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A VANISHING THEOREM ON MANIFOLDS OF POSITIVE
SPECTRUM

Yiu-Ming Lo

1. Introduction

In recent work of Witten-Yau, Cai-Galloway, and X. Wang, they investigated
the relation of the homology group Hn−1(M, Z) = 0 under the assumption that
M is a conformally compact manifold of dimension ≥ 3. The great interest
relies on the close relation between this class of manifolds and the AdS/CFT
correspondence which links the conformal field theory and supergravity together.

A manifold M is conformally compact if its complete metric is of the form

ds2 = ρ−2ds2
0,

where ds2
0 is some background metric defined on the manifold with boundary

M̃ = M ∪ ∂M and ρ is a defining function satisfying

ρ = 0 on ∂M

and
dρ �= 0 on ∂M.

In his thesis [19] and [20], X. Wang proved the following theorem:
Theorem 1 (Wang). Let Mn be a conformally compact manifold of dimension
n ≥ 3 with Ricci curvature bounded from below by

RicM ≥ −(n− 1).

Let λ1(M) denote the lower bound of the spectrum of the Laplacian on M . If

λ1(M) ≥ n− 2,

then either
(1) H1(L2(M)) = 0; or
(2) M = R × N with the warped product metric ds2 = dt2 + cosh2t ds2

N ,
where N is a compact manifold with Ricci curvature bounded from below
by

RicN ≥ −(n− 2).
In particular, M either has only one end or it must be a warped product given
as above.
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Due to Mazzeo’s theorem on conformally compact manifolds, we are able
to identify the L2-cohomology group H1(L2(M)) with the relative cohomology
group H1(M, ∂M) and hence we obtain the vanishing of H1(M, ∂M).

Later this type of theorems were generalized by Leung-Wan and Li-Wang,
respectively in different directions. In [7], Leung and Wan extended X. Wang’s
arguments to harmonic maps and generalized his result to a wider class of man-
ifolds, namely, the class of asymptotically hyperbolic conformally compact man-
ifold of order C1. In fact, they showed that:

Theorem 2 (Leung-Wan). Suppose that (Mn, g), n ≥ 3 is an asymptotically
hyperbolic conformally compact manifold of order C1 such that RicM ≥ −(n−1)g
and λ1(M) ≥ n − 2. Suppose that f : M → N is a smooth harmonic map
of finite total energy from M into a complete non-positively curved manifold
N . If λ1(M) > n − 2, then f is a constant map. If λ1(M) = n − 2, then
either f is a constant map, or M = R× Σ with the warped product metric g =
dt2 + cosh2(t)ds2

Σ, where (Σ, ds2
Σ) is a compact manifold with RicΣ ≥ −(n− 2).

As an application, they showed that the homotopy classes in [(M, ∂M), (N, ∗)]
are trivial, or M splits as a warped product of the real line and some compact
manifold.

In another direction, Li and Wang [12] generalized the theorem to a class of
manifolds with positive spectrum.

Theorem 3 (Li-Wang). Let M be a complete Riemannian manifold of dimen-
sion n ≥ 3. Suppose λ1(M) > 0 and

RicM ≥ − (n− 1)λ1(M)
n− 2

.

Then either

(1) M has only one end with infinite volume; or

(2) M = R×N with the warped product metric ds2 + cosh2
(√λ1(M)

n−2 t
)
ds2

N ,
where N is a compact manifold with Ricci curvature bounded from below
by

RicN ≥ −λ1(M).

By combining the idea of Li-Wang and Leung-Wan, we are able to prove:

Theorem 4 (Main Theorem). Let M be a complete Riemannian manifold of di-
mension n ≥ 3 and N be a manifold of non-positive sectional curvature. Suppose
λ1(M) > 0 and

RicM ≥ − (n− 1)λ1(M)
n− 2

Either M splits as a warped product of the real line and a compact manifold,
or any smooth map h : M → N which is constant outside a compact set is
homotopic to a constant map.
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In particular, if M has only one end, then for any compact set K the homotopy
class [(M, M −K), (N, a point)] is trivial.

In fact, Li and Wang [12] showed that for a subclass of bounded harmonic
functions with finite Dirichlet integral constructed in [10] there exists some a
such that ∫

E(R+1)\E(R)

(f − a)2 ≤ C exp(−2
√

λ1(E)R).(1.1)

By following their argument, we can show that the similar energy estimate holds
for certain class of harmonic maps.

The main key of the proof is based on the fact that a power of the energy
density of a harmonic map is in L2(M). Then the Bochner formula forces the
energy density must be zero on a manifold of one end.

