
Mathematical Research Letters 11, 1–11 (2004)

ALMOST ORTHOGONALITY AND A CLASS OF BOUNDED
BILINEAR PSEUDODIFFERENTIAL OPERATORS

Árpád Bényi and Rodolfo H. Torres

Abstract. Several results and techniques that generate bilinear alternatives of a
celebrated theorem of Calderón and Vaillancourt about the L2 continuity of linear
pseudodifferential operators with symbols with bounded derivatives are presented.
The classes of bilinear pseudodifferential symbols considered are shown to produce
continuous operators from L2 × L2 into L1.

1. Introduction

Bilinear and multilinear operators have received a lot of attention in recent
times and are still intensively investigated. It is a natural task to try to un-
derstand which methods used to study linear pseudodifferential operators are
applicable for multilinear ones and which results need to be reformulated. The
purpose of this article is to explore to what extent the classical result of Calderón
and Vaillancourt [2] and the techniques related to it remain valid for multilinear
pseudodifferential operators.

Calderón and Vaillancourt showed in [2] that the pseudodifferential operators

T (f)(x) =
∫
Rn

σ(x, ξ)f̂(ξ)eix·ξ dξ,

with symbols σ satisfying estimates of the form

|∂α
x ∂β

ξ σ(x, ξ)| ≤ Cα,β ,(1)

for an appropriate number of derivatives, are bounded on L2(Rn). The original
proof in [2] relies on a continuous version of the famous almost orthogonality
lemma from the works of Cotlar [5] and Knapp and Stein [8]. We refer to
Chapter VII in the book by Stein [10] for a detailed exposition of all these
results.

After the work of Calderón and Vaillancourt, several other authors considered
refinements of the result minimizing the number of derivatives for which (1) is
assumed; see the book by Coifman and Meyer [3], the article by Cordes [4] and
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the references therein. Moreover, other related classes of operators for which
smoothness in the x-variable in (1) is traded of by some additional size or decay
estimates in the frequency variable ξ have also been considered. In particular,
it is remarkable that a proof of the main result in [2] was obtained by Hwang
in [7] without using the almost orthogonality lemma. Instead, Hwang based his
elegant arguments on an elementary identity involving the Wigner transform,
see Lemma 2 below. As a corollary he also obtained the L2-boundedness of
pseudodifferential operators with symbols satisfying the estimates

‖∂β
ξ σ(x, ·)‖L2 ≤ Cβ ,(2)

uniformly in x, and where β = (β1, . . . , βn) with each βj = 0 or 1. This result is
Corollary 2.1 in [7].

We investigate the above results and approaches for bilinear pseudodifferential
operators of the form

T (f, g)(x) =
∫
Rn

∫
Rn

σ(x, ξ, η)f̂(ξ)ĝ(η)eix·(ξ+η) dξdη.

First, we observe an extension of the almost orthogonality lemma to the bilinear
setting, Lemma 1 below, which is of interest in its own. We show in Proposition 1
that the analogous estimates to (1) do not produce in general bounded operators
from L2 × L2 into L1. Nevertheless, we illustrate a possible use of Lemma 1 in
Theorem 1, obtaining a bilinear substitute of the results in [2] by imposing some
extra size estimates on the symbols in the frequency variables. As in the linear
case it is possible also to obtain this type of results without using explicit almost
orthogonality arguments. We show this with the proof given in Theorem 2, where
we make use of the identity exploited by Hwang in [7] that we alluded to before.

Acknowledgement. We are indebted to the anonymous referee for pointing
out a reference and many valuable suggestions that simplified our presentation.

