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RELATIONS IN THE QUANTUM COHOMOLOGY RING OF
G/B

Augustin-Liviu Mare

Abstract. The ideal of relations in the quantum cohomology of the flag mani-
fold G/B has been determined by B. Kim in [K]. We are going to point out a
limited number of properties that, if they are satisfied by an R [q1, . . . , ql]-linear
product ◦ on H∗(G/B)⊗R [q1, . . . , ql], then the ring (H∗(G/B)⊗R [q1, . . . , ql], ◦)
is isomorphic to Kim’s ring.

1. Introduction

Let us consider the complex flag manifold G/B, where G is a connected,
simply connected, simple, complex Lie group and B ⊂ G a Borel subgroup. Let
T be a maximal torus of a compact real form of G, t its Lie algebra and Φ ⊂ t∗

the corresponding set of roots. Consider an arbitrary W -invariant inner product
〈 , 〉 on t. The Weyl group W can be realized as the subgroup of the orthogonal
group of (t, 〈 , 〉) which is generated by the reflections about the hyperplanes
ker α, α ∈ Φ+. To any root α corresponds the coroot

α∨ :=
2α

〈α, α〉
which is an element of t, by using the identification of t and t∗ induced by 〈 , 〉. If
{α1, . . . , αl} is a system of simple roots then {α∨1 , . . . , α∨l } is a system of simple
coroots. Consider {λ1, . . . , λl} ⊂ t∗ the corresponding system of fundamental
weights, which are defined by λi(α∨j ) = δij .

Let us recall the presentation of the cohomology1 ring of G/B, as obtained
by Borel in [B]. First of all, one can assign to any weight λ ∈ t∗ a group
homomorphism T → S1; the latter can be extended canonically to a group
homomorphism B → C

∗ and gives rise in this way to the complex line bundle
Lλ = G ×B C over G/B. One shows that the ring homomorphism S(t∗) →
H∗(G/B) induced by λi 	→ c1(Lλi), 1 ≤ i ≤ l, is surjective; moreover it induces
the ring isomorphism

H∗(G/B) � R[{λi}]/IW ,

where IW is the ideal of S(t∗) = R[λ1, . . . , λl] = R[{λi}] generated by the W -
invariant polynomials of strictly positive degree. We identify H∗(G/B) with
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Borel’s presentation and denote them both by H. So

H = H∗(G/B) = R[{λi}]/IW ,

where c1(Lλi
) is identified with the coset [λi] of λi, 1 ≤ i ≤ l. There are two

more things we would like to recall here:
- by a result of Chevalley [C], there exist l homogeneous, functionally inde-

pendent polynomials u1, . . . , ul ∈ S(t∗), which generate IW ;
- on H there exists a natural inner product ( , ), induced by the Poincaré

pairing.
Let us consider now the Hamiltonian system of Toda lattice type, which con-

sists of the standard symplectic manifold (R2l,
∑l

i=1 dri ∧ dsi) with the Hamil-
tonian function

E({ri}, {si}) =
l∑

i,j=1

〈α∨i , α∨j 〉rirj +
l∑

i=1

e2si .(1)

The following result, proved by Goodman and Wallach in [G-W], gives details
concerning the integrals of motion of this system (note that the latter is com-
pletely integrable):

Theorem 1.1. (see [G-W]) There exist l functionally independent functions

E = F̃1, F̃2, . . . , F̃l : R2l → R

each of them uniquely determined by:
(i) F̃k({ri}, {si}) = Fk({e2si}, {ri}), where Fk is a polynomial in variables

e2s1 ,. . ., e2sl , r1,. . ., rl, homogeneous with respect to es1 ,. . ., esl , r1,. . ., rl;
(ii) {F̃k, E} = 0, where { , } denotes the Poisson bracket of functions on R2l;
(iii) Fk(0, . . . , 0, λ1, . . . , λl) = uk(λ1, . . . , λl) as elements of S(t∗).

