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REAL DIVISORS ALGEBRAICALLY EQUIVALENT TO ZERO

W. Kucharz

1. Introduction

Let X be a smooth projective variety over R of dimension n (that is, an
integral smooth projective scheme over R of dimension n). We endow the set
X(R) of R-rational points of X with the topology induced by the usual metric
topology on R and assume that X(R) is nonempty. Thus X(R) is a closed
n-dimensional manifold of class C∞. We have the cycle homomorphism

c�R : Zk(X)→ Hk(X(R), Z/2)

defined on the group Zk(X) of algebraic cycles on X of codimension k: for
any closed subvariety V of X of codimension k, the cohomology class c�R(V ) is
Poincaré dual to the homology class in Hn−k(X(R), Z/2) represented by V (R) if
dimV (R) = n− k (cf. [4] or [2, Section 11.3] for the definition of this homology
class) and c�R(V ) = 0 if dimV (R) < n − k. Of fundamental interest in real
algebraic geometry is the image

Hk
alg(X(R), Z/2) = c�R(Zk(X))

of Zk(X) via c�R (cf. [3] for a short survey of its properties and applications).
Recently also the subgroup

Algk(X(R)) = c�R(Zk
alg(X))

of Hk
alg(X(R), Z/2), where Zk

alg(X) is the subgroup of Zk(X) consisting of all
cycles algebraically equivalent to 0, proved to be very useful (cf. [7, Chap-
ter 10] for the theory of algebraic equivalence). The group Algk(X(R)) is of-
ten highly nontrivial, as illustrated for example by Theorem 1.3 below, dealing
with Alg1(X(R)). The behavior of Hn−k

alg (X(R), Z/2) is strongly influenced by
Algk(X(R)), cf. [1, 12]. Some crucial constructions of [14], at the borderline be-
tween real algebraic geometry and differential topology, depend on Algk(−). In
[13] it is proved, among other things, that Alg1(X(R)) is a birational invariant of
X. In general, it is very difficult to compute explicitly Algk(X(R)) for 0 < k < n.
The present paper shows that Alg1(X(R)) can be described in a purely topologi-
cal way; in fact, every cohomology class in Alg1(X(R)) ⊆ H1(X(R), Z/2) comes
from a conjugation invariant cohomology class in H1(X(C), Z) by restriction
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to X(R) and reduction modulo 2. In order to state our result we need some
preparation.

The set X(C) of all C-rational points of X will be regarded as a complex
manifold. The Galois group G = Gal(C/R) = {1, σ} of C over R acts on X(C)
and we let

σX : X(C)→ X(C)

denote the antiholomorphic involution corresponding to σ. Moreover, G acts on
H1(X(C), Z), the action of σ being given by the induced isomorphism

σ∗
X : H1(X(C), Z)→ H1(X(C), Z).

We have

H2(G, H1(X(C), Z)) = Ker(1− σ∗
X)/Im(1 + σ∗

X),

where 1 stands for the identity map of H1(X(C), Z). Since in this paper we do
not use properties of the group cohomology, the reader may consider the equality
above as the definition of H2(G, H1(X(C), Z)). Note that Ker(1− σ∗

X) is equal
to the subgroup H1(X(C), Z)G of H1(X(C), Z) consisting of all elements fixed
by G.

We identify X(R) with the subset of X(C) consisting of all points fixed by
G, that is X(R) = {x ∈ X(C)|σX(x) = x}. Denoting by iX : X(R) ↪→ X(C)
the inclusion map, one readily verifies that the induced homomorphism i∗X :
H1(X(C), Z)→ H1(X(R), Z) satisfies

i∗X(Im(1 + σ∗
X)) ⊆ 2H1(X(R), Z).

Hence we can define a homomorphism

i2X : H2(G, H1(X(C), Z))→ H1(X(R), Z/2),

i2X(u + Im(1 + σ∗
X)) = i∗(u)2 for all u in H1(X(C), Z)G,

where i∗(u)2 denotes the image of i∗(u) under the reduction modulo 2 homo-
morphism H1(X(R), Z)→ H1(X(R), Z/2).

