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AMBIENT METRIC CONSTRUCTION OF Q-CURVATURE IN
CONFORMAL AND CR GEOMETRIES

Charles Fefferman and Kengo Hirachi

1. Introduction

This article presents a geometric derivation of the Q-curvature in terms of the
ambient metric associated with conformal and CR structures. The Q-curvature
in conformal geometry is a scalar Riemannian invariant Q that is conformally
invariant up to an error given by a conformally invariant power of the Laplacian.
In dimension 2, the Q-curvature is the half of the scalar curvature, Q1 = R/2,
which satisfies

e2ΥQ̂1 = Q1 + ∆Υ whenever ĝ = e2Υg.

In general even dimension n, the Laplacian ∆ is replaced by a conformally
invariant (n/2)th power of the Laplacian Pn/2 and the Q-curvature, Qn/2, is

1
2(n−1)∆

n/2R modulo nonlinear terms in curvature. We here give a simple for-
mula for Qn/2 which directly follows from the ambient metric construction of
Pn/2 given in [15]; this formula can be generalized to any invariant differential
operators P on functions (densities of weight 0) that arise in the ambient metric
construction. We also apply the construction of the Q-curvature to CR geome-
try; it then turns out that the Q-curvature gives the coefficient of the logarithmic
singularity of the Szegö kernel of 3-dimensional CR manifolds.

The Q-curvature in general even dimensions was first defined by Branson [3]
in a study of the functional determinant of the conformal Laplacian. He used an
argument of analytic continuation in the dimension, in which the Q-curvature in
dimension n is defined from Pn/2 in dimension m > n. For example, Q1 = R/2
in dimension 2 is obtained from the zeroth order term of conformal Laplacian
P1 = ∆+ (n−2)

4(n−1)R in dimension n > 2. It was thus natural to ask: what is Qn/2

in n dimensional conformal geometry? An answer to this question was given by
Graham-Zworski [17] in their study of the scattering for the Laplacian ∆+ in the
Poincaré metric associated with conformal structure (M, [g]) on the boundary
at infinity. They gave a formula for the Q-curvature in terms of the scattering
matrix, where the argument of analytic continuation in dimension is replaced by
the analytic continuation in a spectral parameter. Their formulation of the Q-
curvature was significantly simplified in Fefferman-Graham [10]; the Q-curvature
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is given as the logarithmic term in the formal solution to a Dirichlet problem for
∆+. This construction has an intimate relation to the volume expansion for the
a Poincaré metric [17]; in particular, it is shown that the integral of Q gives the
coefficient of the log term of the expansion.

Our approach is directly related to the original derivation of the operator
Pn/2 of [15] in terms of the ambient metric space, a formally constructed (n+2)-
dimensional pseudo-Riemannian space G̃ that contains the metric bundle G =
{t2g ∈ S2T ∗M : t ∈ C∞(M)} as a hypersurface. The invariant differential
operator Pn/2 arises in two ways:

(a) as an operator on the homogeneous functions on G induced from the powers
of the Laplacian ∆̃n/2 on the ambient space;

(b) as an obstruction to the existence of a smooth homogeneous solution to
∆̃F = 0 with an initial condition on G.

Corresponding to these derivations, we give two formulas for the Q-curvature
in §2. In either case, our key observation is the following transformation law of
log t, where t is a conformal scale (a fiber coordinate of the bundle G determined
by a section g ∈ [g]):

− log t̂ = − log t + Υ whenever ĝ = e2Υg.

In view of (a), we extend t off G and apply ∆̃n/2 to − log t. Then we see that its
restriction to G gives the Q-curvature; the required transformation law is clear
from that of − log t. This formulation is naturally related to Branson’s one. In
the argument of analytic continuation in dimension m the function log t appears
as the differential in m of the density t(n−m)/2 at m = n. Corresponding to (b),
we also express the Q-curvature as an obstruction to the existence of a smooth
solution to ∆̃F = 0 with an initial condition F |G = log t. Since the Laplace
equation in the ambient metric can be reformulated as the one in the Poincaré
metric, we see that this derivation is equivalent to that of Fefferman-Graham,
mentioned above.