Consider now the formal multiplicative variables q1, . . . , ql which are assigned
degree 4 (note that the coset of λj in R[{λi}]/IW , which is the same as c1(Lλj )
in H∗(G/B), has degree 2). Occasionally, qi will stand for eti , 1 ≤ i ≤ l, where
t1, . . . , tl are real numbers, so that the differential operators ∂

∂ti
on H⊗R[{qi}]

will be well defined.
Our goal is to prove the following result:

Theorem 1.2. Let ◦ be an R[{qi}]-linear product on H ⊗ R[{qi}] with the fol-
lowing properties:

(i) ◦ preserves the graduation induced by deg[λi] = 2 and deg qi = 4;
(ii) ◦ is a deformation of the usual product, in the sense that if we formally

replace all qi by 0, we obtain the usual product on H;
(iii) ◦ is commutative;
(iv) ◦ is associative;
(v)

∑l
i,j=1〈α∨i , α∨j 〉[λi] ◦ [λj ] =

∑l
i=1〈α∨i , α∨i 〉qi;

(vi) ∂
∂ti

([λj ] ◦ a) = ∂
∂tj

([λi] ◦ a), for any a ∈ H, 1 ≤ i, j ≤ l.
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Then the ring (H⊗R[{qi}], ◦) is generated by [λ1], . . . , [λl], q1, . . . , ql, subject to
the relations

Fk({−〈α∨i , α∨i 〉qi}, {[λi]◦}) = 0,(2)

1 ≤ k ≤ l, where the polynomials Fk are given by Theorem 1.1.

Our proof is purely algebraic, but the following geometric ideas stay behind
it: We assign to ◦ the 1-form ω on H2(G/B) with values in EndH, given by

ωt(X)(Y ) = X ◦ Y,

where t = t1[λ1]+ . . .+ tl[λl] ∈ H2(G/B) and X, Y ∈ H (the convention qi = eti

is in force). Consider the Dubrovin type connection ∇h = d + 1
hω (cf. [D]) on

the vector bundle H×H2(G/B)→ H2(G/B). Conditions (iv) and (vi) say that
∇h is a flat connection, for all h �= 0. Let ( , ) denote the Poincaré pairing on H.
We are able to construct parallel sections s : H2(G/B) → H of the connection
dual to ∇h, i.e. the one corresponding to ωT , where

(ωT
t (X)(Y ), Z) = (Y, ωt(X)(Z)),

X, Y, Z ∈ H. More precisely, we find certain “formal” solutions s of the system

h
∂s

∂ti
= ωT

t ([λi])(s),

1 ≤ i ≤ l (for the details, see section 4). The main difficulty is to show that
the integrals of motion of the quantum Toda lattice are quantum differential
operators for ◦, i.e. they vanish all functions (s, 1) : H2(G/B) → R, where s
is a parallel section as before: by results of Givental [G] (see also [C-K, section
10.3]), such differential operators induce relations, and it is not difficult to see
that those relations are just (2). Now from condition (v) we can deduce that the
degree 2 integral of motion — call it H — is a quantum differential operator.
Because H commutes with any other integral of motion, the latter is also a
quantum differential operator (this idea has also been used by B. Kim in [K]).

Remarks. 1. We only have to show that the relations (2) hold in (H ⊗
R[{qi}], ◦): by a general result of Siebert and Tian [S-T], they generate the
whole ideal of relations.

2. Properties of the three-point Gromov-Witten invariants 〈 | | 〉d (see for
instance Fulton-Pandharipande [F-P]) show that the hypotheses of Theorem 1.2
are satisfied by the quantum product % on the (small) quantum cohomology ring
of G/B: Condition (v) follows immediately from the equation

[λi] % [λj ] = [λi][λj ] + δijqj ,(3)

and the fact that the degree two homogeneous generator of IW (see the mention
to Chevalley’s result from above) is

u1 =
l∑

i,j=1

〈α∨i , α∨j 〉λiλj .
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As about (3), it can be proved in an elementary way (see [K] or [M1]). Condition
(vi) is a direct consequence of the definition

[λi]%a =
∑

d=(d1,... ,dl)≥0

([λi]%a)dq
d1
1 . . .qdl

l with (([λi]%a)d, b)= 〈[λi]|a|b〉d for all b ∈ H∗(G/B)

and the “divisor property”

〈[λi]|a|b〉d = di〈a|b〉d.
We recover in this way Kim’s result on QH∗(G/B) (see [K]). The main achieve-
ment of our paper is that it shows that Kim’s presentation of QH∗(G/B) can
be deduced in an elementary way, by using very few of the properties of the
quantum product %. For instance, the Frobenius property

(a % b, c) = (a, b % c), a, b, c ∈ H
is not needed in our proof.