We remark that there is certain subtlety of our formation of our theorem.
For a harmonic map f which is homotopic to a map constant outside a compact
set, apriorily, it might not be a constant map, although the unique continuation
theorem implies that f is constant if it is constant on some open set.

Throughout the whole paper, we denote E(R) = E ∩ Bp(R) and ∂E(R) =
E ∩ ∂Bp(R), where E is an end of M . We also denote the bottom of the L2

spectrum of the Laplacian on E satisfying Dirichlet boundary conditions on ∂E
by λ1(E). Thus for any compactly supported smooth function φ on E

λ1(E)
∫

E

φ2 ≤
∫

E

|∇φ|2.
Acknowledgement. The author would like to thank his advisor Prof. Peter Li

for his support and patience and Jiaping Wang for reading the earlier version of
the paper and sharing his idea and suggestion for the improvement of the paper.

2. Vanishing Theorem for Harmonic Maps

First let us recall a fundamental theorem on the existence of harmonic maps
with finite total energy and then we will construct a class of harmonic maps.

For a smooth map h : M → N , the energy density of h is defined to be

e(h) := trM (h∗ds2
N ),

where trM is the trace with respect to the metric ds2
M . The total energy of h is

E(h) :=
∫

M

e(h) dvM .

Theorem 5 (Schoen-Yau). Let M be a complete Riemannian manifold with

RicM ≥ −(n− 1)k2,

and N be a complete manifold of non-positive sectional curvature. Let h : M →
N be a smooth map of finite total energy. Then there exists a harmonic map
f : M → N such that f is homotopic to h on compact sets of M and f has finite
energy.
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Let us give an outline of the proof for our purpose. Let h be a map from M
to N which is constant outside a compact set of M . Let Ωi be a sequence of
compact manifolds with boundary such that M = ∪iΩi. Then by Hamilton’s
theorem of Dirichlet problem for harmonic maps, we can find harmonic maps
fi : Ωi → N which are homotopic to h|Ωi . We also have

E(fi) ≤ E(h|Ωi
).

Then it is standard to show that there exists a subsequence of fi which converges
uniformly on compact sets in M .

We denote by K the class of harmonic maps which can be constructed as
above for some h : M → N which is constant outside a compact set of M .

Since the usual distance function is not globally smooth, we have to go through
the universal coverings of M and N and define the homotopic distance function.
For the sake of completeness, we reproduce the construction here. Let f and g

be homotopic maps from M to N and let M̃ and Ñ be the universal covers of
M and N respectively. Then π1(M, ∗) and π1(N, ∗) act as groups of isometries
on M̃ and Ñ respectively so that M = M̃/π1(M, ∗) and N = Ñ/π1(N, ∗). Let r̃

be the distance function on Ñ . Since Ñ has non-positive curvature, r̃ is smooth
on Ñ × Ñ\diagonal. Now π1(N, ∗) acts on Ñ × Ñ as a group of isometries by

α(x, y) = (α(x), α(y)) for α ∈ π1(N, ∗).
Thus r̃ induces a function r : Ñ × Ñ/π1(N, ∗)→ R. Let F : M × [0, 1]→ N be
a homotopy of f with g so that F (p, 0) = f(p) and F (p, 1) = g(p) for all p ∈M .
We now choose a lifting F̃ : M̃ × [0, 1]→ Ñ , and let

f̃(p) = F (p, 0) and g̃(p) = F (p, 1)

for all p ∈M . This defines lifting f̃ , g̃ of f , g. Thus if γ ∈ π1(M, ∗), there exists
α ∈ π1(N, ∗) with

f̃(γ(p)) = αf̃(p) and g̃(γ(p)) = αg̃(p) for all p ∈ M̃.(2.1)

We define a map h̃ : M̃ → Ñ × Ñ by h̃(p) = (f̃(p), g̃(p)) and it induces a map

h : M → Ñ × Ñ/π1(N, ∗).
We now define ρ(f, g) : M → R by

ρ(f, g) = r2 ◦ h.

Then ρ(f, g) is smooth on M . We call ρ(f, g) to be the homotopic distance
between f and g. Moreover, if f is harmonic and g is constant, then the hessian
comparison theorem implies ρ(f, g) is subharmonic and

∆ρ(f, g) ≥ 2e(f).(2.2)



A VANISHING THEOREM ON MANIFOLDS OF POSITIVE SPECTRUM 77

Lemma 2.1. Let M be a complete Riemannian manifold. Suppose E is an end
of M such that λ1(E) > 0. Then for any smooth harmonic map f ∈ K, we have
the energy decay estimate∫

E(R+1)\E(R)

e(f) ≤ C exp(−2
√

λ1(E)R)

for some constant C > 0 depending on f , λ1(E) and n.