Note that there is another derivation of the invariant operators in terms of a
bundle calculus associated with the conformal Cartan connection, which is called
tractor calculus [4]. Corresponding to this derivation, Gover and Peterson [12]
gave a tractor expression of the Q-curvature. Gover informed us that their
formula can be translated into an ambient metric expression that is equivalent
to our construction corresponding to (a). See also the remark at the end of §2.

In §3, we turn to CR geometry. For strictly pseudoconvex CR structures, the
ambient metric is given as a Lorentz Kähler metric. The powers of the ambient
Laplacian induce invariant powers of the sublaplacian Pn/2 and the ambient
construction of Q-curvature is also valid. (For a comprehensive treatment of CR
invariant operators see [11].) A new feature in this setting is that Pn/2 has a
large null space, including the space of CR pluriharmonic functions P. Thus
the Q-curvature on (2N − 1)-dimensional CR manifolds, QCR

θ , which is a local
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invariant of the pseudohermitian structure θ, satisfies

e2NΥQCR
θ̂

= QCR
θ whenever θ̂ = e2Υθ with Υ ∈ P.(1.1)

If N = 2, it has been shown in [18] that this transformation law uniquely char-
acterizes QCR

θ up to a constant multiple. As a consequence, we see that the
leading term of the logarithmic singularity of the Szegö kernel, ψ, is a constant
multiple of QCR, since the Szegö kernel enjoys the same transformation law.
While such a simple characterization does not hold for higher dimensions, the
transformation law still indicates an intimate link between the Q-curvature and
the Szegö kernel.

2. Q-curvature in conformal geometry

2.1. Conformally invariant operators. We first recall basic materials on the
ambient metric construction of the invariant operators from [9] and [15].

Let (M, [g]) be a conformal manifold of signature (p, q), p + q = n ≥ 3. Then
M admits the metric bundle G ⊂ S2T ∗M , a ray bundle consisting of the metrics
in the conformal class [g]. There are dilations δs : G → G given by δs(g) = s2g
for s > 0, and the homogeneous functions, with respect to δs, on G are called
conformal densities; the space of densities of weight w is denoted by E(w), i.e.,

E(w) = {f ∈ C∞(G) : δ∗sf = swf for any s > 0}.
Conformally invariant operators are then defined as operators acting on the
conformal densities:

P : E(w) → E(w′).
A choice of representative g ∈ [g] determines a trivialization

E(w) 
 f �→ fg := f ◦ g ∈ C∞(M),(2.1)

such that fĝ = ewΥfg when ĝ = e2Υg. Thus an invariant operator P defines, for
each representative g ∈ [g], an operator Pg on C∞(M) such that

Pĝ = ew′ΥPge
−wΥ whenever ĝ = e2Υg.

In particular, if w = 0, then E(0) = C∞(M) and P acts on the functions on
M . We say that P is an invariant diferential operator if each Pg is given by a
differential operator on C∞(M).

The ambient metric g̃ is formally defined on G̃ = G × (−1, 1) along G which
is now embedded as a hypersurface ι : G → G × {0} ⊂ G̃. It is characterized by
the following three conditions:

(1) g̃ is an extension of the tautological two-tensor g0 on G, i.e., ι∗g̃ = g0;
(2) δ∗s g̃ = s2g̃ for any s > 0;
(3) g̃ is an asymptotic solution to Ric(g̃) = 0 along G.

When n is odd, these conditions uniquely determine a formal power series of g̃
up to homogeneous diffeomorphisms that fix G; but when n is even, g̃ exists in
general only to order n/2.
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Many invariant differential operators can be constructed out of the ambient
metric. The basic procedure is to construct a differential operator on the ambient
space G̃ which preserves the homogeneity P̃ : Ẽ(w) → Ẽ(w′) and then prove that
P̃ induces an operators P : E(w) → E(w′), namely, prove that (P̃ f̃)|G depends
only on f̃ |G . We then call P̃ an ambient extension of P . For example, the powers
of the Laplacian ∆̃ = −∇̃I∇̃I in the ambient metric

P̃k = ∆̃k : Ẽ(k − n/2) → Ẽ(−k − n/2),

for k > 0 (and k ≤ n/2 if n is even) induce

Pk : E(k − n/2) → E(−k − n/2).