3. In [M2] we constructed the “combinatorial” quantum cohomology ring and
then we used Theorem 1.2 in order to prove that its isomorphism type is the one
expected by the theorem of Kim.

4. The main result of [M3] is an extension of Theorem 1.2: we were able
to obtain a similar connection between the small quantum cohomology of the
infinite dimensional generalized flag manifold and the integrals of motion of the
periodic Toda lattice.

2. Toda lattices according to Goodman and Wallach

The goal of this section is to present two results of Goodman and Wallach[G-W],
which will be essential ingredients for the proof of Theorem 1.2. Let us consider
the (ax+b)-algebra corresponding to the coroot system of G. By definition, this
is the Lie algebra

(b = t∗ ⊕ u, [ , ]),
where u has a basis X1, . . . , Xl such that:

[λi, λj ] = 0, [λi, Xj ] = δijXj , [Xi, Xj ] = 0,(4)

1 ≤ i, j ≤ l. The set S(b) of polynomial functions on b∗ is a Poisson algebra and
by (4) we have

{λi, λj} = 0, {λi, Xj} = δijXj , {Xi, Xj} = 0,

1 ≤ i, j ≤ l.
On the other hand, one can easily see that the Poisson bracket of functions

on the standard symplectic manifold (R2l,
∑l

i=1 dri ∧ dsi) satisfies

{ri, rj} = 0, {ri, e
sj} = δije

sj , {esi , esj} = 0,

1 ≤ i, j ≤ l. We deduce that the Poisson subalgebra R[es1 , . . . , esl , r1, . . . , rl] of
C∞(R2l) is isomorphic to S(b) via

Xi 	→ esi , λi 	→ ri,(5)
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1 ≤ i ≤ l. In this way, integrals of motion of the Hamiltonian system determined
by (1) can be obtained from elements of the space S(b){,}, which is the {, }-
commutator in S(b) of the polynomial

l∑
i,j=1

〈α∨i , α∨j 〉λiλj +
l∑

i=1

X2
i .(6)

Let us consider now the universal enveloping algebra

U(b) = T (b)/〈x⊗ y − y ⊗ x− [x, y], x, y ∈ b〉
with the canonical filtration {0} = U0(b) ⊂ U1(b) ⊂ . . . (see e.g. [H, section
17.3]). We say that an element f of U(b) has degree m if m is the smallest
positive integer with the property that f ∈ Um(b). There exists a vector space
isomorphism

φ : S(b)→ U(b)

induced by the symmetrization map followed by the canonical projection (see
[H, Corollary E, section 17.3]). Since t∗ and u are abelian, the element of S(b)
described by (6) is mapped by φ to

Ω :=
l∑

i,j=1

〈α∨i , α∨j 〉λiλj +
l∑

i=1

X2
i ,

the right hand side being regarded this time as an element of U(b).
The complete integrability of the Toda lattice follows from the following two

theorems of Goodman and Wallach:

Theorem 2.1. (see [G-W]) The Poisson bracket commutator S(b){,} is mapped
by φ isomorphically onto the space U(b)[,] of all f ∈ U(b) with the property that
[f,Ω] = 0.

Theorem 2.2. (see [G-W]) The map µ : U(b) → U(t∗) = S(t∗) induced by the
natural Lie algebra homomorphism b → t∗ establishes an algebra isomorphism
between U(b)[,] and the ring S(t∗)W of W -invariant polynomials. Hence there
exist Ω = Ω1,Ω2, . . . ,Ωl ∈ U(b), each of them uniquely determined by

(i) [Ωk,Ω] = 0,
(ii) µ(Ωk) = uk and deg Ωk = deg uk.

Moreover, Ωk is contained in the subring of U(b) which is spanned by the ele-
ments of the form X2IλJ .