Proof of Lemma 2.1. Let f ∈ K. Since the initial map of f is constant outside
a compact set, without loss of generality, we may assume it is constant on the
end E. We will denote the homotopic distance between f and its initial map by
ρ(f).

It now follows from (2.2) that ρ(f) is a subharmonic function on E and

∆ρ ≥ 2e(f) ≥ 0.(2.3)

Thus letting φ be a non-negative cut-off function on M and multiplying (2.3) by
φ2 and applying integration by parts gives∫

M

φ2e(f) ≤ 1
2

∫
M

φ2∆(ρ(f))

= −1
2

∫
M

〈∇φ2,∇(ρ(f))〉

≤
∫

M

φ|∇φ||∇ρ|
√

e(f)

≤ 1
2

∫
M

φ2e(f) +
1
2

∫
M

|∇φ|2|∇ρ|2.

By using |∇dist|2 = 1, we obtain∫
M

φ2e(f) ≤ C

∫
M

|∇φ|2ρ(f)(2.4)

for some absolute constant C > 0. So it suffices to establish the decay estimate
for ρ(f).

Let fi be a sequence of harmonic maps which converge uniformly to f on
compact sets and ρi : M → R be the corresponding homotopic distance between
fi and the initial map. Here we extend fi to a constant map outside Ωi. Thus
each ρi converges uniformly to ρ(f) on compact sets and satisfies

∆ρi ≥ 2e(fi) ≥ 0 on Ωi, ρi = 0 on ∂Ωi.(2.5)

By scaling the metric, we may assume the λ1(E) = 1 and we want to prove∫
E(R+1)\E(R)

ρ(f) ≤ C exp(−2R).

First, we show that for any 0 < δ < 1,∫
E

exp(2δr)ρ(f) ≤ C

(1− δ)2
,
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where r(x) is the geodesic distance to the fixed point p in M . In particular, ρ(f)
is in L2(E).

To do this, let φ be the non-negative cut-off function

φ(x) =

{
r(x)−R0

R0
on E(2R0)\E(R0),

1 on E\E(2R0),

and Ri a sequence divergent to infinity. By using integration by parts and (2.5)
and Cauchy-Schwarz inequality, we have for any ε > 0,

∫
E(Ri)

|∇(φ exp(δr)
√

ρi)|2

=
∫

E(Ri)

|∇(φ exp(δr))|2ρi + 2
∫

E(Ri)

φ exp(δr)
√

ρi〈∇(φ exp(δr)),∇√ρi〉

+
∫

E(Ri)

(φ exp(δr)2|∇√ρi|2

=
∫

E(Ri)

|∇(φ exp(δr))|2ρi − 1
2

∫
E(Ri)

φ2 exp(2δr)∆ρi

+
∫

E(R)

φ2 exp(2δr)|∇√ρi|2

≤
∫

E(Ri)

|∇(φ exp(δr))|2ρi −
∫

E(Ri)

φ2 exp(2δr)e(fi)

+
∫

E(R)

φ2 exp(2δr)e(fi)

=
∫

E(Ri)

|∇(φ exp(δr))|2ρi

≤ (1 + ε)δ2

∫
E(Ri)

φ2 exp(2δr)ρi +
(
1 +

1
ε

) 1
R0

∫
E(2R0)\E(R0)

exp(2δr)ρi.

(2.6)

By using the fact that λ1(E) = 1 and choosing ε = 1−δ
δ , we obtain

(1− δ)2
∫

E(Ri)

exp(2δr)ρi ≤ 1
R2

0

∫
E(2R0)\E(R0)

exp(2δr)ρi.

Since ρi converges to ρ(f) compactly uniformly, by letting i→∞, we obtain

(1− δ)2
∫

E

exp(2δr)ρ(f) ≤ 1
R2

0

∫
E(2R0)\E(R0)

exp(2δr)ρ(f).

Thus we have for some C > 0∫
E

exp(2δr)ρ(f) ≤ C

(1− δ)2
.(2.7)
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Once we get this estimate (2.7), we can improve the estimate as in [12]. First,
setting δ = 1 in (2.6) and λ1(E) = 1 implies∫

E

ψ2 exp(2r)ρi ≤
∫

E

|∇(ψ exp(r))|2ρi

≤
∫

E

|∇ψ|2 exp(2r)ρi + 2
∫

E

ψ exp(2r)〈∇ψ,∇r〉ρi

+
∫

E

ψ2 exp(2r)ρi,

which gives

−2
∫

E

ψ exp(2r)〈∇ψ,∇r〉ρi ≤
∫

E

|∇ψ|2 exp(2r)ρi.

