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ON THE LOCAL WELL-POSEDNESS OF THE
BENJAMIN-ONO AND MODIFIED BENJAMIN-ONO
EQUATIONS

CARLOS E. KENIG AND KENNETH D. KOENIG

ABSTRACT. We prove that the Benjamin-Ono equation is locally well-posed in
H*(R) for s > 9/8 and that for arbitrary initial data, the modified (cubic nonlin-
earity) Benjamin-Ono equation is locally well-posed in H*(R) for s > 1.

1. Introduction

We consider the initial value problems for the Benjamin-Ono (BO) equation
(1.1) Ou+ HO?u + udyu = 0 (z,t) € R?
' u(z,0) = ug(x)

and a modified Benjamin-Ono (mBO) equation (with cubic nonlinearity)

{ O+ Ho?*u + u? O,u =0 (z,t) € R?

(1.2) u(x,0) = up(x)

where H is the Hilbert transform.
The Benjamin-Ono equation models behavior of long internal waves in deep
stratified fluids ([B], [O]). Both equations satisfy the conservation laws

Li(u) = /OO w(z,t) dz

—00
oo
(1.3) Iy(u) = / u?(z,t) dx
and the Benjamin-Ono equation possesses an infinite number of conservation
laws, including

L(u) = /OO (|D$u(:c,t)|2+%u3(x,t)> do

—0Q

(14) Iy(u) = /OO ((@Eu)z(x,t) + %(U2D$u)(a§,t) + éu4(x,t)) dx.

— 00

The Benjamin-Ono equation has global weak solutions in L2(R)), H2 (R), and
H'(R) ([GV], [To], [Sa]), and it has been known for some time that it is globally
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well-posed in H*(R) for s > 3/2 (see [P] and the references therein). Recently,
H. Koch and N. Tzvetkov [KoTz] proved local well-posedness for s > 5/4 by a
substantially simpler argument. Our first result is the following improvement:

Theorem 1.1. Let s > 9/8. For any ug € H*(R), there exists T 2 ||lug|| 5% and
a unique solution u of the Benjamin-Ono equation (1.1) satisfying

ue C([0,T]: H*(R)) and Oyu € L*([0,T] : L=(R)).

Moreover, for any R > 0, the map ug — u(t) is continuous from the ball {ug €

H*(R) : |[uollz= < R} to C([0,T] : H*(R)).

Observe that a desirable goal is to extend local well-posedness to s > 1, since
global well-posedness would then hold in H!(R) due to the conservation law
(1.4). Just as this paper was completed, T. Tao ([Ta]) announced a proof of
this global well-posedness in H'(R), by performing an appropriate gauge trans-
formation that eliminates the derivative (on high-frequency components) in the
nonlinear term. Nevertheless, we expect that the simplicity of our argument for
the range s > 9/8, and its wide scope of applicability, should be of independent
interest. For instance, a very similar proof to the one given here yields, for the
“dispersion-generalized” Benjamin-Ono equation

Opu+ 0, DIy + udyu =0 (r,t) €eR?, 0<a<1
u(z,0) = uop(x)

local well-posedness in H*(R) for s > % — 3—8“. This improves the best previously
known result given in [KPV1], where local well-posedness was proved for s >
% — %. Since these equations are not completely integrable (for 0 < a < 1), it
is unclear whether Tao’s gauge transformation applies to them.

For the modified Benjamin-Ono equation (1.2), it has been known that it is
locally well-posed for s > 3/2 ([I]) and, for small initial data, for s > 1 ([KPV3]).
Also very recently, the latter result (i.e. for small data) was extended to s > 1/2
by L. Molinet and F. Ribaud ([MR]). We show that for arbitrary initial data,
mBO is locally well-posed in H*(R) for s > 1.

Theorem 1.2. Lets > 1. For anyug € H*(R), there exists T 2 min(1, ||u0\|;1215)
and a unique solution u of the modified Benjamin-Ono equation (1.2) satisfying

ue C([0,T): H*(R))  and d.u < L*([0,T]: L>(R)).

Moreover, for any R > 0, the map ug — u(t) is continuous from the ball {ug €
H*(R) : |luol|lg= < R} to C([0,T]: H*(R)).