Remark. The integrals of motion of the Toda lattice mentioned in Theorem
1.1 are obtained from φ−1(Ωk), 1 ≤ k ≤ l by the transformations (5): by the
last statement of Theorem 2.2, the result are polynomial expressions in variables
e2s1 ,. . ., e2sl , r1,. . ., rl and these are what we denoted Fk(e2s1 ,. . ., e2sl , r1,. . ., rl).
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3. Relations in (H⊗ R[qi], ◦)
Consider the representation ρ of b on C∞(Rl) given by:

ρ(λi) = 2
∂

∂ti
, ρ(Xi) =

2
√−1
h

√
〈α∨i , α∨i 〉e

ti
2 ·,

1 ≤ i ≤ l, where h is a nonzero real parameter. The differential operators

Dk = hdeg Ωkρ(Ωk),

1 ≤ k ≤ l, will be the crucial objects of the proof of Theorem 1.2.
Since Fk is homogeneous in variables esi , ri, it follows that Ωk — being ob-

tained from Fk after applying φ, up to the replacements (5) — has a presentation
as a homogeneous, symmetric polynomial in the variables Xi, λi. We use the
commutation relations (4) in order to express Ωk as a linear combination of el-
ements of the form X2IλJ (see Theorem 2.2). The polynomial expression we
obtain in this way appears as

Ωk = Fk({X2
i }, {λi}) + fk({X2

i }, {λi})
where

deg fk < deg Fk.

Consequently Dk appears as a polynomial expression

Dk(et1 , . . . , etl , h
∂

∂t1
, . . . , h

∂

∂tl
, h),

the last “variable”, h, being due to the possible occurrence of fk.
Amongst all Dk, 1 ≤ k ≤ l, the operator D1 = h2ρ(Ω) plays a privileged role,

and we write

H :=
1
4
D1 = h2

l∑
i,j=1

〈α∨i , α∨j 〉
∂2

∂ti∂tj
−

l∑
j=1

〈α∨j , α∨j 〉etj .(7)

Below we will see that the polynomial

Dk({Qi}, {Λi}, h) ∈ R[Q1, . . . , Ql, Λ1, . . . ,Λl, h]

obtained from Dk by the replacements eti 	→ Qi, h ∂
∂ti
	→ Λi, 1 ≤ i ≤ l, satisfies

the hypotheses of the following theorem.

Theorem 3.1. Let ◦ be a product on H⊗R[{qi}] with the properties (i)-(vi) from
Theorem 1.2. Suppose that D = D({Qi}, {Λi}, h) ∈ R[{Qi}, {Λi}, h] satisfies

(a) [D({eti}, {h ∂
∂ti
}, h), H({eti}, {h ∂

∂ti
}, h)] = 0,

(b) D(0, . . . , 0,Λ1, . . . ,Λl, h) does not depend on h,
(c) D(0, . . . , 0, λ1, . . . , λl, 0) ∈ S(t∗)W .

Then the relation D({qi}, {[λi]◦}, 0) = 0 holds in the ring (H⊗ R[{qi}], ◦).
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The proof of this theorem will be done in the next section. Now we will show
how can be used Theorem 3.1 in order to prove the main result of the paper.
Proof of Theorem 1.2. By Remark 1 in the introduction, we only have to show
that the relations (2) hold for all 1 ≤ k ≤ l. To this end we note that D = Dk

satisfies the hypotheses of Theorem 3.1: (a) follows from the fact that ρ is a Lie
algebra representation, and (b) and (c) from Theorem 2.2 (ii). We obtain the
relation Dk({qi}, {[λi]◦}, 0) = 0, which is just (2).

4. Proof of Theorem 3.1

Let us begin by picking a basis of H which consists of homogeneous ele-
ments (e.g. the Schubert basis): this will allow us to identify H with Rn, where
n = dimH, and the endomorphism [λi]◦ of H with an element Bi of the space
Mn(R[etj ]) of n × n matrices whose coefficients are polynomials in et1 , . . . , etl .
Let ◦ be a product which satisfies the hypotheses of Theorem 1.2.

Lemma 4.1. Fix i ∈ {1, . . . , l} and take a ∈ H. Write

[λi] ◦ a =
∑

d=(d1,... ,dl)≥0

([λi] ◦ a)dq
d(8)

with ([λi]◦a)d ∈ H. If d = (d1, . . . , dl) �= 0 such that ([λi]◦a)d �= 0, then di �= 0.
In other words, any non-zero term in the right hand side of (8) which is different
from ([λi] ◦ a)0 = [λi]a must be a multiple of qi.

