′xy(x, y)|−αnx−1+1/pndx ≤ Cy−1+1/pn .(3.9)

And for k = 1, . . . , l and n = 2, . . . , k, k + 2, . . . , l − 1

Jk,n(x) =
∫

χAk
(x, y)|S′′xy(x, y)|−αny−1/pndy ≤ Cx−1/pn ,(3.10)

Jk,n(y) =
∫

χAk
(x, y)|S′′xy(x, y)|−αnx−1+1/pndx ≤ Cy−1+/pn .(3.11)
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Set K = χNk
|S′′xy|−1/(An+Bn). By (3.8) and (3.9),

∫
K(x, y)y−An/(An+Bn)dy ≤

Cx−An/(An+Bn),
∫

K(x, y)x−Bn/(An+Bn)dx ≤ Cy−Bn/(An+Bn). By Minkowski’s
inequality∥∥∥T [f, χNi

|S′′xy|−1/(An+Bn)]
∥∥∥

An+Bn
An

≤
∥∥∥∥
∫

K(x, y)‖f(·, y)‖An+Bn
An

dy

∥∥∥∥
L

An+Bn
An (dx)

.

An application of Lemma 3.3 gives (3.5). The remaining T [f, χAi |S′′xy|−1/(An+Bn)]
can be handled in the same way using (3.10) and (3.11). This proves Proposition
3.2.

Proof of Lemma 3.4. By symmetry it is sufficient to show (3.8) and (3.10) be-
cause (3.9) and (3.11) can be shown by interchanging the roles of x, y. First we
show (3.8). Comparing the sizes of factors in (3.3)(also note (3.1)) on the set
Nk = {(x, y) ∈ Q : ckxγk < y < Ckxγk}, we see that if (x, y) ∈ Nk,

|∂x∂yS(x, y)|
−1

An+Bn ≤ Cx−
Ak

An+Bn y−
Bk+1+An

An+Bn

νk∏
j=1

|(y − Yk,j(x))|
−1

An+Bn .(3.12)

We treat the cases γk ≥ 1 and γk < 1, separately.
Note that if γk ≥ 1 then An +Bn > νk for any n. Indeed, suppose An +Bn =

νk for some k. Then we have νi = 0 for all i �= k because An +Bn =
∑n−1

i=1 νiγi +∑l−1
i=n νi (see (3.1)). This means that Γ(∂x∂yS) has only two extreme points. It

was excluded by our assumption on (α, β) which is an extreme point neither
(1, N) nor (M, 1). By a computation we see

Ij
k,n(x) =

∫ Ckxγk

ckxγk

|(y − Yk,j(x))|−νk/(An+Bn)dy ≤ Cxγk(1− νk
An+Bn

).

By (3.12) and Hölder’s inequality

Ik,n(x) ≤ Cx−
Ak+γkBk+1+γkAn

An+Bn (
νk∏

j=1

Ij
k,n(x))1/νk .

Since νk = Bk −Bk+1, we have

Ik,n(x) ≤ Cx−
Ak+γkBk−γkBn

An+Bn .

So it is sufficient to show that An ≥ Ak + γkBk − γkBn because 0 < x ≤ δ.
This follows from the convexity of Newton polygon. Comparing the slopes of
the lines connecting (Ak, Bk) and (An, Bn), it is easy to see that γk ≤ An−Ak

Bk−Bn
if

n > k, and γk > Ak−An

Bn−Bk
if n < k.

Now we turn to the case γk < 1. Using the factorization (3.4), we see that if
(x, y) ∈ Nk,

|∂x∂yS(x, y)|
−1

An+Bn ≤ Cx−
Ak

An+Bn y−
Bk+1+An

An+Bn

µk∏
j=1

|(x−Xk,j(y))|
−1

An+Bn .
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Now set

Ij
k,n(x) =

∫ Ckxγk

ckxγk

|(x−Xk,j(y))|−µk/(An+Bn)
dy.

Since Xk,j(y) = dk,jy
δk + O(yδk+ε), it is easy to see that

Ij
k,n(x) ≤

∫ Ckxγk

ckxγk

∣∣x− 2dyδk
∣∣−µk/(An+Bn)

+ |x− dyδk/2|−µk/(An+Bn)dy

where d = |dk,j |. From the fact that δk = 1/γk > 1 and An +Bn =
∑n−1

i=1 δiµi +∑l−1
i=n µi, it follows µk < An + Bn by the same argument in the previous case.