Our method is to refine the energy method and smoothing effect approach
(such as in [KPV1], taking advantage of the Christ-Kiselev lemma 2.5 below).
It is worth pointing out that it is not possible to use the contraction principle to
prove local well-posedness in H*(R) for the Benjamin-Ono equation ([MSaTz]).
On the other hand, the results of Kenig-Ponce-Vega and Molinet-Ribaud cited
above for modified Benjamin-Ono were proved by contraction methods. These
cannot apply for s < 1/2, since mBO is not C? well-posed in this range ([MR]).
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The following notation will be used throughout this article: D® = (—A)%/2
and J* = (I — A)S/ 2 denote the Riesz and Bessel potentials of order —s, respec-
tively. We write

Ifllzes = ||If (=, ||Lq(R)HLP(R)
ey = NG zagornll Lo ry

with similar definitions for L{LP and LLLP. Finally, we say A < B if there
exists a constant ¢ > 0 such that A < ¢B (it will be clear from context what
parameters ¢ may depend on).

2. Linear estimates and local smoothing

In this section, we provide the linear estimates and local smoothing properties
for solutions to BO and mBO. Consider the corresponding linear IVP

O+ HOPv =0 (z,t) € R?
1) { v(z,0) = vo(x)

and

(22) {@w+H%w=f (2,1) € R?

w(z,0) =0

whose solutions are given by

v(z,t) = S(t)ve(x)
w(z,t) = /0 St—=t)f(-,t"dt
where S(t =c [0 e elElig(¢) de.

We ﬁrst state the standard Strichartz estimate and sharp Kato smoothing
effect for the unitary group {S(t)}ier (see e.g. [KPV1]).

Lemma 2.1. For vy € L?,

. 4 2
(2.3) HS(t)UOHLng < cllvollzz  with (g,p) = (57 m)
for any 6 € [0,1], and

(2.4) 1D/ (t)voll L 12 = €llvoll 2

The following version of the local smoothing effect for solutions to BO was
established in [KPV1]; a careful examination of the proof’ shows that the result
extends (as stated below) to solutions of mBO as well.

IHere it is necessary to use the energy estimate for mBO given in Lemma 2.7.
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Lemma 2.2. Fiz § > 0, and let I be an interval of unit length. If u € C([0,T] :
H*TY(R)) is a solution to BO, then

1/2
T _1
(/O/Iu); 28zu(x,t)|2dxdt> < clluollme (14T + Tlluoll ;3 s + 10l 13 1)
(2.5) ~exp(cf|Opull Ly )

for s > % Similarly, if u is a solution to mBO, then
T 1/2
s_1
(//\Dz 28xu(x,t)‘2dxdt> < oL+ (AT ol g H Ol 1y
0/r1

(2.6) explelul2s ) exp(elduullZs ).
Next we recall the maximal function estimate proved in [KPV1].

Lemma 2.3. Assume vg € Hzto for some fized § > 0. Then
(2.7)
1/2

HS(t)UOHLﬁL%O < Z ||S(t)UOH%OO([j,j+1)><[O,T]) < C(l + T)||UOHH%+5~

j=—00

Using duality arguments and complex interpolation, we combine the Kato-
type smoothing and maximal function estimates to obtain additional linear es-
timates needed in the proof of Theorem 1.2.

Lemma 2.4.
(a) For T € [0,1],

t
28) low [ sa-onerar| <Al
Ly Lge
(b) For 6,0, T € [0,1] and € > 0,
1
(2.9) ||D§S(t)v0||Li/(lie)L§/9 < CHD%+5U0||L2 + c|lvo| L2
and
(2.10)
6 ! ’ / ’ 5(1—-0) 30-0) 4 ¢ 1/2
D% | S(E—=t)f(-,t")dt ||L§/<1—9)L2T/0 <cl™ > |[Dy ® fllezrz + T2 fllpz e
0

where p = p(6,0) = 55—y

A useful lemma of Christ and Kiselev ([ChKi]) allows one to deduce the
inequalities (2.8) and (2.10) from the corresponding “nonretarded” ones. The

version of this lemma that we use is the one presented and proved in [MR],
[SmSo].
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Lemma 2.5. Let 7 f(t) = ffooo K(t, ") f(t')dt' be a linear operator, where K :
S(R?) — C(R3). Assume that |7 fllper o < cl[ fllpre paz for somepr,p2, g1, 42 €
[1, 00] with