Since ψ is a compactly supported function, by letting i go to infinity, we obtain

−2
∫

E

ψ exp(2r)〈∇ψ,∇r〉ρ ≤
∫

E

|∇ψ|2 exp(2r)ρ.

Then we choose our cut-off function ψ. For R0 < R1 < R, let ψ be

ψ(x) =

{
r(x)−R0
R1−R0

on E(R1)\E(R0)
R−r(x)
R−R1

on E(R)\E(R1)

Then we obtain, for any fixed 0 < t < R−R1,

2t

(R−R1)2

∫
E(R−t)\E(R1)

exp(2r)ρ(f)

≤
( 2

R1 −R0
+

1
(R1 −R0)2

) ∫
E(R1)\E(R0)

exp(2r)ρ(f)

+
1

(R−R1)2

∫
E(R)\E(R1)

exp(2r)ρ(f).

(2.8)

Based on (2.8), after an iterative argument (see [12] for details), we can show
that for any positive integer k and R ≥ 1∫

E(R)\E(R0+1)

exp(2r)ρ(f) ≤ CR2 + 2−k

∫
E(R+k)\E(R0+1)

exp(2r)ρ(f)

But using (2.7) and choosing δ sufficiently small, we see that the second term
goes to 0 as k →∞. Thus we have∫

E(R)

exp(2r)ρ(f) ≤ CR2 for all R ≤ R0.(2.9)

By applying the same iterative argument, we can further improve the estimate.
First, we obtain, for all R ≤ R0∫

E(R)

exp(2r)ρ(f) ≤ CR,
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and repeat the iterative argument again to get∫
E(R+2)\E(R)

exp(2r)ρ(f) ≤ C,

for some constant C > 0 independent of R, which implies∫
E(R+1)\E(R)

ρ(f) ≤ C exp(−2R).(2.10)

Now for R0 < R0 + 1 < R < R + 1, we can choose φ in (2.4) to be

φ(x) =


r(x)−R0 on E(R0 + 1)\E(R0)
1 on E(R)\E(R0 + 1)
R− r(x) on E(R + 1)\E(R).

Then the lemma follows immediately from (2.4) and (2.10).

Now we are going to prove a vanishing theorem of harmonic maps.

Lemma 2.2. Let M be a complete Riemannian manifold of dimension n ≥ 3.
Suppose λ1(M) > 0 and

RicM ≥ − (n− 1)λ1(M)
n− 2

.

Suppose that f : M → N is a smooth harmonic map from M into a complete
manifold N of non-positive sectional curvature. If f ∈ K and M has only one
infinite volume end, f must be a constant map.

Proof of Lemma 2.2. Let f ∈ K be a harmonic map constructed as above and
R and K be the Riemannian curvature tensor of M and N , respectively.

For a smooth harmonic map from M to N , we have

|∇2f |2 ≥
(
1 +

1
n− 1

)
|∇

√
e(f)|2(2.11)

(See also [7], [16]). Then we apply the curvature assumption and (2.11) to the
Bochner formula for harmonic maps

1
2
∆e(f) = |∇2f |2 + Rijfαifαj −Kαβγδfαifβjfγifδj

and obtain

∆h ≥ − (n− 1)λ1(M)
(n− 2)

h +
|∇h|2

(n− 1)h
,

where h =
√

e(f). Setting g = h
n−2
n−1 = e(f)

n−2
2(n−1) , this differential inequality

can be rewritten as

∆g ≥ −λ1(M)g.(2.12)
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Using the decay estimate and the differential inequality (2.12) and argue as in
[12], we can derive an L2 estimate of g∫

Bp(2R)\Bp(R)

g2 ≤ CR.

In fact, the Cauchy-Schwarz inequality and Lemma 2.1 imply∫
Bp(2R)\Bp(R)

g2

≤
( ∫

Bp(2R)\Bp(R)

exp(2
√

λ1(M)r)e(f)
)n−2

n−1

×
( ∫

Bp(2R)\Bp(R)

exp(−2(n− 2)
√

λ1(M)r)
) 1

n−1

≤ C
( ∫

Bp(2R)\Bp(R)

exp(−2(n− 2)
√

λ1(M)r)
) 1

n−1
.

Then an application of the volume comparison theorem shows that the second
term in the last inequality can be bounded by R.