2. A bilinear almost orthogonality lemma

Let Bi, i = 1, 2, 3, be three normed spaces and B∗i their dual spaces. A bilinear
operator T : B1 × B2 → B3 is linear in every entry and consequently has two
formal transposes T ∗1 : B∗3 ×B2 → B∗1 and T ∗2 : B1 ×B∗3 → B∗2 defined via

〈b∗3, T (b1, b2)〉B∗3 ,B3 = 〈T ∗1(b∗3, b2), b1〉B∗1 ,B1 = 〈T ∗2(b1, b
∗
3), b2〉B∗2 ,B2 ,

for all b1 ∈ B1, b2 ∈ B2, b
∗
3 ∈ B∗3 . Here 〈·, ·〉B∗,B denotes the dual pairing. We

will also use the notation ‖T‖ = sup ‖T (f, g)‖B3 , where the supremum is taken
over all f ∈ B1 and g ∈ B2 with ‖f‖B1 = ‖g‖B2 = 1.

Let H denote a (complex) Hilbert space endowed with an inner product 〈·|·〉
and let V be a (complex) normed space of functions closed under conjugation,
i.e., f ∈ V implies f̄ ∈ V and ‖f̄‖V = ‖f‖V . As usual, we identify H∗ with
H via the anti-isomorphism H∗ 
 f∗ �→ JHf∗ ∈ H, 〈f∗, f〉H∗,H = 〈f |JHf∗〉.
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Hence, if T : V ×H → H is a bilinear operator, one can view T ∗2 : V ×H∗ → H∗

as a bilinear operator from V ×H into H given by

V ×H 
 (f, g) �→ JHT ∗2(f̄ , J−1
H g) ∈ H.

With some abuse, we will still call this operator T ∗2. With this identification,
〈T ∗2(f, g)|h〉 = 〈g|T (f̄ , h)〉, for all f ∈ V and g, h ∈ H. It follows that if
Tf : H → H is given by Tf (g) = T (f, g), then the Hilbert space adjoint of Tf is
given by (Tf )∗ = (T ∗2)f̄ . Indeed, for any g, h ∈ H,

〈T ∗f (g)|h〉 = 〈g|Tf (h)〉 = 〈g|T (f, h)〉 = 〈T ∗2(f̄ , g)|h〉 = 〈(T ∗2)f̄ (g)|h〉.
An m-linear form of the following lemma was first obtained in [1]. The version

we present here will suffice for the purposes of this article.

Lemma 1. Let H be a Hilbert space and V a normed space of functions closed
under conjugation. If Tj : V ×H → H, j ∈ Z, is a sequence of bounded bilinear
operators and {a(j)}j∈Z is a sequence of positive real numbers such that

‖Ti(f, T ∗2j (f̄ , g))‖H + ‖T ∗2i (f̄ , Tj(f, g))‖H ≤ a(i− j),(3)

for all f ∈ V, g ∈ H, ‖f‖V = ‖g‖H = 1, and for all i, j ∈ Z, then

‖
m∑

j=n

Tj‖ ≤
∞∑

i=−∞

√
a(i), n, m ∈ Z, n ≤ m.

Proof. The proof follows from the linear case by “freezing” one function. In
fact, since Tj : V ×H → H is a bounded bilinear operator, if we freeze f ∈ V ,
‖f‖V = 1, it follows that Tjf : H → H, Tjf (g) = Tj(f, g), is a bounded linear
operator. As noted before, the Hilbert space adjoint of the linear operator Tjf

is given by T ∗jf = (T ∗2j )f̄ . Hence, we can now rewrite the condition (3) of the
hypothesis as

‖TifT ∗jf (g)‖H + ‖T ∗ifTjf (g)‖H ≤ a(i− j), for all g ∈ H, ‖g‖H = 1, i, j ∈ Z.

(4)

If we take the supremum on the inequality (4) over all g ∈ H, ‖g‖H = 1, we get

‖TifT ∗jf‖+ ‖T ∗ifTjf‖ ≤ a(i− j), i, j ∈ Z.

These are the nowadays well-known conditions for the linear case (see e.g. [10]
p. 279) applied to the family of bounded linear operators Tjf : H → H and,
hence,

‖
m∑

j=n

Tjf‖ ≤
∞∑

i=−∞

√
a(i), n, m ∈ Z, n ≤ m.