(2.11) min(p1, q1) > max(ps, ¢2).
Then

A similar result? holds for the spaces L{* LP* and/or L{*LP? instead of LP*L{",
LP2L7 . Moreover, the case g1 = 00; pa,qa < 00 is allowed even if (2.11) fails;
more precisely, if T < 1 and [|T f||pr1pee < cf[fl[pr2p22 with p2 # 00, g2 # o0,
then

Proof of Lemma 2.4.
(a) A standard TT* argument using Lemma 2.1 yields the linear estimate

‘ax/ St —tf(,t")dt
Indeed, the L} L2° Strichartz estimate and smoothing effect (2.4) imply that

Ww[:mw%wmeWWﬂ

< c|[fllgpzpo=
Lot )

/t K(t,t)f(t")dt
0

/t K(t, t")f(t") dt'
0

e < || fllprz gz
z L

< c| D3 fllLs s
LiLg

LiLg

< H/zw%vww%mww
N ,

< m>/ /zw%wmmewmwwm
lgll2<1 [/ —o0 J—c0

s sw |[ [ D)D) do dt
llgll;2<11J/—00 J—00

S sup HD;/QJCHL;L% ||Dalc/25(t)9HL;OL§ < HD;/2fHL}UL%-

lgll L2 <1

Therefore, by Lemma 2.5,

t
(2.12) m/ﬂwﬂﬂﬂﬂf < | D2 || 1z
0

L{Lg

which in turn implies (2.8).

2The LY LEY, LE2 L% (vesp. LE'L{', LI LE?; or LIV LYY, L{? L%?) version of the Christ-
Kiselev lemma holds with the condition g1 > max(p2, g2) (resp. min(p1,q1) > g2; or q1 > q2)
instead of (2.11).
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(b) The proof is in part similar® to the one in [KPV3] that showed
36—1
| Dz * S(t)’l)oHL4/(1—e)Lz/a < c||vo| 2
x t

and
57? ! ’ ’ / =6 1/4
(2.13) ”Dm S(t —t )f(-,t )dt HL4/(1—9)L2/6 <l HDz fHL2/(1+9)L2 .
0 x t x T

To adapt the argument to the operator D}C/ 2 (instead of D}C/ 4), one interpolates
the smoothing effect

HDglc-i-iaS(t)UoHLgoLf < C||’U0HH%
with
||D;ica5(t)vo||LgL<;° < C||Uo||H%+E

to obtain (2.9). For (2.10), we decompose f into small and large frequencies

(using smooth cutoffs) so that f = f1+ fo with supp f1 C {|{| < 2} and supp fo C

{l€] > 1}. Recall that for any fixed £ > 0, there exist finite measures 1, v such

that [¢]" = (1+[€]*)*/24(€) and (1+]€]*)™/? = (1+[¢]*)2(€) (see for example [St],
EN

pp. 133-134). Therefore, combining the inequalities ||D3 J**S(t)uo|perz <

clluo|lpz and [|S(t)uol| L2 ree < c||J2 eug|| 2 yields (by a TT* argument as above)

S f2llarz

J;“—E/ St —t") fol-,t") dt’

L2L

and hence

(2.14) Selloze

L2Lg

t
J;“—e/ St —t") fol-,t") dt’
0

by Lemma 2.5. On the other hand, by Lemma 2.3,

l _ectia ¢
(2.15) ‘17 +Q/S@ﬂﬁ@ﬂﬁ/ STV fol a3
0

LILgF

Interpolating (2.14) and (2.15) gives

5 . t
(2.16) ‘J;f”m/ St —t") fol-, t') dt’
0

3
ST\ fall 2re-o
L2LF : !

for 6 € [0,1].
3The direct analogue of (2.13) is
% k ’ / ’ 1-9 %+5 1/2
1D | SE=t)f(t)dt']| 276270 ST 72 [[DE " fll 27a40) 0 + T2 fllp2 2 -
0 T T x T =T