Theorem 1.1. If X is a smooth projective variety over R with X(R) nonempty,
then

Alg1(X(R)) = i2X(H2(G, H1(X(C), Z))).

Furthermore, i2X is injective if X is an Abelian variety over R.

As a consequence we obtain that Alg1(X(R)) is completely determined by
the action of G on X(C). In particular, we have the following result.

Corollary 1.2. Let X and Y be smooth projective varieties over R with X(R)
and Y (R) nonempty. If X(C) and Y (C) are G-equivariantly homeomorphic,
then the groups Alg1(X(R)) and Alg1(Y (R)) are isomorphic.
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Proof. Let h : X(C) → Y (C) be a G-equivariant homeomorphism, and let h0 :
X(R) → Y (R) be the restriction of h. We have the following commutative
diagram:

H2(G, H1(Y (C), Z)) −−−−→ H2(G, H1(X(C), Z))

i2Y



� i2X



�

H1(Y (R), Z/2)
h∗
0−−−−→ H1(X(R), Z/2)

where the upper horizontal arrow is the isomorphism induced by h∗ : H1(Y (C), Z)
→ H1(X(C), Z). Hence, in view of Theorem 1.1, h∗

0 establishes an isomorphism
from Alg1(Y (R)) onto Alg1(X(R)).

Theorem 1.1 will be proved in Section 2. Its proof depends on some classical
results [6], whose modern treatment is contained in [5, 9, 11, 20].

In order to demonstrate that Alg1(−) is an interesting invariant we shall now
cite a result of [15]. The kth Stiefel-Whitney class of a closed C∞ manifold M
will be denoted by wk(M), while [M ] will stand for the fundamental class of M
in Hm(M, Z/2), m = dimM . As usual we will use ∪ and < , > to denote the
cup product and scalar (Kronecker) product.

Theorem 1.3. Let M be a closed C∞ manifold of dimension m with m ≥ 2.
Given a subgroup G of H1(M, Z/2), the following conditions are equivalent:

(a) There exist a smooth projective variety X over R and a C∞ diffeomorphism
ϕ : X(R)→M such that ϕ∗(G) = Alg1(X(R)),

(b) G is contained in the image of the reduction modulo 2 homomorphism
H1(M, Z) → H1(M, Z/2), and for each integer �, 1 ≤ � ≤ m, and all
u1, . . . , u	 in G, one has

< u1 ∪ . . . ∪ u	 ∪ wi1(M) ∪ . . . ∪ wir (M), [M ] >= 0

for all nonnegative integers i1, . . . , ir with i1 + · · ·+ ir = m− �.

Reference for the proof. [15].
In [15] the reader also can find some results similar to Theorem 1.3 for Algk(−)

with k ≥ 2.

2. Proof of Theorem 1.1

We begin by introducing notation and terminology. As usual, if the Galois
group G = Gal(C/R) = {1, σ} acts on an Abelian group M , we denote by MG

the subgroup of M consisting of all elements fixed by G.
Let V be a complex manifold endowed with an antiholomorphic involution

σV . The group G acts on the Picard group Pic(V ) of isomorphism classes of
holomorphic line bundles on V . If an element ξ of Pic(V ) = H1(V,O∗

V ) is rep-
resented by a Čech cocycle {Ui, gij}, then ξσ is represented by the Čech cocycle
{σV (Ui), σ ◦ gij ◦ σV }. Note that the action of G on Pic(V ) can be restricted to
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the subgroup Pic0(V ) of Pic(V ) consisting of the isomorphism classes of holo-
morphic line bundles that are topologically trivial. In particular, Pic(V )G and
Pic0(V )G are defined. We say that a holomorphic line bundle (L, π, V ) on V is
defined over R if it comes with an antiholomorphic involution σL : L → L such
that π ◦σL = σV ◦π, and for each point x in V , the restriction σL : Lx → LσV (x)

is anti-linear, that is σL(zv) = σ(z)σL(v) for all z in C and v in Lx. Holomor-
phic line bundles defined over R (on V ) form a category in which morphisms are
homomorphisms of holomorphic line bundles that commute with the given invo-
lutions on the total spaces. If L is defined over R, then its class in Pic(V ) (ignore
the involution on L) belongs to Pic(V )G. We will regard (L(R), π(R), V (R)),
where