Proof. Condition (vi) from Theorem 1.2 reads

∂

∂ti
Bj =

∂

∂tj
Bi.

Hence there exists M ∈Mn(R[etj ]) such that

Bi = B′i +
∂

∂ti
M,

where B′i is constant, for any 1 ≤ i ≤ l. It remains to notice that the derivative
with respect to ti of a monomial in et1 , . . . , etl contains only nonzero powers of
eti , or else it is 0.

As pointed out in the introduction, H has a natural inner product ( , ),
namely the Poincaré pairing. Denote by ([λi]◦)T the endomorphism of H which
is transposed to [λi]◦ with respect to this product, i.e.

([λi] ◦ a, b) = (a, ([λi]◦)T b), a, b ∈ H.

Also denote by Ai the matrix of ([λi]◦)T with respect to the basis of H which is
the dual with respect to ( , ) of our original basis: of course Ai coincides with
the transposed of the matrix of [λi]◦ with respect to the original basis. Now we
want the ordering of the original basis of H to be decreasing with respect to the
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degrees of its elements. From condition (i) from Theorem 1.2 and Lemma 4.1 it
follows that for any i ∈ {1, . . . , l}, the matrix Ai can be decomposed as

Ai = A′i + A′′i (etj )

where A′i is strictly lower triangular and its coefficients do not depend on t and
A′′i is strictly upper triangular, its coefficients being linear combinations of

etd := et1d1 . . . etldl ,

where d1, . . . , dl are nonnegative integer numbers with

di > 0.

Consider the PDE system:

h
∂

∂ti
s = ([λi]◦)T (s),(9)

1 ≤ i ≤ l, where the map s = s(t1, . . . , tl) takes values in H and h is a nonzero
real parameter. Some algebraic formalism is needed in order to provide solutions
to (9). Let R be an arbitrary commutative, associative real algebra with unit.
For V = Rn or V = Mn(R) we denote by

V [ti][[eti ]] := V ⊗R[t1, . . . , tl][[et1 , . . . , etl ]]

the space of formal series

f =
∑

d=(d1,... ,dl)≥0

fde
td

where fd is a polynomial in variables t1, . . . , tl with coefficients in V . The
operator ∂

∂ti
acts in a natural way on V [ti][[eti ]] via

∂

∂ti
(fde

td) = (
∂fd

∂ti
+ difd)etd.

We use the same formula

(
∑
d≥0

fde
td)(

∑
d≥0

gde
td) =

∑
d≥0

(
∑

d1+d2=d

fd1gd2)e
td(10)

in order to define both:
- an action of Mn(R)[ti][[eti ]] on Rn[ti][[eti ]] (take fd ∈ Mn(R)[ti], gd ∈
Rn[ti]);

- a multiplication on Mn(R)[ti][[eti ]] (take fd, gd ∈Mn(R)[ti]).
Alternatively, we can use the ring structure of R[ti][[eti ]] induced by the same
formula (10) (take fd, gd ∈ R[ti]), the identifications

Mn(R)[ti][[eti ]] = Mn(R[ti][[eti ]]), Rn[ti][[eti ]] = (R[ti][[eti ]])n

and the usual matrix multiplication rules.
Our aim is to find solutions s of the system (9) in the space H[ti][[eti ]] =

R
n[ti][[eti ]], where H has been identified with Rn via the basis which is the dual

with respect to ( , ) of the original basis (see above). The following result will
help us to this end:
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Proposition 4.2. Let A1, . . . ,Al ∈Mn(R[eti ]) be matrices which satisfy:

(a) Ai commutes with Aj for any two i, j;
(b) ∂

∂ti
Aj = ∂

∂tj
Ai for any two i, j;

(c) for any i ∈ {1, . . . , l} we can decompose Ai as

A′i +A′′i (etj )

where A′i is strictly lower triangular and its coefficients do not depend on
t, and A′′i is strictly upper triangular, its coefficients being linear combi-
nations of etd := et1d1 . . . etldl , where d1, . . . , dl are nonnegative integer
numbers with

di > 0.