Therefore a routine computation gives

Ij
k,n(x) ≤ Cxγk− µk

An+Bn = Cxγk(1− νk
An+Bn

).

because γk = µk/νk. Now the remaining is done by the same lines of arguments
in the previous case. This completes the proof of (3.8).

Now we prove (3.10). From (3.3) and (3.1) it is easy to see that |∂x∂yS(x, y)| ≤
Cx−

Ak+1
An+Bn y−

Bk+1
An+Bn if (x, y) ∈ Ak. So it follows that

Jk,n(x) ≤ C

∫ ckxγk

Ck+1xγk+1
x−

Ak+1
An+Bn y−

Bk+1+An

An+Bn dy.

First we consider the case n < k+1. In this case Bk+1+An

An+Bn
< 1. By a computation

we have

Jk,n(x) ≤ Cx−
Ak+1−γkBn+γkBk+1

An+Bn .

From the convexity of Newton polygon we see γk ≥ Ak+1−An

Bn−Bk+1
if n < k+1. Hence,

(3.10) follows because x ≤ δ. Secondly when n > k + 1, Bk+1+An

An+Bn
> 1. So we

have

Jk,n(x) ≤ Cx−
Ak+1−γk+1Bn+γk+1Bk+1

An+Bn .

Then the right hand side of the above is bounded by x−
An

An+Bn because γk+1 ≤
An−Ak+1
Bk+1−Bn

if n > k + 1. This proves (3.10).

(3.10) and (3.11) in Lemma 3.4 do not hold when k = n − 1. In fact, by a
simple computation one can see Jn−1,n ≥ Cx−1/pn | log x|. This is due to the
fact that Bk+1+An

An+Bn
= 1.

3.2. Proof of (3.7). We may assume f ≥ 0. By interpolation with change of
measures (see [BL], p. 119) (3.7) will follow from two estimates∥∥∥T [f, χAn−1x

α−1
β+2 ]

∥∥∥
β+2
≤ C ‖f‖ β+2

2
,(3.13) ∥∥∥T [f, χAn−1x

α−β−1
2β+2 ]

∥∥∥
2
≤ C ‖f‖ 2β+2

β+2
.(3.14)
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We deduce (3.13) from Proposition 2.1. Since ∂x∂N
y S(0, 0), ∂M

x ∂yS(0, 0) �= 0,
by Proposition 2.1 with n = β (trivially β < N), it is sufficient to show that if
(x, y) ∈ An−1 and δ is sufficiently small,

C|∂x∂β
y S(x, y)| ≥ xα−1.(3.15)

Since ∂x∂N
y S(0, 0) �= 0, by Malgrange’s preparation theorem (see [H], p. 200 )

∂x∂β
y S(x, y) = U(x, y)(yN−β + cN−β−1(x)yN−β−1 + · · ·+ c0(x))

where U and cN−β−1, . . . , c0 are smooth functions with U(0, 0) �= 0 and cN−β−1(0)
= · · · = c0(0) = 0. For 0 ≤ j ≤ N − β − 1, cj is of type aj , that is,
cj(x) = dxaj + O(xaj+1) for some aj , d �= 0. Possibly aj = ∞, and obviously
a0 = α− 1. Since the Newton polygon of ∂x∂β

y S at the origin is equal to that of
yN−β +cN−β−1(x)yN−β−1+ · · ·+c0(x), Γ(∂x∂β

y S) is the convex hull of the union
of the sets R+ × R+ + (0, N − β) and R+ × R+ + (aj , j), j = 0, . . . .N − β − 1.
And note Γ(∂x∂β

y S) + (0, β − 1) = {(µ, ν) ∈ Γ(S′′xy) : ν ≥ β − 1}. From these
and convexity of Γ(∂x∂β

y S), comparing the slopes of the lines joining (aj , j) and
(a0, 0), we see that for 1 ≤ j ≤ N − β − 1,

a0 − aj

j
=

α− 1− aj

j
< γn−1.

Hence, if y ∼ xγn−1 (namely, (x, y) ∈ An−1), all yN−β , cN−β−1(x)yN−β−1,
. . . ,c2(x)y2, c1(x)y are O(xα−1xε) because α − 1 < aj + jγn−1 for 1 ≤ j ≤
N − β − 1. Therefore, (3.15) holds provided (x, y) ∈ An−1 and δ is sufficiently
small.

Now we turn to the proof of (3.14). Set

Uf = T [f, χAn−1x
α−β−1
2β+2 ].