L(R) = {v ∈ L|σL(v) = v}, V (R) = {x ∈ V |σV (x) = x},
and π(R) : L(R) → V (R) is the restriction of π : L → V , as a topological real
line bundle on V (R).

Now let X be a smooth projective variety over R with X(R) nonempty. Given
an invertible sheaf L on X, we denote by L(R) the topological real line bundle
on X(R) determined by L in the usual way. The correspondence which assigns
to L the first Stiefel-Whitney class w1(L(R)) of L(R) gives rise to a canonical
homomorphism

wX : Pic(X)→ H1(X(R), Z/2),
defined on the Picard group Pic(X) of isomorphism classes of invertible sheaves
on X. If O(D) is the invertible sheaf associated with a Weil divisor D on X,
then w1(O(D)(R)) = c�R(D), cf. [4, p. 498] (obviously, Z1(X) is the group of
Weil divisors on X). Hence

Alg1(X(R)) = wX(Pic0(X)),(2.1)

where Pic0(X) is the subgroup of Pic(X) consisting of the isomorphism classes
of invertible sheaves of the form O(D) for D in Z1

alg(X), cf. Section 1.
Recall that the complex manifold X(C) is endowed with the antiholomorphic

involution σX and X(R) = {x ∈ X(C)|σX(x) = x}. In particular, Pic(X(C))
and Pic(X(C))G are defined, and it makes sense to talk about holomorphic
line bundles on X(C) defined over R. For any invertible sheaf L on X, we let
L(C) denote the associated holomorphic line bundle on X(C). Clearly, L(C) is
defined over R (with the natural antiholomorphic involution on the total space).
Moreover, L(R) and L(C)(R) can be canonically identified. The assignment
L → L(C) gives rise to a canonical homomorphism

ιX : Pic(X)→ Pic(X(C))G.

Since X is projective and X(R) �= ∅, the homomorphism ιX is an isomorphism,
and

ιX(Pic0(X)) = Pic0(X(C))G.

Furthermore, two holomorphic line bundles on X(C) defined over R represent
the same element in Pic(X(C)) if and only if they are isomorphic as holomorphic
line bundles defined over R. Indeed, by the GAGA principle [19], holomorphic
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line bundles on X(C) can be identified with invertible sheaves on the variety
X ×R C over C. A holomorphic line bundle L on X(C) is topologically trivial if
and only if it corresponds to a divisor on X×R C that is algebraically equivalent
to 0, cf. [8]. Therefore the assertions above follow from descent theory [10].
Consequently, the composed homomorphism

wG
X = wX ◦ ι−1

X : Pic(X(C))G → H1(X(R), Z/2)

can be described as follows: given ξ in Pic(X(C))G, choose a holomorphic line
bundle L on X(C) defined over R and representing ξ, and then

wG
X(ξ) = w1(L(R)).(2.2)

In view of (2.1), we get

wG
X(Pic0(X(C))G) = Alg1(X(R)).(2.3)

Formulas (2.2) and (2.3) will be starting points in the proof of Theorem 1.1.
It will be convenient to adopt the following convention. Let W be a topological

space and let U be a subspace of W . For Π = Z or Π = Z/2, the homomorphism
H1(W, Π) → H1(U,Π), induced by the inclusion map U ↪→ W , will be called
the restriction homomorphism. The homomorphism H1(W, Z) → H1(U, Z/2),
which is the composite of the restriction homomorphism H1(W, Z)→ H1(U, Z)
and the reduction modulo 2 homomorphism H1(U, Z) → H1(U, Z/2), also will
be called the restriction homomorphism.