If we now take the supremum over all f ∈ V, ‖f‖ = 1, we get

sup{‖
m∑

j=n

Tj(f, g)‖H : ‖f‖V = ‖g‖H = 1} ≤
∞∑

i=−∞

√
a(i), n, m ∈ Z, n ≤ m,

as we wanted to prove.
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Remark 1. The result in the above lemma still holds if we replace the summa-
tion over the integers with a summation over Zn. Similarly, the same method
of freezing one function can be used to obtain continuous versions analogous to
the linear one in [2].

3. Some classes of bilinear pseudodifferential operators

We study bilinear pseudodifferential operators of the form

Tσ(f, g)(x) =
∫
Rn

∫
Rn

σ(x, ξ, η)f̂(ξ)ĝ(η)eix·(ξ+η)dξdη

which are á priori defined on S × S, where S is the Schwartz space of rapidly
decreasing, C∞ functions in Rn, and where we choose the Fourier transform
to be given by f̂(ξ) =

∫
Rn f(x)e−ix·ξ dx. When the symbol will be implicitly

understood from the context, we will simply write T instead of Tσ.
Consider first symbols satisfying the differential inequalities

|∂α
x ∂β

ξ ∂γ
η σ(x, ξ, η)| ≤ Cαβγ ,(5)

for all (x, ξ, η) ∈ R3n and all multi-indices α, β, and γ. Obviously, for σ = 1 we
obtain the multiplication of two functions which is a bounded operation from
L2×L2 into L1 or from Lp×Lq into Lr for 1/p+1/q = 1/r. More generally, the
same boundedness properties hold if σ(ξ, η) = σ1(ξ)σ2(η) where σ1 gives rise to a
Fourier multiplier in Lp and σ2 to one in Lq. Nevertheless, not all the operators
with symbols satisfying (5) enjoy this boundedness property even if their symbols
are x-independent. In fact we have the following simple proposition.

Proposition 1. There exist operators with x-independent symbols σ(ξ, η) sat-
isfying (5) which are not bounded from Lp × Lq into Lr for 1/p + 1/q = 1/r,
1 ≤ p, q, r <∞.

Proof. If p �= 2 simply take a symbol of the form σ(ξ, η) = σ1(ξ) where σ1

satisfies (5) but is not a multiplier in Lp. Similarly if q �= 2.
Let then p = q = 2. Suppose by contradiction that every symbol σ(ξ, η)

satisfying (5) defines a bounded operator Tσ from L2×L2 into L1, and consider
a symbol of the form σ(ξ, η) = ρ(−ξ − η). By duality, then (Tσ)∗1 : L∞ ×L2 →
L2. Let L∞c be the space of L∞ functions with compact support. Although
multipliers are not á priori defined on a dense subspace of L∞ it is easy to see (we
spare the reader the elementary computations that show this fact) that the above
operator defined by duality agrees on L∞c ×L2 → L2 with the bilinear multiplier
with symbol given by σ∗1(ξ, η) = σ(−ξ − η, η) = ρ(ξ), which also satisfies (5).
It would follow that every operator with a symbol of the form σ(ξ, η) = σ1(ξ)
satisfying (5) defines a bounded bilinear operator from L2×L2 into L1 and from
L∞c ×L2 → L2. But then it would also map (by linear interpolation freezing the
second function) Lp ×L2 into L2p/(2+p) for any 2 < p <∞, and we already saw
that this is not possible.

Explicit symbols σ(ξ) satisfying (5) which are not Fourier multiplier in Lp,
p �= 2 are for example given in [10], p. 322 and the work of Wainger [11].
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Next, we can obtain a positive result by adding some size conditions on the
frequency variables. Consider symbols satisfying the following inequalities

|∂α
x ∂β

ξ ∂γ
η σ(x, ξ, η)| ≤ Cαβγ ,(6)

sup
x

∫ (∫
|∂α

η σ(x, ξ, η)|2 dξ

)1/2

dη ≤ Cα(7)

and

sup
x

∫ (∫
|∂α

ξ σ(x, ξ, η)|2 dη

)1/2

dξ ≤ Cα,(8)

for all multi-indices α, β, γ.