Consider the PDE system

∂g

∂ti
= Aig,(11)

1 ≤ i ≤ l, where g =
∑

d≥0 gde
td ∈ Rn[ti][[eti ]]. The system has a unique solution

g with g0
0 (the constant term of the polynomial g0 ∈ Rn[ti]) prescribed.

The following elementary lemma will be needed in the proof:

Lemma 4.3. Let A ∈Mn(R) be a matrix and g ∈ Rn[t] a polynomial. Consider
the differential equation:

df

dt
= Af + g,

where f is in Rn[t].
(i) If A is invertible, then we have a unique solution f .
(ii) If A is nilpotent, then the equation has a unique solution f with the

constant term f0 ∈ Rn prescribed.

Proof. Put g =
∑p

k=0 gktk and look for f as
∑m

j=0 fjt
j , where gk, fj ∈ Rn. The

proof is straightforward.

Proof of Proposition 4.2. We will prove this result by induction on l ≥ 1. First
take l = 1 and solve the equation

dg

dt
= A1g,

where g =
∑

k≥0 gketk, gk ∈ Rn[t]. Decompose A1 as
∑

k≥0(A1)ketk, where
(A1)k ∈Mn(R). Identify the coefficients of etk and then determine the polyno-
mials g0, g1, g2, . . . recursively by Lemma 4.3 (notice that the matrix (A1)0 = A′1
is strictly lower triangular).

The induction step from l − 1 to l now follows. The idea is to put S =
R[tl][[etl ]] and note that we have

Rn[t1, . . . , tl][[et1 , . . . , etl ]] = Sn[t1, . . . , tl−1][[et1 , . . . , etl−1 ]].(12)
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In other words, the g we are looking for can be written as:

g =
∑

d=(d1,... ,dl)≥0

gde
t1d1+...+tldl =

∑
r=(r1,... ,rl−1)≥0

hre
t1r1+...+tl−1rl−1 ,

where gd ∈ Rn[t1, . . . , tl] and hr ∈ Rn[tl][[etl ]][t1, . . . , tl−1] = Sn[t1, . . . , tl−1].
The identification given by (12) maps Aig to Aih, where the latter Ai is regarded
as an element of Mn(S[et1 , . . . , etl−1 ]), 1 ≤ i ≤ l.

Our aim is to solve the system

∂h

∂ti
= Aih, 1 ≤ i ≤ l − 1,

where h ∈ Sn[t1, . . . , tl−1][[et1 , . . . , etl−1 ]]. The elements

A1, . . . ,Al−1 of Mn(S[et1 , . . . , etl−1 ])

satisfy the conditions (a), (b) and (c) (with l− 1 instead of l). By the induction
hypothesis, we know that the solution of the latter PDE is uniquely determined
by the degree zero term h0

0 of the polynomial h0 ∈ Sn[t1, . . . , tl−1]. We require
that h0

0 ∈ Sn = Rn[tl][[etl ]] is the solution of the equation

∂h0
0

∂tl
= A0

l h
0
0(13)

where A0
l ∈Mn(R[etl ]) is the first term of the decomposition

Al =
∑
r≥0

Ar
l e

t1r1+...+tl−1rl−1 .

In order to be more precise, we write

h0
0 =

∑
k≥0

fk(tl)ektl

where fk(tl) ∈ Rn[tl], k ≥ 0, and then we identify the coefficients of etlk in both
sides of (13). One obtains the following sequence of differential equations:

dfk

dtl
+ kfk = (A0

l h
0
0)k =

∑
u+v=k

(A0
l )

ufv(14)

where (A0
l h

0
0)k symbolizes the coefficient of ektl in A0

l h
0
0 and (A0

l )
u ∈Mn(R) is

the coefficient of etlu in A0
l ∈Mn(R[etl ]).