Let A be an Abelian variety over R. We regard A(R) as a real Lie group. For
any point x in A(R), let tx : A→ A denote translation by x. The induced map
tx(R) : A(R)→ A(R) is translation by x on A(R). Observe that

H1(A(R), Z/2)inv = {ξ ∈ H1(A(R), Z/2)|tx(R)∗(ξ) = ξ for all x ∈ A(R)}
is a subgroup of H1(A(R), Z/2).

Lemma 2.4. With notation as above,

Alg1(A(R)) ⊆ H1(A(R), Z/2)inv.

Proof. Let x be a point in A(R). If L is an invertible sheaf on A whose iso-
morphism class is in Pic0(A), then the sheaves t∗xL and L are isomorphic, cf.
[17, Proposition 9.2] and hence w1((t∗xL)(R)) = w1(L(R)). Since (t∗xL)(R) is
isomorphic to tx(R)∗L(R), we complete the proof by applying (2.1).

Denote by A(R)0 the connected component of A(R) containing the identity
element of the group A(R). Let

RA : H1(A(C), Z)→ H1(A(R), Z/2)

rA : H1(A(C), Z)→ H1(A(R)0, Z/2)

ρA : H1(A(R), Z/2)→ H1(A(R)0, Z/2)

be the restriction homomorphisms, and let

ρinv
A : H1(A(R), Z/2)inv → H1(A(R)0, Z/2)
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be the restriction of ρA.

Lemma 2.5. With notation as above,

RA(H1(A(C), Z)) = H1(A(R), Z/2)inv,

and ρinv
A is an isomorphism.

Proof. First we show that ρinv
A is injective. Suppose that ξ is in H1(A(R), Z/2)inv

and ρinv
A (ξ) = ρA(ξ) = 0. Let S be a connected component of A(R), jS : S ↪→

A(R) the inclusion map, x a point in S, and qx : A(R)0 → S the restriction of
tx(R). Note that tx(R) ◦ j = jS ◦ qx, where j : A(R)0 ↪→ A(R) is the inclusion
map. Hence we have the following equalities in H1(A(R)0, Z/2):

q∗x(j∗S(ξ)) = j∗(tx(R)∗(ξ)) = j∗(ξ) = ρA(ξ) = 0.

Since qx is a homeomorphism, j∗S(ξ) = 0. This in turn implies ξ = 0 for S is an
arbitrary connected component of A(R). Thus ρinv

A is injective as asserted.
Now we prove RA(H1(A(C), Z)) ⊆ H1(A(R), Z/2)inv. If i : A(R) ↪→ A(C) is

the inclusion map, then for any point x in A(R), we have tx(C) ◦ i = i ◦ tx(R),
where tx(C) : A(C) → A(C) is the translation induced by tx. Since tx(C) is
homotopic to the identity map of A(C),

i∗ = tx(R)∗ ◦ i∗ : H1(A(C), Z/2)→ H1(A(R), Z/2),

which implies i∗(H1(A(C), Z/2)) ⊆ H1(A(R), Z/2)inv. The inclusion under con-
sideration follows at once.

It remains to prove ρA(RA(H1(A(C), Z))) = H1(A(R)0, Z/2). This however
follows immediately since rA = ρA ◦RA, the reduction modulo 2 homomorphism
π : H1(A(C), Z) → H1(A(C), Z/2) is surjective (A(C) is a complex torus), and
there is a retraction A(C) → A(R)0 (cf. [5, Theorem 3.1.5(ii)] for the last
fact).

Recall that the number of connected components of A(R) is 2c for some integer
c satisfying 0 ≤ c ≤ dimA, cf. [5, Theorem 3.1.4]

Proposition 2.6. With notation as above,

RA(H1(A(C), Z)G) = Alg1(A(R)),

dimZ/2 Alg1(A(R)) = c,

where 2c is the number of connected components of A(R).