1
but the extra e-derivative in the || D2 +€f||L2/(1+g)L2 term causes difficulties when this esti-
@ T

mate is applied with f = u?0,u (see (4.2) below).
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Now we also know the following analogue of the smoothing effect (2.4):

S fallzyes,

(2.17) ‘
LgeLs

t
J;“'O‘/ St —t") fol-,t') dt’
0

(see (2.9) in [KPV3], where (2.17) is proved with D1*® instead of J1T%®) so
interpolating (2.16) and (2.17) yields the desired result (2.10) for fo (with just
the first term on the right-hand side). For fi, it is easiest to estimate the left-
hand side of (2.10) directly, using the result (2.9) already established. Thus

i

DY /t St —t)fi(-,t')dt’
0

T
<[ ID2S)S(—t") f1(-, )|, 271—0y , 270 dt’
it e SIPLSOSORCO roon

T
< / (D2 fillas + 1 fillzs) de
0
< TVl ars
< TV f age

O

Remark: By (2.7) and the proof of the last statement in Lemma 2.5, we obtain
the following analogue of (2.16): for any § < 1, there exists p € (1,2) such that

(2.18)

t
‘/ St —tf(-,t")dt’
0
To analyze the products that arise from the nonlinear term of the BO and
mBO equations, we require the following Leibniz rules for fractional derivatives.
For detailed proofs of these facts, see [KPV2].

5 1
ST2|DE fllpzrz + TV fllparz.-
22(Lo=([4,j+1)x[0,17))

Lemma 2.6.
(a) Let « = a1 + ag € (0,1) with a;; € (0,), p € [1,00), and p1,p2 € (1,00)

such that + = L + L. Then
p P1 P2

1D*(fg) = fD%g — gD fllo < | D fl[Lor [[D** gl L2 -

Moreover, if p > 1, then the case as =0, 1 < ps < 00 s also allowed.
(b) Let @« = a1 + ag € (0,1) with o; € [0,a], and let p,p1,p2,q,q1,q2 € (1,00)

1_ 1 1 1_ 1 1
such thatp—p1 —I-p2 andq— o —l—q2. Then

1Dz (fg9) — fDZg — ngfHL’;Lf < C“Dglf“LilLfl “D§29”L§2L§2'
Moreover, the following additional cases are allowed: (a1,q1) = (0,00); (p,q) =

(1,2); and ¢ = 1, provided that a; € (0, ).

We remark that all of these results remain valid with D, = HD, instead of
D,.
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Next we turn to the energy estimates satisfied by solutions to the Benjamin-
Ono equations (1.1) and (1.2). Note that their L? norms are preserved by the
second conservation law (1.3).

Lemma 2.7.
(a) Let s > 0 and u € C([0,T] : H**2(R)) be a solution to the IVP (1.1) for the
Benjamin-Ono equation. Then

T
(2.19) sup |Ju(t)||zs < clluol[rs exp (c/ [0z u(t)] Lo dt)
te[0,T] 0
< clluoll s exp(eT?|0,ull 12 )-

(b) Let s > 0 and u € C([0,T] : H*T2(R)) be a solution to the IVP (1.2) for the
modified Benjamin-Ono equation. Then

T T
< clluollms exp (c/ [ (t) ][ dt) exp (c/ 10 (t) ]| dt)
te[0,T] 0 0

sup ||u(t)|m-
(2.20) < c|lugl|lgs exp (CT1/2||'UI||%%L?> exp (CTl/zHamuH%‘;Lgo) .

A

Proof. Part (a) of the lemma is contained in [KPV1], [P]; we indicate the changes
needed in the cubic nonlinearity case (b). Differentiating the equation (1.2), we
have

Oy Diu+HO? Diu+(D5 (u*0yu)—u® D5 0yu—(Diu?)0yu)+u? 0y Diut-(DEu)dpu = 0.
Multiplying by D?u, integrating by parts, and applying Lemma 2.6 yields
%IIDiU(t)II%z < 1D:(w?0zu) — u? D30yu — (Dju)dpullpz | Dyullre +
+ 10:(W)Lge [1D3ullie + 0zullzze 1D (w?)] 2 [ D3ull 2
< 1D (w?)llzz 10sull e 1 D3ullzz + (100 (u®) ]| Lo D3l
S lullzg 10sullze 1D3ulZ:-
By Gronwall’s inequality,