The leading part of Pk for each representative g is the powers of the Laplacian ∆k

in g and hence Pk is called an invariant power of the Laplacian – see Proposition
2.1 of [15].

More operators have been constructed by Alexakis [1] by using the harmonic
extension of densities. Denoting by T the infinitesimal generator of the dilations
T = d

dsδs|s=1, we set ρ̃ = ‖T‖2; then ρ̃ ∈ E(2) and ρ̃ = 0 defines G. Then
the harmonic extension of densities are explicitly given by the following lemma,
which is a part of Proposition 2.2 of [15].

Lemma 2.1. Let f ∈ E(w) and set k = n/2 + w. If k �∈ {1, 2, . . . }, then f

admits an extension to f̃m ∈ Ẽ(w) such that ∆̃f̃m = O(ρ̃m) for any m ≥ 0.
Such an f̃m is unique modulo O(ρ̃m+1) and is given by

f̃m = EmEm−1 · · ·E1f̃ , where El = 1 +
1

4l(k − l)
ρ̃ ∆̃

and f̃ ∈ Ẽ(w) is an arbitrary extension of f . If k ∈ {1, 2, . . . }, then the same
result is true with the restriction m < k.

Using this harmonic extension and ∇̃pR̃, the iterated covariant derivative of
the curvature tensor of the ambient metric g̃, we form a complete contraction

P̃ f̃ = contr
(
∇̃p1R̃ ⊗ · · · ⊗ ∇̃plR̃ ⊗ ∇̃q f̃m

)
.

It defines a map P̃ : Ẽ(w) → Ẽ(w′), where w′ = w − p1 − · · · − pl − 2l − q. If q

is sufficiently small (e.g., q ≤ m) then the lemma above ensures that P̃ induces
an invariant operator P : E(w) → E(w′).

Remark. In [1] it is shown that all conformally invariant differential operators
P : E(w) → E(w′) arise as above provided the dimension n is odd and n/2+w �∈
{1, 2, . . . }. The result of [1] applies also to nonlinear operators.

2.2. Q-curvatures in terms of the ambient metric. We now define Q-
curvatures for the invariant operators constructed as above.
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Theorem 2.2. Let P : E(0) → E(w) be an invariant differential operator with
an ambient extension P̃ : Ẽ(0) → Ẽ(w). For g ∈ [g], choose t ∈ Ẽ(1) such that
t(u2g) = u on G. Then

Qg = −(
P̃ log t

) ◦ g

is independent of the extension of t off G and defines a function determined by
g. Moreover, if P1 = 0, then Qg satisfies the transformation law

e−wΥQĝ = Qg + PgΥ whenever ĝ = e2Υg.(2.2)

Proof. If t′ is another function Ẽ(1) which agrees with t on G, then we have
t′ = ef t for an f ∈ Ẽ(0) such that f = O(ρ̃). So

P̃ log t′ − P̃ log t = P̃ f = O(ρ̃),

and hence (P̃ log t′) ◦ g = (P̃ log t) ◦ g. To prove the transformation law, we
extend Υ to Υ ∈ Ẽ(0) and set t̂ = e−Υt. Since P̃ has no zeroth order term, we
have P̃ log t ∈ Ẽ(w) so that

e−wΥQĝ = −e−wΥ
(
P̃ log t̂

) ◦ ĝ = −(
P̃ log t̂) ◦ g.

Substituting P̃ log t̂ = P̃ log t − P̃Υ into the right-hand side, we get (2.2).

In particular, if P is the invariant power of the Laplacian Pn/2 then w = −n

and Qg = −(
∆̃n/2 log t

) ◦ g. We now show that this Qg agrees with the Q-
curvature defined by Branson [3], which we recall briefly. For m ≥ n/2, we
denote by Pn/2,m the invariant powers of Laplacian of order n in dimension m.
Let Q̃n/2,m be the zeroth order term of Pn/2,m in the metric g. Then, noting
Pn/2,n1 = 0, we may write Q̃n/2,m = (m− n)/2 Qn/2,m for a scalar Riemannian
invariant of g. Moreover, from the construction of Pn/2,m, we see that Qn/2,m is
expressed as a linear combination complete contractions of the tensor products
of ∇lR, the coefficients of which are rational in m and regular at m = n. Thus
we may substitute m = n/2 and define Q-curvature by Qn/2,n.