Theorem 1. Let T be a pseudodifferential operator whose symbol satisfies (6)-
(8). Then T can be extended as a bounded operator from L2(Rn)×L2(Rn) into
L1(Rn).

Proof. Note that T (f, g) = S(f̂ , ĝ), where

S(f, g)(x) =
∫ ∫

σ(x, ξ, η)f(ξ)g(η)eix·(ξ+η)dξdη.(9)

Thus, by Plancherel’s theorem, the boundedness of S : L2×L2 → L1 is equivalent
to the boundedness of T . Moreover, by duality, it is enough to show that the
operator

R(f, g)(x) =
∫ ∫

σ(ξ, x, η)f(ξ)g(η)eiξ·(x+η)dξdη.(10)

is bounded from L∞ × L2 into L2. We will assume first that σ has compact
support, but the estimates we will obtain will not depend on the support of the
symbol.

In order to apply Lemma 1, we compute the ∗2-adjoint of R in the Hilbert
space sense explained in the previous section and obtain

R∗2(f, g)(x) =
∫ ∫

σ(ξ, η, x)f(ξ)g(η)e−iξ·(η+x)dξdη.(11)

Choose a smooth, nonnegative function φ such that

suppφ ⊂ {ξ = (ξ1, ξ2, ..., ξn) : |ξj | ≤ 1, j = 1, 2, ..., n},
and ∑

i∈Zn

φ(ξ − i) = 1.

Set
σi(ξ, x, η) = σ(ξ, x, η)φ(ξ − i),

and write Ri for the operator (10) with σ(ξ, x, η) replaced by σi(ξ, x, η), so that

R =
∑
i∈Zn

Ri.
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Straightforward computations show that for f ∈ L∞ and g ∈ S,

Ri(f, R∗2j (f̄ , g))(x) =
∫

σij(x, x′)g(x′)dx′,

where

σij(x, x′) =
∫ ∫ ∫

σi(ξ, x, η)σj(ξ′, x′, η)f(ξ)f(ξ′)eiξ·(x+η)e−iξ′·(x′+η)dξdξ′dη.

(12)

Similarly, we have

R∗2i (f̄ , Rj(f, g))(x) =
∫

σ̃ij(x, x′)g(x′)dx′,

where

σ̃ij(x, x′) =
∫ ∫ ∫

σi(u, v, x)σj(u′, v, x′)f(u)f(u′)eiu′·(v+x′)e−iu·(v+x)dudu′dv.

(13)

Set fi(ξ) = f(ξ)φ(ξ − i). We have

(2π)nRi(f, R∗2j (f̄ , g))(x)

= (2π)n

∫∫∫∫
σ(ξ, x, η)σ(ξ′, x′, η)fi(ξ)fj(ξ′)g(x′)eiξ·(x+η)e−iξ′·(x′+η)dξdξ′dx′dη

=
∫∫∫∫∫

σ̂2(ξ, y, η)σ(ξ′, x′, η)fi(ξ)fj(ξ′)g(x′)eiy·xeiξ·(x+η)−iξ′·(x′+η)dydξdξ′dx′dη

=
∫

Fij(x, ξ)eiξ·x dξ.

Here σ̂2 denotes the Fourier transform of σ in the second variable. Let N = n+1.
Since Fij has compact support in ξ of fixed size, it will be enough to prove that

‖Fij(·, ξ)‖L2 ≤ CN (1 + |i− j|)−2N‖g‖L2‖f‖2L∞ .

Moreover, writing

Fij(x, ξ)

=
∫ ∫ ∫ ∫

σ̂2(ξ, y, η)σ(ξ′, x′, η)g(x′)fj(ξ′)fi(ξ)e−iη·(ξ′−ξ)e−iξ′·x′eiy·xdydξ′dx′dη

=
∫

Gij(y, ξ)eiy·xdy,

and using Plancherel’s theorem, it is enough to show that

‖Gij(·, ξ)‖L2 ≤ CN (1 + |i− j|)−2N‖g‖L2‖f‖2L∞ ,(14)

where

Gij(y, ξ) =
∫ ∫ ∫

σ̂2(ξ, y, η)σ(ξ′, x′, η)g(x′)fj(ξ′)fi(ξ)eiη·(ξ−ξ′)e−iξ′·x′dξ′dx′dη.