Now let φ be a non-negatively cut-off function on M . Since∫
M

|∇(φg)|2 =
∫

M

|∇φ|2g2 +
1
2

∫
M

〈∇φ2,∇g2〉+
∫

M

φ2|∇g|2,

by using λ1(M) = 1 and integration by parts, we have

λ1(M)
∫

M

φ2g2 ≤
∫

M

|∇(φg)|2

=
∫

M

|∇φ|2g2 +
1
2

∫
M

〈∇φ2,∇g2〉+
∫

M

φ2|∇g|2

=
∫

M

|∇φ|2g2 − 1
2

∫
M

φ2∆g2 +
∫

M

φ2|∇g|2

=
∫

M

|∇φ|2g2 −
∫

M

φ2g∆g

which implies ∫
M

φ2g(∆g + λ1(M)g) ≤
∫

M

|∇φ|2g2.(2.13)

For R > R0, let us choose φ such that

φ =

{
1 on Bp(R)
0 on M\Bp(2R)

and
|∇φ| ≤ C/R on Bp(2R)\Bp(R)
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for some constant C > 0. Then the right hand (2.13) can be estimated by∫
M

|∇φ|2g2 ≤ C

R2

∫
Bp(2R)\Bp(R)

g2.

By the L2 estimate of g, this tends to 0 as R→∞. We can conclude from (2.13)
that g either must be identically 0 or it must satisfy

∆g = −λ1(M)g.

This equality forces all inequalities to be equalities. In particular, we have

Kαβγδfαifβjfγifδj = 0,

and

|∇2f |2 =
(
1 +

1
n− 1

)
|∇|∇f |2|.(2.14)

From the first equality, we conclude that f must be a constant map provided
that the image of f has strictly negative curvature.

Otherwise, the image of f is flat. Moreover, by tracing back the proof of
(2.14), we have

|∇|∇f ||2 =
∣∣∣∑α |∇fα|∇|∇fα|√∑

α |∇fα|2
∣∣∣2 =

∑
α

|∇|∇fα||2,(2.15)

where fα’s are components of the harmonic map f with respect to the normal
coordinates on N . From the equality of triangle inequality and Cauchy-Schwarz
inequality, we have the vector ∇|∇f1|, . . . ,∇|∇fm| are nonnegative multiples
of a nonzero one provided that they are not all zero and

|∇fα| = c |∇|∇fα||
for some c. We also have

|∇2fα|2 =
(
1 +

1
n− 1

)
|∇|∇fα|2| for each α.(2.16)

Now, from the argument of X. Wang (see [20], [21]), we conclude that for each
α, ∇fα is a scalar multiple of ∇|∇fα|. Therefore, the image under df is of rank
1 provided ∇f1, . . . ,∇fm are not all zero. It implies that the image of f is
contained by a geodesic in N .

Thus f : M → f(M) is a harmonic map of rank 1 and we have 2 cases to
consider: either f(M) is contained in R or S1. If f(M) is contained in R,
then f can be considered as a harmonic function. By the construction of f and
λ1(M) > 0, we have∫

M

f2 ≤ λ1(M)
∫

M

|∇f |2 = λ1(M)
∫

M

e(f) <∞,

provided that f is a limit of compactly supported functions. Thus f is a L2

harmonic function, and hence must be constant. Otherwise, f must not be
constant and hence the argument of Li-Wang implies that M splits into a warped
product with 2 infinite volume ends. So we have a contradiction.
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If f(M) is contained by S1, then f can be identified as a harmonic 1-form
on M with integral period. Thus this case is reduced to the case considered
by X. Wang. If f is nontrivial, then X. Wang’s argument again shows that M
splits into a warped product with 2 infinite volume ends, which contradicts to
the assumption. Thus f must be constant.

In view of Lemma 2.2, we have

Theorem 2.3. Let M be a complete Riemannian manifold of dimension n ≥ 3
and N be a manifold of non-positive sectional curvature. Suppose λ1(M) > 0
and

RicM ≥ − (n− 1)λ1(M)
n− 2

.

Let h be any smooth map from M to N which is constant outside a com-
pact set. Then either M splits into R × N with the warped product metric

ds2 + cosh2
(√

λ1(M)
n−2 t

)
ds2

N , where N is a compact manifold with Ricci curva-
ture bounded from below by RicN ≥ −λ1(M), or h is homotopic to a constant
map.

Corollary 2.4. Under the same assumption on M and N , if M has only one
end, then any map h constant outside a compact set is homotopic to a con-
stant map. In particular, for any compact set K the homotopy class [(M, M −
K), (N, a point)] is trivial.
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