By the T ∗T argument, it is sufficient to show that U∗U is bounded from
L(2β+2)/(β+2) to L(2β+2)/β . Making the change of variables x→ x

β+1
α , we see

U∗Uf(t, y) =

C

∫ ∫
f(t− S(x

β+1
α , y) + S(x

β+1
α , z), z)χAn−1(x

β+1
α , y)χAn−1(x

β+1
α , z)dxdz

For fixed y, z, let us define a map x→ v by

v = S(x
β+1

α , y)− S(x
β+1

α , z).

The map x → v is of uniformly bounded multiplicity at most M for all
y, z ∈ (0, δ) with y �= z since S(·, y)−S(·, z) has multiplicity at most M if y �= z.
This can be seen by the argument below (2.13). So, by the change of variables
x→ v, U∗Uf(t, y) is bounded above by a constant multiple of∫∫

f(t− v, z)χAn−1(x
β+1

α , y)χAn−1(x
β+1

α , z) |∂x/∂v| dvdz
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where x = x(v). Set

k(v, y, z) = χAn−1(x
β+1

α (v), y)χAn−1(x
β+1

α (v), z) |∂x/∂v|
and note that U∗Uf(t, y) ≤ C

∫
f(t− v, z)k(v, y, z)dv. We claim that

‖k(·, y, z)‖
L

β+1
β

,∞
(dv)
≤ C|y − z|−1+ 1

β+1 .(3.16)

Assuming this for the moment, we prove (3.14). By a generalized Young’s in-
equality (cf. [F], p.232), Uy,zF (t) =

∫
F (t − v)k(v, y, z)dv is, in particular,

bounded from L
2β+2
β+2 (R) to L

2β+2
β (R) with operator norm C|y−z|−1+ 1

β+1 . There-
fore, Minkowski’s inequality gives

‖U∗Uf‖
L

2β+2
β (R2)

≤ C‖
∫
|y − z|−1+ 1

β+1 ‖f(·, z)‖
L

2β+2
β+2

dz‖
L

2β+2
β (dy)

.

By the fractional integration theorem we get (3.14).
We now prove the claim (3.16). It suffices to show

|{v : |k(v, y, z)| > λ}| ≤ Cλ−
β+1

β |y − z|−1.(3.17)

Observe |{v : |k(v, y, z)| > λ}| =
∫
{v:|k(v,y,z)|>λ} dv. Reversing the change of

variables (v → x) gives

|{v : |k(v, y, z)| > λ}| ≤ C

∫
{

x∈(0,δ):χAn−1 (x
β+1

α ,y)χAn−1 (x
β+1

α ,z)| ∂x
∂v |>λ

} |∂v/∂x|dx.

Set An−1(z) = {x : (x, z) ∈ An−1}, and note that χAn−1(x
β+1

α , y)χAn−1(x
β+1

α , z)
= 0 unless x

β+1
α ∈ An−1(y)∩An−1(z). Since ∂v/∂x = ∂x(S(x

β+1
α , y)−S(x

β+1
α , z)),

we see

|{v : |k(v, y,z)| > λ}| ≤ C

∫
∆

|∂x(S(x
β+1

α , y)− S(x
β+1

α , z))|dx

where

∆=
{

x ∈ (0, δ) :
1
λ
≥

∣∣∣∂x(S(x
β+1

α , y)− S(x
β+1

α , z))
∣∣∣ , x

β+1
α ∈ An−1(y) ∩ An−1(z)

}
.

Since {v : |k(v, y, z)| > λ}| ≤ C|∆|/λ, it is sufficient for (3.17) to show that
there is a constant C such that

|∆| ≤Cλ−
1
β |yβ − zβ |− 1

β .(3.18)

Using (3.3) and (3.1), it is easy to see that if (x, y) ∈ An−1, S′′xy(x, y) has constant
sign and |S′′xy(x, y)| ∼ xAnyBn = xα−1yβ−1. By these, if (x, y), (x, z) ∈ An−1,
then |∂xS(x, y) − ∂xS(x, z)| ∼ |

∫ y

z
xα−1tβ−1dt|. This implies that if x

β+1
α ∈

An−1(y) ∩ An−1(z), then

|∂x(S(x
β+1

α , y)− S(x
β+1

α , z))| ∼ x
β−α+1

α

∣∣∣∣
∫ y

z

x
β+1

α (α−1)tβ−1dt

∣∣∣∣ ∼ xβ |yβ − zβ |.

So |∆| ≤ C|{x ∈ (0, δ) : xβ |yβ − zβ | ≤ 1/λ}|. From this (3.18) follows.
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