Proof. We have the following commutative diagram:

Pic0(A(C))G

wG
A



�

H1(A(C), Z) RA−−−−→ H1(A(R), Z/2)

identity



� ρA



�

H1(A(C), Z) rA−−−−→ H1(A(R)0, Z/2).
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Therefore, in view of (2.3) and Lemmas 2.4 and 2.5, it is sufficient to prove the
following two equalities:

(a) rA(H1(A(C), Z)G) = ρA(wG
A(Pic0(A(C))G))

(b) dimZ/2 rA(H1(A(C), Z)G) = c.

We shall establish (a) and (b) by direct computation in terms of a suitable
period matrix of A.

Set n = dimA. Let Ω be a complex n×2n matrix such that the Z-submodule
[Ω] of C

n generated by the columns of Ω has rank 2n and is mapped onto itself
by the complex conjugation on C

n → C
n, z → z̄. The complex conjugation on

C
n gives rise to group action of G on the complex torus C

n/[Ω]. If there exists a
G-equivariant isomorphism between the complex Lie groups C

n/[Ω] and A(C),
then Ω is said to be a period matrix of A. It is well known that A admits a
period matrix of the form
(1) Ω = (In,

1
2
In,k +

√−1S),

where In is the identity n × n matrix, 0 ≤ k ≤ n, In,k is obtained from In by
replacing columns k + 1 through n by the columns consisting of zeros, and S is
a real n× n matrix, cf. [5, Theorem 3.1.5].

Let Ω be as in (1), Λ = [Ω], T = C
n/Λ, and let h : T → A(C) be a G-

equivariant isomorphism of complex Lie groups. The complex torus T is endowed
with an antiholomorphic involution σT induced by the complex conjugation on
C

n. This allows us to use terminology and notation introduced at the beginning
of this section. Denote by T (R)0 the connected component of T (R) = {x ∈
T |σT (x) = x} containing the identity element of the group T (R). We have the
following commutative diagram:

Pic0(A(C))G h∗
−−−−→ Pic0(T )G

ρA◦wG
A



� w



�

H1(A(R)0, Z/2)
h∗
0−−−−→ H1(T (R)0, Z/2)

rA

�

 r

�



H1(A(C), Z)G h∗
−−−−→ H1(T, Z)G,

where h0 : T (R)0 → A(R)0 is the restriction of h : T → A(C), w = h∗
0 ◦ρA ◦wG

A ◦
(h∗)−1, and r : H1(T, Z) → H1(T (R)0, Z/2) is the restriction homomorphism.
It follows that (a) and (b) are equivalent to

(a′) r(H1(T, Z)G) = w(Pic0(T )G)
(b′) dimZ/2 r(H1(T, Z)G) = c.

We shall now give a more direct description of the homomorphism w : Pic0(T )G

→ H1(T (R)0, Z/2). Given a holomorphic line bundle L on T , we write [L] for
its isomorphism class. Each element of Pic0(T )G is of the form [L] for some L
defined over R, and in view of (2.2),
(2) w([L]) = w1(L(R)|T (R)0).
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Our next step is an explicit description of Pic0(T )G coming from the Appell-
Humbert theorem. We regard the unit circle C1 = {v ∈ C| |v| = 1} as a
multiplicative group. For any χ in Hom(Λ, C1), define an action of Λ on C

n×C

by

(λ, (z, v))→ (z + λ, χ(λ)v)

for all λ in Λ and (z, v) in C
n×C. Denote by L(χ) the holomorphic line bundle

on T obtained by taking the quotient of C
n × C by Λ. Then

P : Hom(Λ, C1)→ Pic0(T ), P (χ) = [L(χ)]

is an isomorphism, cf. [16, p. 32, Theorem 2.3] or [18, p. 20]. There is a natural
action of G on Hom(Λ, C1), χ → χσ, where χσ(λ) = χ ¯(λ) for all λ in Λ. We
have [L(χσ)] = [L(χ)]σ (cf. [5, Lemma 3.3.1]), and hence the isomorphism P is
G-equivariant.