T
cl| D3 uoll7, exp <C/ [ullzee 10z ull Lo dt)
0

T
| Dsuo 3 exp ( [ (1l + 10,0l ) dt) .
0

IN

||D§U||3:§9Lg

IN

O

Finally, we give the key linear estimate used in the proof of Theorem 1.1 that
reformulates and generalizes the one given by Koch and Tzvetkov ([KoTz]) in
their demonstration of local well-posedness of BO for s > 5/4.
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Proposition 2.8. Let a € [0,1] and T € (0,1]. Assume w € C([0,T] : H3(R))
is a solution* to the linear equation

3tw+H8§w =F

For any e > 0,

1+5+e _T+5

1
|0 w||L2 Le < c|[ Dz wHL”LQ +¢| Da FHLZTLg +C||w||L§9L§ +C||F||L2TL3-
Remarks:

(1) We take o = 1/2 in the proof of Theorem 1.1, which is the optimal choice of

parameter in our argument. Indeed, given a linear estimate of the form
(2.21) 0wl 2L S |Dgwllrsere + HDZFHLQTLg + [lwllpgerz + 1F]z2 22

we want to apply the smoothing effect (2.5) and “absorb” as many derivatives as
possible on F'; this approach requires that a = b + % Thus local well-posedness
of BO holds for s > a whenever (2.21) holds such a pair of exponents (a,b).
However, we have been kindly informed by L. Vega that such an interpolation-
type estimate fails for any a < %

(2) Koch and Tzvetkov ([KoTz]) consider instead the linearized BO equation
Oyw + HO?w + VO, w = F. The strength of their estimate corresponds to the
case a = 1 in the version considered here, which explains our improvement of
their result by an é—derivative.

Proof of Proposition 2.8. Let g = ), gx denote a Littlewood-Paley decompo-
sition of a function g (in the frequency variable dual to x), where gy has fre-
quency ~ A > 1 and the sum is taken over all dyadic integers. More pre-

cisely, choose n € C§°(L < |¢] < 2) and ¥ € C5°(|¢] < 2) such that 1 =

2 —_—
>ee1n(277) + x(6), and for A = 2%, define gy = Qx(g) where Qog(§) =

x(€)g(&) and Cjk\g(ﬁ) T/Qn( £)g(&) for k 1>/21 Recall that for 1 < p < oo,
lgllre ~ H(Zk 1Qryl?) HL ‘ (Xalgal?) H . Fixe > 0. Forp>1/e > 2,
1/2

1/2
we have gl S [0l ~ [(Sal2a®) | = IS0 1200 S

€ 2 \1/2 < € 2 1/2
(Ao an2:) "% 50 lglloz e S (A I50A12: 1z )
Clearly then it suffices to show that for p > 2,

1—3a_ o
[0zwallzz Lz S HD o 2pw/\”L%’Lg‘*‘HDI YO Rz e

for any frequency A = 2* with & > 1. (The case k = 0 is easily handled using
Lemma 2.1 and Holder’s inequality, yielding the last two terms in (2.21).) Fix
such \ > 2, and observe that dywy + HO?wy = F).

Con51der a partition [0, 1] = U}, I; = [a;,b;] of the unit interval into subin-
tervals of length |I;| ~ A™%, so that T = b; for some j, and note that there are

4Here we are establishing an a priori estimate for solutions w having at least two derivatives
in L2, with bounds that are independent of the H3-norms of w and F.
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O(A¥) of them. (For the last subinterval and the one with endpoint 7', we require
only that the length be at least A% and at most 2A™¢; the other subintervals

can be taken to have length A=%.)
Forp>2,set q=4+ i = 4—2 Applying Hélder’s inequality, Lemma 2.1,
and Jensen’s inequality, We obta (summing over indices j such that b; <T)

1/2
XNy ZH&CU)AHQL%_L’;
j J
1/2
Ca(io1
< yol-b) ZH@xWHiing
J

1/2
) /

A
>
tolQ

/St )0 P\ (1) dt!