BILINEAR PSEUDODIFFERENTIAL OPERATORS 7

If we integrate by parts with respect to η we obtain
Gij(y, ξ) =∑
|α|+|β|≤2N

cαβ

∫∫∫
∂α

η σ̂2(ξ, y, η)∂β
η σ(ξ′, x′, η)

(1 + |ξ − ξ′|2)N
g(x′)fj(ξ′)fi(ξ)eiη·(ξ−ξ′)e−iξ′·x′dξ′dx′dη.

Since the integration in ξ′ take place also over a compact set of fixed size, we
get that each term is the above sum is controlled by

CN

∫
|∂α

η σ̂2(ξ, y, η)|
∫ ∣∣∣∣∣eiη·(ξ−ξ′)fj(ξ′)fi(ξ)

(1 + |ξ − ξ′|2)N

∫
∂β

η σ(ξ′, x′, η)g(x′)e−iξ′·x′dx′
∣∣∣∣∣ dξ′dη

= CN

∫
|∂α

η σ̂2(ξ, y, η)|
∫
| eiη·(ξ−ξ′)

(1 + |ξ − ξ′|2)N
fj(ξ′)fi(ξ)Hβη(ĝ)(ξ′)|dξ′dη

≤ CN

∫
|∂α

η σ̂2(ξ, y, η)|(1 + |i− j|)−2N‖f‖2L∞‖Hβη(ĝ)‖L2dη.

Note that, because of (6), Hβη is a (linear) pseudodifferential operator,

Hβη(h)(x) =
∫

aβη(x, ξ)ĥ(ξ)eix·ξ dξ,

with symbol aβη(x, ξ) = ∂β
η σ(x,−ξ, η) satisfying (1) uniformly in η. By the

results of Calderón and Vaillancourt

|Gij(y, ξ)| ≤ CN (1 + |i− j|)−2N‖f‖2L∞‖g‖L2

∑
|α|≤2N

∫
|∂α

η σ̂2(ξ, y, η)|dη.

The last inequality implies that

‖Gij(·, ξ)‖L2 ≤ CN (1 + |i− j|)−2N‖f‖2L∞‖g‖L2

∑
|α|≤2N

‖
∫
|∂α

η σ̂2(ξ, ·, η)|dη‖L2

≤ CN (1 + |i− j|)−2N‖f‖2L∞‖g‖L2

∑
|α|≤2N

∫
‖∂α

η σ̂2(ξ, ·, η)‖L2dη

≤ CN (1 + |i− j|)−2N‖f‖2L∞‖g‖L2

∑
|α|≤2N

∫(∫
|∂α

η σ(ξ, y, η)|)2dy

)1/2

dη

≤ CN (1 + |i− j|)−2N‖f‖2L∞‖g‖L2 .

Here we used successively Minkowski’s inequality, Plancherel’s theorem and the
condition (7). This gives the almost orthogonality for Ri(f, R∗2j (f̄ , g)). The same
approach, using now (8), proves the almost orthogonality for R∗2i (f̄ , Rj(f, g)).

We now remove the condition on the support of σ by a standard argument.
Fix a C∞ function u with compact support in R3n and such that u(0, 0, 0) = 1
and set σε(x, ξ, η) = σ(x, ξ, η)u(εx, εξ, εη). Notice that if the symbol σ satisfies
(6)-(8), then the symbols σε satisfy the same inequalities uniformly in ε, for
0 < ε ≤ 1. The symbols σε have compact support and Sσε(f, g)→ Sσ(f, g) a.e.
as ε→ 0 for all f, g ∈ S. Since the operators Sσε

are bounded from L2×L2 into
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L1 with bounds independent of ε, by letting ε → 0 we obtain the boundedness
of the operator Sσ.