Note that T (R)0 can be described in a very explicit way as well. Indeed,
regarding R

n as a subset of C
n, we can also view R

n/Z
n as a subtorus of T =

C
n/Λ (Λ = [Ω] and Ω is as in (1)). Hence

T (R)0 = R
n/Z

n.

The canonical isomorphisms Λ → H1(T, Z) and Z
n → H1(T (R)0, Z) induce

canonical isomorphisms

HΛ : H1(T, Z) = Hom(H1(T, Z), Z)→ Hom(Λ, Z)

H : H1(T (R)0, Z/2) = Hom(H1(T (R)0, Z), Z/2)→ Hom(Zn, Z/2).

Defining an action of G on Hom(Λ, Z) by ϕ→ ϕσ, where ϕ is in Hom(Λ, Z) and
ϕσ(λ) = ϕ(λ̄) for all λ in Λ, we see that the isomorphism HΛ is G-equivariant.

We shall now find connections between the isomorphisms P, HΛ, H, which
will reduce (a′) and (b′) to simple algebraic statements.

If χ is in Hom(Λ, C1)G, then χ(Λ) ⊆ {−1, 1}, and hence we can define a
homomorphism

ω : Hom(Λ, C1)G → Hom(Zn, Z/2)

by ω(χ)(ν) = e(χ(ν)) for all ν in Z
n, where e : {−1, 1} → Z/2 is the unique

group isomorphism.
Define a homomorphism

π : Hom(Λ, Z)→ Hom(Zn, Z/2)

by π(ϕ)(ν) = ϕ(ν)(mod 2) for all ϕ in Hom(Λ, Z) and ν in Z
n.

We claim that the following diagram is commutative:
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Hom(Λ, C1)G P−−−−→ Pic0(T )G

ω



� w



�

Hom(Zn, Z/2) H←−−−− H1(T (R)0, Z/2)

π

�

 r

�



Hom(Λ, Z)G HΛ←−−−− H1(T, Z)G.

(3)

Since P and HΛ are G-equivariant isomorphisms, the upper and lower hori-
zontal arrows are well defined isomorphisms. It is clear that the lower square is
commutative. In order to show that the upper square is commutative we need
an auxiliary construction.

Given an element α in Hom(Zn, Z/2), define an action of Z
n on R

n × R by

(ν, (x, u))→ (x + ν, (−1)α(ν)u)

for all ν in Z
n and (x, u) in R

n × R. Let M(α) be the real line bundle on
T (R)0 = R

n/Z
n obtained by taking the quotient of R

n × R by Z
n. We assert

H(w1(M(α))) = α.(4)

If n = 1, then (4) follows immediately.Consequently,we readily get H(w1(M(αi)))
= αi for 1 ≤ i ≤ n, where αi(ν) = νi(mod 2) and νi is the ith component of
ν in Z

n (think of M(αi) as a pullback of a real line bundle on R/Z). Since
the line bundles M(α + β) and M(α)⊗M(β) are isomorphic for all α and β in
Hom(Zn, Z/2), we conclude that (4) holds.

By construction, if χ is in Hom(Λ, C1)G, then L(α)(R)|T (R)0 is isomorphic
to M(ω(χ)). Hence the upper square of (3) is commutative in view of (2), (4),
and the definition of P .

Commutativity of (3) implies that (a′) and (b′) are equivalent to
(a′′) ω(Hom(Λ, C1)G) = π(Hom(Λ, Z)G)
(b′′) dimZ/2 π(Hom(Λ, Z)G) = c.