In the identification (2.1) with respect to g, the constant function 1 ∈ C∞(M)
corresponds to tw ∈ E(w). Thus, extending tw to Ẽ(w), we have

Q̃n/2,m = Pn/2,m1 =
(
∆̃n/2t(n−m)/2

) ◦ g.

Substituting t(n−m)/2 = 1 + (n − m)/2 log t + O
(
(n − m)2

)
into the right-hand

side gives

Q̃n/2,m =
(n − m)

2
(
∆̃n/2 log t

) ◦ g + O
(
(n − m)2

)
,

which implies Qn/2,n = −(
∆̃n/2 log t

) ◦ g as claimed.
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2.3. Q-curvature in terms of Poincaré metrics. There is another deriva-
tion of Pn/2, which was also given in [15]. For f ∈ E(0), take an extension
f̃ ∈ Ẽ(0) such that ∆̃f̃ = O(ρ̃n/2) – see Lemma 2.1. Then ρ̃ 1−n/2∆̃f̃ |G is shown
to agree with cnPn/2f , where cn = 22−n((n/2 − 1)!)−2. This derivation of Pn/2

can be reformulated as follows:

Lemma 2.3. Let n be even. For a representative g ∈ [g], take t as in Theorem
2.2 and set ρ = ρ̃/(2t2). Then, for each f ∈ E(0), there exists a formal solution
to ∆̃f̃ = 0 of the form f̃ = f̃0 + η ρ̃n/2 log ρ with f̃0 ∈ Ẽ(0) such that f̃0|G = f

and η ∈ Ẽ(−n). Here f̃0 mod O(ρn/2) and η mod O(ρ∞) are determined by f ,
and moreover, η|G is a non-zero constant multiple of Pn/2f .

Proof. By taking the smooth part and the log term, we decompose ∆̃f̃ = 0
into a system of equations

∆̃f̃0 + [∆̃, log ρ] ηρ̃n/2 = 0, ∆̃ η = 0.

We solve this system by using Lemma 2.1. Noting that

[∆̃, log ρ] ηρ̃n/2 = 2n ηρ̃n/2−1 + O(ρn/2),

we first solve ∆̃f̃0 = O(ρn/2−1) and ∆̃η = 0 under the initial conditions f̃0|G = f

and η|G = −cn/(2n)Pn/2f . Then we have ∆̃f̃0+[∆̃, log ρ] ηρ̃n/2 = O(ρn/2), and
thus we may modify f̃0 so that ∆̃f̃0 + [∆̃, log ρ] ηρ̃n/2 = 0. The uniqueness of η
is clear from this construction.

Corresponding to this derivation of Pn/2, we have the following characteriza-
tion of the Q-curvature.

Theorem 2.4. Let n be even. For a representative g ∈ [g], take t as in Theorem
2.2 and set ρ = ρ̃/(2t2). Then there is a formal solution to ∆̃F = 0 of the form

F = log t + ϕ + η ρ̃n/2 log ρ

with ϕ ∈ Ẽ(0) such that ϕ = O(ρ) and η ∈ Ẽ(−n). Here ϕ mod O(ρn/2) and η
mod O(ρ∞) are determined by g and, moreover, η ◦ g is a constant multiple of
the Q-curvature of Pn/2.

The proof of this theorem is just a straightforward modification of that of
Lemma 2.3; the last statement follows form the fact that η is a multiple of
∆̃n/2 log t on G. We will omit the details and, instead, we show that this theorem
is equivalent to Theorem 3.1 of [10], which we state as Theorem 2.5 below.

Let X = M × (0, 1) and identify M with a portion of the boundary M ×{0}.
The Poincaré metric g+ is a metric on X satisfying the following conditions: g+

satisfies the Einstein equation Ric(g+) + ng+ = 0 asymptotically along M , and
if r is a defining function of M in X, then h = r−2g+ is smooth on X = M ×
[0, 1] and h|TM ∈ [g]. Note that r mod O(r2) corresponds to a representative
g ∈ [g]. The higher jets of r can be uniquely determined by the normalization
‖d log r‖g+ = 1.