Remark 2. One can replace the conditions in (6) by the conditions

‖∂α
ξ ∂β

η σ(x, ·, η)‖L2 ≤ Cαβ ,(15)

uniformly in x and η, and

‖∂α
ξ ∂β

η σ(x, ξ, ·)‖L2 ≤ Cαβ ,(16)

uniformly in x and ξ together with (7) and (8) if one uses in the above proof
Corollary 2.1 in [7] instead of the original result of Calderón-Vaillancourt. The
two sets of conditions are not comparable. Certainly, in either case one does not
need to assume the estimates for all derivatives but only an appropriate number
of them. We do not compute the smallest such number because we will present,
by further using some ideas in [7], another variant without smoothness in the
x-variable .

We recall the following identity; Lemma 3.1 in [7].

Lemma 2. For f and ϕ in L2(Rn), define

F (x, ξ) =
∫
Rn

e−iy·ξϕ(x− y)f(y) dy.(17)

Then,
‖F‖L2(Rn×Rn) = (2π)n/2‖ϕ‖L2(Rn)‖f‖L2(Rn).

The proof of the lemma is straightforward, see [7]. When ϕ has compact
support, the integral in (17) is sometimes called the short time Fourier transform
of f with window ϕ. The integral is very similar to the Wigner transform of ϕ
and f ,

W (f, ϕ)(x, ξ) =
∫
Rn

e−iy·ξϕ(x + y/2)f(x− y/2) dy.

For more on the use of the Wigner transform to study pseudodifferential opera-
tors see e.g. Chapter 1 in the book by Folland [6].

Theorem 2. Let T be a pseudodifferential operator whose symbol satisfies the
inequalities

sup
x
‖∂αj

ξj
∂βk

ηk
σ(x, ·, ·)‖L2(Rn×Rn) ≤ C(18)

for all j, k = 1, . . . , n, and αj , βk = 0 or 1. Then, T can be extended as a bounded
operator from L2(Rn)× L2(Rn) into L1(Rn).

Proof. Without loss of generality, we may assume that the symbol has compact
support. This will ensure the absolute convergence of all the integrals to be
considered. The estimates to be obtained, however, will not depend on the
support of the symbol and the same limiting argument used in Theorem 1 can
be applied to prove the general case.
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Let f, g be functions in S(Rn). By first inverting the Fourier transform, then
integrating by parts and finally using Cauchy-Schwarz in ξ and η and (18), we
compute

‖T (f, g)‖L1(Rn)

=
∫ ∣∣∣∣∫ ∫

σ(x, ξ, η)eix·(ξ+η)f̂(ξ)ĝ(η) dξdη

∣∣∣∣ dx

=
∫ ∣∣∣∣∫ ∫

σ(x, ξ, η)
(∫

eiξ·(x−y)f(y)dy

) (∫
eiη·(x−z)g(z)dz

)
dξdη

∣∣∣∣ dx

=
∫ ∣∣∣∣∫ ∫

ρ(x, ξ, η)H(x, ξ, η) dξdη

∣∣∣∣ dx

≤ sup
x
‖ρ(x, ·, ·)‖L2(Rn×Rn)

∫ (∫ ∫
|H(x, ξ, η)|2 dξdη

)1/2

dx

≤ C

∫ (∫ ∫
|H(x, ξ, η)|2 dξdη

)1/2

dx,

where

ρ(x, ξ, η) =

 n∏
j=1

(1− ∂ξj )
n∏

k=1

(1− ∂ηk
)

 σ(x, ξ, η),

H(x, ξ, η) =
(∫

eiξ·(x−y)ϕ(x− y)f(y)dy

) (∫
eiη·(x−z)ϕ(x− z)g(z)dz

)
,

and

ϕ(x) =
n∏

j=1

1
1 + ixj

.