Recall that Λ = [Ω], where Ω = (In, 1
2In,k +

√−1S) is as in (1). Let ε1, . . . , εn

(resp. γ1, . . . , γn) be the columns of In (resp. S). Setting τj = 1
2 (εj + γj) for

1 ≤ j ≤ k, we obtain a Z-basis

(ε1, . . . , εn, τ1, . . . , τk, γk+1, . . . , γn)(5)

for the lattice Λ satisfying

τ̄j = εj − τj for 1 ≤ j ≤ k.(6)

Obviously, (ε1, . . . , εn) is the standard Z-basis for Z
n. Setting

Γ = {α ∈ Hom(Zn, Z/2) |α(εj) = 0 for 1 ≤ j ≤ k},
we assert

π(Hom(Λ, Z)G) = Γ = ω(Hom(Λ, C1)G).(7)



816 W. KUCHARZ

In order to prove (7) consider the following commutative diagram:

Hom(Λ, Z)G Θ ��

π
��������������

Hom(Λ, C1)G

ω
��������������

Hom(Zn, Z/2)

where Θ(ϕ)(λ) = (−1)ϕ(λ) for all ϕ in Hom(Λ, Z)G and λ in Λ. In particular,
we get

π(Hom(Λ, Z)G) ⊆ ω(Hom(Λ, C1)G).
Since (5) is a basis for Λ, the inclusion Γ ⊆ π(Hom(Λ, Z)G) is obvious. Thus to
complete the proof of (7) it remains to show

ρ(Hom(Λ, C1)G) ⊆ Γ.

If χ is in Hom(Λ, C1)G, then χ(Λ) ⊆ {−1, 1}, and hence, in view of (6), for each
j satisfying 1 ≤ j ≤ k, we have

χ(τj) = χ(τ̄j) = χ(εj − τj) = χ(εj)χ(τj)−1 = χ(εj)χ(τj),

which implies χ(εj) = 1. Hence ω(χ) belongs to Γ and the inclusion under
consideration is proved. The proof of (7) is now complete.

Note that dimZ/2 Γ = n− k. Since (5) is a Z-basis for Λ, it follows that T (R)
has 2n−k connected components, cf. [5, Theorems 3.1.4, 3.1.5]. Thus A(R) also
has 2n−k connected components, and hence c = n− k. Combining this with (7),
we conclude that (a′′) and (b′′) are satisfied. The proposition is proved.

Proof of Theorem 1.1. Step 1. Assume that X = A is an Abelian variety. With
notation as in Section 1 and Proposition 2.6,

i2A(H2(G, H1(A(C), Z))) = RA(H1(A(C), Z)G) = Alg1(A(R)).

Furthermore, dimZ/2 Alg1(A(R)) = c, where 2c is the number of connected com-
ponents of A(R). On the other hand, it is also known that

dimZ/2 H2(G, H1(A(C), Z)) = c,

(cf. [5, proof of Theorem 2.7.9], note that H2(G, H1(A(C), Z)) =
H1(G, H1(A(C), Z(−1))), where the latter group is introduced in [5]). Hence i2A
is injective.

Step 2. We shall now deal with arbitrary X. Let A be the Albanese variety
of X and let α : X → A be the Albanese morphism corresponding to some point
in X(R). In particular, A and α are defined over R. Let α(C) : X(C) → A(C)
and α(R) : X(R)→ A(R) be the maps determined by α. It is well known that

α(C)∗ : H1(A(C), Z)→ H1(X(C), Z)

is an isomorphism. Since α(C)∗ is G-equivariant, it induces an isomorphism

α(C)2 : H2(G, H1(A(C), Z))→ H2(G, H1(X(C), Z)),
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included in the following commutative diagram:

H2(G, H1(A(C), Z))
α(C)2−−−−→ H2(G, H1(X(C), Z))

i2A



� i2X



�

H1(A(R), Z/2)
α(R)∗−−−−→ H1(X(R), Z/2).

As observed in [13, Lemma 2.1], α(R)∗(Alg1(A(R))) = Alg1(X(R)), and hence
Step 1 implies

i2X(H2(G, H1(X(C), Z))) = Alg1(X(R)).
The proof is complete.
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