AMBIENT METRIC CONSTRUCTION OF Q-CURVATURE 825

Theorem 2.5. ([10]) Let n be even. For a representative g ∈ [g], take a defining
function r such that ‖d log r‖g+ = 1 and (r2g+)|TM = g. Then, there is an
asymptotic solution to the equation

∆+U = n,

of the form
U = log r + A + B rn log r,

with A, B ∈ C∞(X) which are even in r and A|M = 0. Here A mod O(rn) and
B mod O(r∞) are formally determined by g, and moreover, B|M is a constant
multiple of the Q-curvature.

To translate this theorem into Theorem 2.4, we recall the relation between
the ambient metric and Poincaré metric from [9] and [17]. With respect to a
suitable a decomposition of G̃ = R+ × M × (−1, 1), we have

g̃ = 2tdtdρ + 2ρdt2 + t2gρ,(2.3)

where t ∈ R+ is homogeneous of degree 1, ρ ∈ (−1, 1) and gρ is a one-parameter
family of metrics on M such that g0 = g. Then T = t∂t and ρ̃ = 2t2ρ hold.
We embed X = M × [0, 1] 
 (x, r) into G̃ by the map ι(x, r) = (1/r, x,−r2/2)
so that ι(X) = {2ρ̃ = −1, ρ ≤ 0}. Then g+ = ι∗g̃ gives the Poincaré metric.
Now set s = t

√−2ρ = t r and define new coordinates (s, x, r) of G̃ in which
ι(X) = {s = 1}. Then we have g̃ = s2g+ − ds2 and hence

∆̃ = s−2(∆+ + (s∂s)2 + ns∂s),

where ∆+ is considered as an operator in the variables (x, r). Thus

s2∆̃F = s2∆̃(log s − log r + ϕ + η ρ̃n/2 log ρ)

= n − ∆+(log r − ϕ − η ρ̃n/2 log ρ)

because − log r + ϕ + η ρ̃n/2 log ρ is homogeneous of degree 0. Now, restricting
the both sides to s = 1, we get

(∆̃F
)∣∣

s=1
= n − ∆+U,

where U = −F
∣∣
s=1

and it is of the form

U = log r + A + B rn log r.

Therefore ∆̃F = 0 is equivalent to ∆+U = n. Comparing the log term coeffi-
cients, we have B(x, r) = −2(−1)n/2η|(t,x,ρ)=(1,x,−r2/2).

2.4. Examples. We give two examples of the pairs (P, Q), an invariant opera-
tor P and the associated Q-curvature. It is a routine computation and we only
outline the computation by quoting basic formulas from [9] and [15].

Fixing a representative g ∈ [g], we take local coordinates (t, xi, ρ) of G̃ =
R+×M×(−1, 1) such that (2.3) holds; we here rename the coordinates as (xI) =
(x0, xi, x∞) and use capital indices I, J, K, . . . (resp. small indices i, j, k, . . . ) to
ran through 0, 1, . . . , n,∞ (resp. 1, . . . , n). With these coordinates, it is easy to
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compute the covariant derivatives of log t. We have ∇̃I∇̃J log t = 0 except for
the following two cases:

∇̃0∇̃0 log t = −t−2, ∇̃i∇̃j log t = t−2Pij + O(ρ).(2.4)

Here Pij is the Rho tensor, the trace modification of the Ricci tensor of g,
determined by

Pij =
1

n − 2
(Rkij

k − J gij), J = Pi
i =

1
2(n − 1)

Rij
ji.

In particular, we see that ∆̃ log t|G = −J is a constant multiple of the scalar
curvature.

We next express the components of R̃IJKL on G in terms of the curvature of
g:

R̃IJK0 = 0, R̃ijkl = t2Wijkl, R̃ijk∞ = t2Ckij , R̃∞ij∞ =
t2Bij

n − 4
.(2.5)

(If n = 4, R̃∞ij∞ is undetermined.) Here W , C and B, called the Weyl, Cotton
and Bach tensor, respectively, are defined as follows: Wijkl is the totally trace-
free part of the curvature tensor Rijkl; Cijk = ∇kPij − ∇jPik, and Bij =
∇kCijk + P klWkijl. These relations and the usual symmetries of the curvature
tensor determine all the components of R̃.