Since the last integral in ξ and η in the previous computations splits, we can use
Cauchy-Schwarz in x and Lemma 2 to obtain

‖T (f, g)‖L1(Rn)

≤ C

∫ (∫ ∣∣∣∣∫ e−iyξϕ(x− y)f(y)dy

∣∣∣∣2 dξ

)1/2(∫ ∣∣∣∣∫ e−izηϕ(x− z)g(z)dz

∣∣∣∣2 dη

)1/2

dx

≤ C‖ϕ‖2L2(Rn)‖f‖L2(Rn)‖g‖L2(Rn),

which implies the theorem.

Remark 3. We comment some more on the hypotheses in Theorem 1 and
Theorem 2. If one assumes estimates on the symbol similar to (7) and (8) but
including mixed derivatives, then the hypotheses of Theorem 2 are easily verified.
To see this, we write the inequalities in terms of mixed Lebesgue norms Lp

ξ(L
q
η)

and use interpolation. For example, change the conditions in Theorem 1 to

sup
x
‖∂α

ξ ∂β
η σ(x, ·, ·)‖L∞(L∞) ≤ C(19)
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sup
x
‖∂α

ξ ∂β
η σ(x, ·, ·)‖L1

ξ(L2
η) ≤ C(20)

and

sup
x
‖∂α

ξ ∂β
η σ(x, ·, ·)‖L1

η(L2
ξ) ≤ C.(21)

Then, from (19) and (20) we get, in particular,

sup
x
‖∂α

ξ ∂β
η σ(x, ·, ·)‖L2

ξ(L4
η) ≤ C.(22)

From (21) we also get

sup
x
‖∂α

ξ ∂β
η σ(x, ·, ·)‖L2

ξ(L1
η) ≤ C,(23)

and then from (22) and (23) we get

sup
x
‖∂α

ξ ∂β
η σ(x, ·, ·)‖L2(Rn×Rn) = sup

x
‖∂α

ξ ∂β
η σ(x, ·, ·)‖L2

ξ(L2
η) ≤ C.(24)

If one only assumes (7) and (8) but with sufficient number of derivatives, it
may still be possible to obtain (18) through more elaborate arguments using
complex interpolation in mixed Lebesgue spaces. Such interpolation arguments
are beyond the main focus of this paper. For complex interpolation involving
derivatives estimates in mixed Lebesgue spaces, we refer the interested reader
to [9].

The conditions in Theorem 2 are trivially satisfied if

|∂α
ξ ∂β

η σ(x, ξ, η)| ≤ C(1 + |ξ|+ |η|)−n−ε,(25)

but the ones in Theorem 1 do not necessarily follow from (25), even if we add
derivatives in x. The symbols satisfying (25) are the bilinear analog of the linear
pseudodifferential operators with “rough” symbols σ such that

|∂α
ξ σ(x, ξ)| ≤ Cα(1 + |ξ|)−n/2−ε.(26)

The operators with symbols satisfying (25) are not pseudo-local in the sense
that their kernels are not smooth away from the diagonal and they do not have
fast decay at infinity. If instead of the conditions (25) we require the symbols to
satisfy inequalities of the form

|∂β
ξ ∂γ

η σ(x, ξ, η)| ≤ Cβγ(1 + |ξ|+ |η|)−|β|−|γ|−ε,(27)

or

|∂β
ξ ∂γ

η σ(x, ξ, η)| ≤ Cβγ(1 + |ξ|+ |η|)−2n−ε,(28)

then the corresponding pseudodifferential operators will be easily bounded. In-
deed, in such a case the distribution kernels of the bilinear pseudodifferential
operators satisfy the inequalities

|K(x, y, z)| ≤ C(|x− y|+ |x− z|)−2n+ε,(29)

|K(x, y, z)| ≤ C(|x− y|+ |x− z|)−2n−ε, for |x− y|+ |x− z| ≥ 1.(30)
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Elementary computations using Hölder’s inequality and the Hardy-Littlewood
maximal function give that the operators which such estimates in their kernels
are bounded from Lp×Lq into Lr, for 1/p+1/q = 1/r and r ≥ 1. The estimates
(29) and (30) on the distribution kernel cannot be obtained if the symbol satisfies
(25) or, in the linear case, (26).
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