%Z (t—a;)0. wA(a])HLq rH
j

L%Lg

o\ 172
—% r ZH@ W\ (1] ||L2 +Z</ ”a F)\HLth)

1/2 1/2

X5 (S 0pwn |20 s |42~ 5 Z)\ 2%/”3 Fy 2, dt
J

T 1/2
S OATETC AT Opwallpgers + AT (/ 10:Fall72 dt)
O xT

1+ a+

1-
S IDe “wallzgrz + [[1De “ Fillr2 22
: _ a(p=2) = 3
Since & = == =% -5 andl —a+ ¢ =1- — 7, we are done. (Note
that when p > 1/e and o < 1, Wehaves——p>%—%: > 0.)

O

3. Proof of Theorem 1.1

Fix s > 9/8, and set ¢ = s — 9/8 > 0. Without loss of generality, we may
assume that

A= HUOHLQ + HDg/SJFEUOHLZ <9
for § > 0 small enough (to be specified later). Indeed, if u(x,t) is a solution to
(1.1), then uy(z,t) = Au(Az, \%t) is also a solution with initial data Aug(A\x).
Since [[Aug(Az)|2 = A2 [Jug|z2 and [AD*(ug(Ax))|[ L2 = A2+*[ D*ugl| 2, we can
always reduce to the case of small initial data by rescaling. Moreover, observe

that if there exists a solution u € C([0,1] : H*(R)) whenever |lug||z= < 0, then
for arbitrary data there exists a solution for time T > |lug| 7+. In the following,
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we always assume that 7' < 1, and we frequently apply the Cauchy-Schwarz
inequality in the t-integrations without further comment.

In view of the energy estimate (2.19), the key point is to establish a priori
control of [|9yul| g2 po. Once this is done, the proofs of existence, uniqueness, and
continuous dependence on initial data can be completed as in [P], [I], [KPV1],
[KoTz], etc.

Applying Proposition 2.8 (with & = 1/2, w = u, and F = —ud,u), the energy
estimate (2.19), and the L? conservation law, we have

10zullp2re S IDYE*ullpeor2 + I1DY3H (udeu)l| 12 12
+llullzgerz + llulloserz 102ull 2 poe

S A+ Aexp(elldullpzpe) + DY (wdou) 21z
By Lemma 2.6(a) and (2.19) again,

1D+ i)z S uDY/**0sull 2 12

T 1/2
+ (/ 1D3/5 % “ul 22 [|00ul7 dt)
0 xT @x

S ”UDi/SJreaacUHL?TLg
+ MOzullrz ree exp(cl|Ozull L2 1)

S DY 0ullz s + Aexp(cl|dull s o).

Now the smoothing effect (2.5) provides a gain of half a derivative. Indeed,

1/2
DY+ 20,ul e = | SN2 0uull3a gy 1) o
’ 1/2
S Z Hu“%w([j,j—i-l)X[O,T])
J
AL+ A+ [[Opull 2 p) exp(cl|Opull L2 1)
1/2
S Z 1|7 00 (15.5+1) x 0.77)

J
ACA + 1) exp(el9pull 3 1 ).

Using the integral equation

u(t) = S(t)ug + /Ot S(t =t udu(t') dt’



890 C.E. KENIG AND K.D. KOENIG

as well as Lemma 2.3 and the L? conservation law, we find that for fixed (small)
n >0,
1/2

1
i+
Z ||U||%°°([j,j+1)x[0,T}) S A+ ||U81UHL1TL3 + || D& 77(Uf)acu)HLlTLg
J

S A A llullegr: 19xullpy e
1
1+
+ D2 (udsu) ||y 12
1
i+
S A+ AMlosullpzpe + 1D (w0ou)ll 2 12

~

Repeating the previous calculation (note that % +n < % + ¢) leads to

1
I+
1Dz (wdsu)llrzrz S AexplellOzullpz pee)

1/2
+ | D el (g 41y <o)
J

x A(A + 1) exp(c|Dpull 2.1 ).
Set
1/2
o(T) = ||axu||L2TLg° + Z HUH%OO([j,j-i—l)x[O,T])
J

which is a continuous, nondecreasing function of 7. Combining all of the pre-
ceding, we know that

O(T) S Aexp(cp(T)) + AMA+1)o(T) exp(cp(T)) + A + Ap(T)

SO
(3.1) d(T) < CA + CAexp(Co(T))
provided that A <§ < 1.
Note that
o\ 1/2 1/2
¢(0) = | (Sg}) IU($,0)|> =Y [wol|7 o (1,
g \FEY j

S (luoll7z + 1 D*uol72)"?
< oA
and take C' > Cj above.