Our first example of P is the operator P 1 : E(0) → E(−6) with the ambient
expression

P̃ 1(f̃) = R̃IJK
LR̃IJKM ∇̃L∇̃M f̃1.

Recalling f̃1 = f̃ + 1
2(n−2) ρ̃ ∆̃f̃ and using

R̃IJK
LTL = 0, ∇̃ITJ = gIJ with 2TI = ∇̃I ρ̃(2.6)

(see (1.3)–(1.6) of [15]), we see that

P̃ 1(f̃) = R̃IJK
LR̃IJKM ∇̃L∇̃M f̃ +

1
n − 2

‖R̃‖2∆̃f̃ + O(ρ).

In terms of the representative metric g, it can be expressed as

P 1(f) = Wijk
lW ijkm∇l∇mf − 2CkijW

ijkl∇lf +
1

n − 2
‖W‖2∆f.

On the other hand, using (2.4) and (2.5), we can express the Q-curvature Q1 =
−P̃ 1(log t) ◦ g as

Q1 = −Wijk
lW ijkmPlm + ‖C‖2 +

1
n − 2

‖W‖2J.

Our next example is P 2 : E(0) → E(−6) induced by

P̃ 2(f̃) = R̃IJKL(∇̃M R̃IJKL)∇̃M f̃1.

Noting that 2P̃ 2(f̃) = ∇̃I(‖R̃‖2∇̃I f̃1), we have

2P̃ 2(f̃) = ∇̃I
(‖R̃‖2∇̃I f̃

)
+

n − 6
n − 2

‖R̃‖2∆̃f̃ + O(ρ),
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and from this one can easily deduce

2P 2(f) = ∇i
(‖W‖2∇if) +

n − 6
n − 2

‖W‖2∆f.

The Q-curvature Q2 = −P̃ 2(log t) ◦ g is

Q2 = 2
(
Wijkl∇iCjkl + Wijk

lW ijkmPlm + 2‖C‖2 − 1
n − 2

‖W‖2J
)
.

Remark. The Q-curvature associated with P 2 : E(0) → E(−6) in dimension
6 has been obtained in Gover-Peterson [12]; their Q-curvature is 1

8∆‖W‖2. Our
Q2 is consistent with their formula because Q2 = 1

8 (∆‖W‖2 − ∆̃‖R̃‖2 ◦ g) when
n = 6 and ∆̃‖R̃‖2 ◦ g is a conformal invariant – see [9].

3. Q-curvature in CR geometry

3.1. Ambient metric and invariant contact forms. We now turn to CR
geometry. We first recall the ambient metric of [7] and [8]. Let M be a strictly
pseudoconvex real hypersurface in C

N and let J be the complex Monge-Ampère
operator

J [ρ] = (−1)N det
(

ρ ρj

ρk ρjk

)
, ρj =

∂ρ

∂zj
, etc.(3.1)

Then there is a smooth defining function of M that is positive on the pseudocon-
vex side and satisfies J [u] = 1 + O(uN+1); such a u is unique modulo O(uN+2).
The ambient metric lives on C

∗ × M̃ for a small collar neighborhood M̃ of M .
It is the Lorentz-Kähler metric

g̃[u] = −
N∑

j,k=0

∂2
(|z0|2u(z)

)
∂zj∂zk

dzjdzk,(3.2)

with (z0, z) ∈ C
∗ × M̃ . Note that J [u] = 1 + O(uN+1) implies Ric(g̃) = O(uN ).

The defining function u also specifies a contact form θ[u] = Im ∂u|TM of
M and g̃[u] induces a real Lorentz metric g[u] on the circle bundle S1 × M .
Since g[u] is shown to depend only on θ[u], we may write the metric as g[θ].
This correspondence θ �→ g[θ] can be extended to a general contact form θ
of M in such a way that g[e2Υθ] = e2Υg[θ] holds, and we have a conformal
class of Lorentz metric [g] on S1 × M – see [19]. For the conformal manifold
(S1×M, [g]), the metric bundle and the ambient space are given by G = C

∗×M

and G̃ = C
∗ × M̃ respectively, and the metric g̃[u] satisfies the conditions (1),

(2) and (3) of §2.1. Thus the definition of the ambient metric in conformal and
CR cases are compatible, where (2N − 1)-dimensional CR manifolds correspond
to 2N -dimensional Lorentzian conformal manifolds – see [9].