We solve the sequence (14) of differential equations by using Lemma 4.3. First
we write (14) as:

dfk

dtl
+ kfk = (A0

l )
0fk + b,

where b ∈ Rn[tl] depends only on f0, . . . , fk−1. The matrix (A0
l )

0 ∈ Mn(R) is
obviously A′l (see condition (c)), hence it is strictly lower triangular. A simple
recursive procedure provides solutions: specifying only f0

0 = g0
0 determines first

f0 and then f1, f2, . . . .
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The only thing that remains to be proved is that the g we just constructed
satisfies:

∂g

∂tl
= Alg.(15)

To this end, we notice first that
∂

∂ti
(
∂g

∂tl
−Alg) = Ai(

∂g

∂tl
−Alg),

for all 1 ≤ i ≤ l − 1. Also ∂g
∂tl
−Alg can be written as

∂g

∂tl
−Alg =

∑
r=(r1,... ,rl−1)≥0

qre
t1r1+...+tl−1rl−1 ,

with qr ∈ Rn[tl][[etl ]][t1, . . . , tl−1]. The degree zero term q0
0 of q0 is obviously

∂h0
0

∂tl
− A0

l h
0
0. From the choice of h0

0 it follows that q0
0 = 0. By the induction

hypothesis, q0
0 determines ∂g

∂tl
−Alg uniquely, hence the latter is zero.

We apply Proposition 4.2 for R = R and Ai = 1
hAi and deduce:

Corollary 4.4. For any a ∈ H there exists2 sa ∈ H[ti][[eti ]] which is a solution
of the system (9) and satisfies the condition (sa)00 = a.

There exists a R[ti][[eti ]]-bilinear extension of the product ◦ to H[ti][[eti ]].
Similarly, the intersection pairing (·, ·) can be extended to a R[ti][[eti ]]-bilinear
map

H[ti][[eti ]]×H[ti][[eti ]]→ R[ti][[eti ]].
The differential operator D({eti}, {h ∂

∂ti
}, h) acts on R[ti][[eti ]] and H[ti][[eti ]]

in an obvious way. This action plays an important role, as we can see in the
following lemma:

Lemma 4.5. (i) Suppose that the differential operator D({eti}, {h ∂
∂ti
}, h) sat-

isfies
D.(sa, 1) = 0 for all a ∈ H and all h �= 0,

where sa is given by Corollary 4.4. Then we have the relation D({qi}, {[λi]◦}, 0)
= 0.

(ii) The following equation holds:

H.(sa, 1) = 0,

for all a ∈ H, where the differential operator H is given by (7).

Proof. (i) For any a ∈ H and any f ∈ H ⊗ R[eti ] we have that

h
∂

∂ti
(sa, f) = (h

∂

∂ti
sa, f) + (sa, h

∂

∂ti
f)

= (([λi]◦)T sa, f) + (sa, h
∂

∂ti
f) = (sa, ([λi] ◦+h

∂

∂ti
)f).

2Proposition 4.2 also says that such an sa is unique, but we do not need that.
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We deduce that

(16) D(eti , h
∂

∂ti
, h).(sa, f)

= (sa, D(et1 , . . . , etl , [λ1] ◦+h
∂

∂t1
, . . . , [λl] ◦+h

∂

∂tl
, h).f).

Replacing f by 1 and denoting

D = D(et1 , . . . , etl , [λ1] ◦+h
∂

∂t1
, . . . , [λl] ◦+h

∂

∂tl
, h).1,

we obtain

(D, sa) = 0(17)

for all a ∈ H.
For the rest of the proof, “degree” will refer to the variables et1 , . . . , etl . Note

that D is an element of H⊗ R[eti ]. Decompose it as

D = D0 +D1 + . . . +Dm,

where Dk ∈ H ⊗ R[eti ] denotes the sum of all monomials of degree k, 0 ≤
k ≤ m. Recall that the degree zero term of sa is the polynomial (sa)0 ∈ H ⊗
R[t1, . . . , tl], with (sa)00 = a. The degree zero term of (D, sa) is (D0, (sa)0).
From the vanishing of the latter we obtain that

(D0, (sa)00) = (D0, a) = 0,

for all a ∈ H, hence D0 = 0.
Also the sum of the terms of degree 1 in (D, sa) is zero. Since D0 = 0, this

implies that
(D1, (sa)0) = 0.

As before, we deduce thatD1 = 0. We continue this process and show inductively
that Dk = 0, for all 0 ≤ k ≤ m, hence

D = 0.

Now we let h approach zero and deduce the desired relation:

D(qi, [λi]◦, 0) = 0.