We claim that there exists § > 0 and a constant M > 0 such that if A < 6,
then ¢(1) < M. To see this, let

®(y,n) =y — Cn — Cnexp(Cy).
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Since ®(0,0) = 0 and %—3(0, 0) = 1, the implicit function theorem guarantees
that for |n| < ¢ sufficiently small, there exists a smooth function A(n) such that
A(0) = 0 and ®(A(n),n) = 0. Clearly A(n) > 0 for n > 0 since ®(y,n) < 0 for
y < 0. Moreover, since g—j(o, 0) = 1,®(-,n) is increasing near A(n) provided that
0 is chosen small enough.

Assume A < 6, and set M = A(A). Then

$(0) < CoA < CA < CA + CAexp(C A(A)) = M.

Suppose ¢(T') > M for some T € (0,1), and let Ty = inf{T" € (0,1) : ¢(T") > M}.
Then Ty > 0, ¢(Tp) = M, and there exists a decreasing sequence {7}, } converging
to Tp such that ¢(7,,) > M. Now ®(4(T'),A) <0 for all T € [0,1] by (3.1). On
the other hand, ®(-, A) is increasing near M, so ®(¢(Ty),A) > ®((Th),A) =
O(M,A) = ®(A(A),A) = 0 for n sufficiently large. This is a contradiction, and
we conclude that ¢(T') < M for all T € (0,1). Hence ¢(1) < M as claimed.

4. Proof of Theorem 1.2

Our main goal is to obtain a priori estimates for |[Oyul s p and [ul|ps po~
(see (2.20)), where w is a solution to mBO and thus satisfies the integral equation

u(t) = S(t)ug + /Ot S(t —thu?du(t')dt’.

(In the following, we always take 7" < 1.) We consider the (worse) term
|0zul| L4 Lo first. By Lemma 2.1 and Lemma 2.4, we have

t
aw/ S(t —t"udpu(t’) dt/
0

oruliges S uolln +|

LiLe
(4.1) S luoll + DY (w?0pu)l| s 1.
Set
AT) = sup [|DY?(u0,) a2 + [uBpull 2 13-
p€(L1,2]
For p € [1,2], p1 € [%,3], p2 € [2,00] with pil + % = % and p% —i—% = p%’ we
apply Lemma 2.6 and Holder’s inequality to obtain
|DE (w*0,0) | prs < D2 (u*0pu) — w?Di pu — DE (u®)0ull r1z +
+ 2D Oul s, + I1DF (w)sul rprs
S [W2D2dsullpprs + D2 o po [00ull g s
(4.2) S [w*D20sullpprs + ull e e 1DFull s s 1000 g 1 -

To handle the factors in the second term, we first differentiate the integral
equation for w and apply the linear estimates in Lemma 2.4 (with 6 = 2/3) to
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see that for any (positive) § < 1, there exists p = p(d) € (1,2) such that

1414 1
10wullezy S IDF ¥ uolle + IDFuollue + T9/9|DY2(u200) | o1z

+ T2 DY (w?D,0)l| 2 s

S uwolle + T‘s/GIIDi/Q(uQ%U)IILngT + T”2\|Di/2(u28zu>lngLzT
+T1/2||U23xu||L§L2T
< luollgr + TO/CA(T).

Similarly (taking 6 = 1/3), for any § < 1, there exists p € [1, 2] such that

~

1 1,84
IDRullsre S luollem + T/2IDE 5 (W20,0)ll 11

1
+T?||DE (w*0pu) | 2 12,

S lwollar + T5/3||Di/2(u28xu>lngL%
+T1/2||Di/2(u28xu)HLgL2T + T1/2||u261u|!LngT
< luollgr + TO2A(T).