The contact form θ[u] defined above has special importance, and we call θ[u]
an invariant contact form. This notion can be generalized to CR manifolds
M : θ is an invariant contact form on M if it is locally given as an invariant
contact form for some local embedding of M into C

N . An intrinsic formulation
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of invariant contact form is also given ([6], [20]): θ is an invariant contact form if
it is locally volume-normalized with respect to a closed (N, 0)-form on M . From
this characterization, it is straightforward to see that any two invariant contact
forms θ and θ′ satisfy θ′ = e2Υθ with a CR pluriharmonic function Υ (that is,
Υ is locally the real part of a CR function). Note that, when N ≥ 3, Lee [20]
showed that θ is an invariant contact form if and only if θ is pseudo-Einstein,
that is, the Tanaka-Webster Ricci tensor of θ is a scalar multiple of the Levi
form (this condition is vacuous when N = 2).

We next consider the CR analog of the operators Pk. CR densities of weight
(w, w) are functions f(z0, z) on G such that f(λz0, z) = |λ|2wf(z0, z) for any λ ∈
C

∗. The totality of such functions is denoted by E(w, w). For each θ, the metric
g[θ] determines a S1-subbundle of π : G → M . Restricting each f ∈ E(w, w) to
the circle bundle, we obtain a function π∗f on M ; this correspondence gives an
identification E(w, w) ∼= C∞(M). Note also that E(w, w) can be regarded as a
subspace of conformal densities E(2w) for the conformal manifold (S1 ×M, [g]).
As in the conformal case, we extend E(w, w) to the ambient space and define
Ẽ(w, w) to be the smooth functions on G̃ which are homogeneous of degree
(w, w) in z0 variable. Then the powers of the ambient Laplacian ∆̃k maps
Ẽ(w, w) into Ẽ(w − k, w − k) and, for w = k − N ≤ 0, it induces an operator
Pk : E(w, w) → E(w − k, w − k). From this construction, it is clear that the
CR invariant operator Pk is the restriction of the conformally invariant operator
Pk : E(2w) → E(2w − 2k).

3.2. CR Q-curvature. The CR version of the Q-curvature is defined by

QCR
θ := π∗Qg,

where Qg is the Q-curvature, of the conformal PN , in the metric g = g[θ], and
where π is the projection S1 × M → M . Since Qg is S1-invariant and pushes
forward to a function on M . Then, as in the conformal case, we have

e2NΥQCR
θ̂

= QCR
θ + PNΥ whenever θ̂ = e2Υθ.(3.3)

Here PN is computed in θ.

Proposition 3.1. If θ is an invariant contact form, then QCR
θ = 0.

Proof. For the metric g[θ], we may take |z0|2 as a fiber coordinate of C
∗×M →

S1 × M . Then QCR
θ = −(∆̃N log |z0|2) ◦ g[θ] = 0 because ∆̃ kills pluriharmonic

functions.

In view of this proposition, we have another expression of QCR. Take an
invariant contact form θ0 as a reference and set

QCR
θ = e−2NΥPNΥ,(3.4)

where θ = e2Υθ0 and PN is computed in θ0. This is well-defined because Υ
modulo additions of CR pluriharmonic functions is independent of the choice of
θ0 and CR pluriharmonic functions are killed by PN .
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If M is a real hypersurface in C
N , then M admits a global invariant contact

form θ so that QCR
θ = 0 on M . However, for abstract CR manifolds M , there is

a topological obstruction for the global existence of an invariant contact form θ:
the existence of θ implies the vanishing of the first Chern class of the holomorphic
tangent bundle c1(T 1,0M) in H2(M, R). This obstruction, for N ≥ 3, was first
found by Lee [20] in the study of pseudo-Einstein contact form and his argument
implicitly contains the proof for the N = 2 case. At present, we do not know if
we can always choose θ so that QCR

θ vanishes globally.