(ii) When computing H.(sa, 1) we only need the fact that

h2 ∂2

∂ti∂tj
(sa, 1) = (sa, [λi] ◦ [λj ]),

which can be deduced immediately from (16). This implies that

H.(sa, 1) = (sa,
l∑

i,j=1

〈α∨i , α∨j 〉[λi] ◦ [λj ]−
l∑

i=1

〈α∨i , α∨i 〉eti) = 0,

where we have used condition (v) from Theorem 1.2.

Another important step will be made by the following lemma:
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Lemma 4.6. (Kim’s lemma, see [K]) Let3 g = g0 +
∑

d>0 gde
td ∈ R[ti][[eti ]] be

a formal series with the properties g0 = 0 and H.g = 0. Then g = 0.

Proof. Suppose g �= 0. Fix d ∈ Zl, di ≥ 0, with gd �= 0 and |d| := ∑l
i=1 di > 0

minimal. From H.g = 0 it follows that

l∑
i,j=1

〈α∨i , α∨j 〉
∂2

∂ti∂tj
(gde

td) = 0.(18)

On the other hand, we have

l∑
i,j=1

〈α∨i , α∨j 〉
∂2

∂ti∂tj
(etd) =

l∑
i,j=1

〈α∨i , α∨j 〉didje
td = ||

l∑
j=1

djα
∨
j ||2etd > 0.

Hence (18) is impossible.

And now we are in a position to prove Theorem 3.1:
Proof of Theorem 3.1. By Lemma 4.5, it is sufficient to show that

g := D.(sa, 1) =
∑
d≥0

gde
td

equals zero. Taking into account (16), we have that

g = (sa, D(et1 , . . . , etl , [λ1] ◦+h
∂

∂t1
, . . . , [λl] ◦+h

∂

∂tl
, h).1)

= (sa, D(0, . . . , 0, [λ1]◦, . . . , [λl]◦, h) + R),

where R ≡ 0 mod {eti}. Hence the polynomial g0 must be the same as

(sa, D(0, . . . , 0, [λ1], . . . , [λl], h))0

(in our notation, the subscript 0 indicates the constant term with respect to
{eti}). By conditions (b) and (c), the latter expression is zero, hence g0 = 0. It
remains to notice that H.g = 0 (which follows from H.(sa, 1) = 0 and [D, H] = 0)
and apply Lemma 4.6.
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des groupes de Lie compacts, Ann. of Math. (2), Vol. 57 (1953), 115–207

[C] C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math., Vol.
77 (1955), 778–782

[C-K] D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry, Math. Surveys and
Monographs, Vol. 68, Amer. Math. Soc., 1999

[D] B. Dubrovin, The geometry of 2D topological field theories, Integrable Systems and
Quantum Groups, Lecture Notes in Mathematics, Vol. 1620, Springer-Verlag, New
York, 1996, 120–348

[F-P] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology
Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., 62, Part 2, editors
J. Kollar, R. Lazarsfeld and D.R. Morrison, 1997, 45–96

[G] A. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Not., Vol.
13 (1996), 1–63

[G-W] R. Goodman and N.R. Wallach, Classical and quantum-mechanical systems of Toda
lattice type I, Comm. Math. Phys., Vol. 83 (1982), 355-386

[H] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer
Verlag, 1972

[K] B. Kim, Quantum cohomology of flag manifolds G/B and quantum Toda lattices, Ann.
of Math., Vol. 149 (1999), 129–148

[M1] A.-L. Mare, On the theorem of Kim concerning QH∗(G/B) Integrable Systems, Topol-
ogy, and Physics (eds. M. A. Guest, R. Miyaoka, Y. Ohnita), Contemp. Math. vol. 309,
A.M.S. (2002), 151-163

[M2] A.-L. Mare, The combinatorial quantum cohomology ring of G/B, preprint
math.CO/0301257

[M3] A.-L. Mare, Quantum cohomology of the infinite dimensional generalized flag mani-
folds, Adv. in Math., to appear, preprint math.DG/010513

[S-T] B. Siebert and G. Tian, On quantum cohomology rings of Fano manifolds and a formula
of Vafa and Intriligator, Asian J. Math., Vol. 1 (1997), 679-695

Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3,
Canada

E-mail address: amare@math.toronto.edu