The case 6 = 0 and the energy estimate (2.20) lead to

1_2 2
||U”L£2L39 ~ HuHLgff%o HuHﬁ%;"

1— =2 2
< t P2 P2 -
< (e 1O, 75 ) Il
< 5/2 2/p2 1-5; 1/2q, 112

S (luollsrs +T72AT)) ™ ol ™ exp(eT™ 2 ull3 ;)

exp(eT" | sul2y 1)
2

1—2
< (U Jluollzrr +T*2A(T) fuoll 2™ exp(eI™?|[ullZs 1)

) eXp(CT1/2 HamuH%‘;Lgo )-

We turn next to the main term in (4.2), using the smoothing effect (2.6) and
the maximal function estimate (2.7) to absorb half a derivative. In detail, since
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€ [1,2] (so that 2/p > 1), we have

o T p/2 1/p
u?D20pul|prr2 = u? D32 Oyul? dt dx
o —00 0
j+1 T L p/2 Y/
= Z / (/ ]uQDﬁamu\th> dx
j=—o00"J
% 4l VA p/2 l/r
< sup u) / D20, u|? dt dx
L7 ()" ([ to
2—p 1/p
o G+1 i_Pp \ 2 [/ i+l /2
< Z(/ < sup|u]> dx / ]D Opu|? dt dz
i 0<t<T j
1/p
S ZHUHLOO ([4,54+1)x[0,T7) (1+||U0HHl“‘TSMHaxUHL“TLgO) [uo]| 1
]_700

cexp(eT 2 ul s poo) exp(eT2)|0pull s 1o0).

Now [|(a;)]|e2r < ||(a;)]|e2, s0 by (2.18),

1/p
oo

2
Z ez g1y < 0.7
Jj=—o0

S D Nl ggenyx o

j=—oc

S Z HS(t)UOHQLoo([j,jH)x[o,T])

j=—00
2
Yu?0u(t’) dt’

j=——oo L ([5,5+1)x[0,T7)
S (lwolla + T‘S/QIIDi/2(u23zU)IILg<s>LzT + T w?0pul 1212 )
S (ol + TP2A(T))%.

Observe that

[ Ol 2 13 lull e e Null g 2 102wl L3 Lo

AN YA

TV uo | 2 10zl 1 oo w0l exp(eT 2 |[ullZa o)

exp(el 203y 1)
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so we can control A(T).
Finally, we need to estimate |ul/ps o, which is easy. From the integral
equation and the Strichartz estimate (2.3), we deduce that

lulla e S Nuollze + [[w*@uull L 2
S luollze +T%|uoll 2 10:ull 1 £ lwoll s exp(eT™?ulFs 1)
exp(eT29ull% ).
Fix § < 1. We have shown that
U(T) := max{||Opull 4 roo, [[ull 4 r0e, A(T) }
< Nwoll s +(fuol | a+T° > A(T)) (ol ar1+T°  A(T)) (1o | +T/2A(T))
(L4 JJuoll 1) exp(eT 2l 73 1) exp(eT2 (|00l T o)
+ (luollF +TOAT)) (L + uoll e + T |10zl g oo ) [[uol a2
exp(eT 2 Jull2y ) exp(el 2| Dull2y ;)
+ TV o7 10wull g 2o exp(eT 2 |[ull 7 o) exp(eT 2|10zl 2 o0 ).
Set
u(T) o= max{TON(T), T ul3y o T2 sl e T 0l g1

Note that p(7') is continuous and p(0) = 0. If u(7) <1 for all T' < 1, we control
the H® norm at 7' = 1. If pu(1) > 1, choose Ty € (0,1) such that u(Tp) = 1.
Then

U(Tp) < C+ Clluollz

and one of the following inequalities holds:

1= T°MT) < 70 + Clluo 1)

L = Ty”ulfy pe < To"*(C + Clluo]lf1)*
L= L7)0:ulfy 1o < Ty*(C + Clluollin)*
1= T 0uulls, 1 < T54(C + Clluolfs)

and hence Ty 2 (1 + ||u0H‘11{1)_6+. At this stage, the existence, uniqueness, and
continuous dependence on initial data follows from the standard compactness
and Bona-Smith approximation arguments (see for example [I], [KPV1], [P]).
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