Remark. The operators PN were first introduced in Graham [13] as a compati-
bility operator for the Dirichlet problem for the Bergman Laplacian for the ball
in C

N . This construction of PN was generalized, in [16], to the boundaries of
strictly pseudoconvex domains in C

N ; the CR invariance of P2 was realized later
in [18]. Graham [13] proved that the kernel of PN for the sphere agrees with the
space of CR pluriharmonic functions (this can be partially generalized to the
curved case [16]). As a result, on the sphere, we see from the expression (3.4)
that QCR

θ = 0 if and only if θ is an invariant contact form.

3.3. Logarithmic singularity of the Szegö kernel. Now let M be the
boundary of a strictly pseudoconvex domain Ω in C

N . For a choice of contact
form θ on M , we define H2

θ (M) to be the kernel of ∂b in L2(M) with respect
to the volume element θ ∧ (dθ)N−1. Then the Szegö kernel K(x, y) is defined as
the reproducing kernel of the Hilbert space H2

θ (M). K(x, y) can be extended to
a holomorphic function K(z, w) on Ω×Ω; its restriction to the diagonal K(z, z)
admits an expansion

K(z, z) = ϕ(z)u(z)−N + ψ(z) log u(z),

where ϕ, ψ are functions smooth up to the boundary and u is a defining function
of Ω – see [8], [2]. This asymptotic expansion is locally determined by the CR
structure of ∂Ω and θ. Moreover, ψθ = ψ|M is shown to be a local pseudo-
hermitian invariant of θ, that is, ψθ can be written as a linear combination of
complete contractions, with respect to the Levi form, of the tensor products of
Tanaka-Webster curvature and torsion and their covariant derivatives.

In general, there is no simple transformation law of the Szegö kernel under the
scaling of contact form θ̂ = e2Υθ. But if Υ is CR pluriharmonic, we have K̂ =
e−2NΥK, where Υ is extended to a pluriharmonic function in Ω. In particular,
we obtain

e2NΥψθ̂ = ψθ.

In case N = 2, this transformation law is strong enough to characterize ψθ up
to a constant multiple. In fact, we have

Theorem. ([18]) Let N = 2. Suppose that Sθ is a scalar pseudohermitian
invariant satisfying the transformation law

e2NΥSθ̂ = Sθ whenever θ̂ = e2Υθ and Υ is CR pluriharmonic.(3.5)
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Then Sθ is a constant multiple of

∆bR − 2 Im∇α∇βAαβ ,(3.6)

where R is the Tanaka-Webster scalar curvature, A is the torsion, ∆b is the
sublaplacian computed in θ.

Since QCR
θ also satisfy the transformation law (3.5), the theorem above implies

ψθ = c QCR
θ for a universal constant c, which can be identified by an explicit

computation for an example (c.f. [18], [11]). Thus we have

Proposition 3.2. If N = 2, then

32π2ψθ = QCR
θ =

4
3
(
∆bR − 2 Im∇α∇βAαβ

)
.

For N ≥ 3, there are examples of pseudohermitian invariants that satisfy
(3.5) for any Υ ∈ C∞(M) – see [8]. Such invariants are called CR invariants of
weight N . Thus it is a natural conjecture that S is a constant multiple of QCR

up to an addition of CR invariant of weight N . (In case N = 2, there is no CR
invariant of weight 2 – see [14], and this conjecture is reduced to the theorem
above.)

We finally note that the integral of the Q-curvature LM =
∫

M
QCR

θ θ∧(dθ)N−1

is independent of the choice of a contact form θ and gives a CR invariant; this
follows from the analogous fact in the conformal case. In case N = 2, it turns
out that LM = 0 because (3.6) is the divergence of the one form ∇αR− i∇βAαβ .
We also see from the argument of §3.2 above that LM vanishes if M admits a
global invariant (or pseudo-Einstein) contact form. It should be interesting to
find a link between LM and the Chern class c1(T 1,0M), which obstructs the
existence of an invariant contact form θ.

References

[1] S. Alexakis, On conformally invariant differential operators in odd dimensions, Proc. Nat.
Acad. Sci. U.S.A. 100 (2003), 4409–4410.
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