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THE THETA-OPERATOR AND THE DIVISORS OF

MODULAR FORMS ON GENUS ZERO SUBGROUPS

Scott Ahlgren

1. Introduction and Statement of Results.

If f(z) is a meromorphic function with period 1 on the upper half-plane H
with Fourier expansion of the form

f(z) =
∞∑

n=h

a(n)qn (q := e2πiz),

then we define the theta-operator by

(1.1) θf(z) :=
1

2πi

d

dz
f(z) =

∞∑
n=h

na(n)qn.

This operator plays a fundamental role in the theory of modular forms, modular
forms modulo p, and p-adic modular forms (see, for example, [Se], [Sw-D]). In
a recent paper [B-K-O], Bruinier, Kohnen, and Ono have studied the action of
the theta operator on meromorphic modular forms on SL2(Z) in relation to the
values of a certain sequence of modular functions at points τ in the divisor of f .
Their description of this action leads to a number of consequences connected to
the exponents in the infinite product expansions of modular forms, congruence
properties and p-adic formulas for class numbers of imaginary quadratic fields,
and recurrence relations for Fourier coefficients.

Throughout, we agree that q := e2πiz, and, as usual, we denote by E2(z) the
weight two Eisenstein series

E2(z) := 1 − 24
∞∑

n=1

∑
d|n

dqn.

If f is a meromorphic modular form on SL2(Z), then it is well-known that there
exists a meromorphic weight two modular form fθ with the property that

(1.2) θf =
kE2f

12
− ffθ.
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788 SCOTT AHLGREN

Bruinier, Kohnen, and Ono show that fθ can in fact be defined explicitly in
terms of the values of a certain sequence of modular functions at points τ in the
divisor of f ; most of the consequences outlined in the last paragraph follow from
this description.

It is natural to investigate analogues of this work for modular forms on more
general subgroups; here we consider the problem for groups Γ0(p) with p ∈
{2, 3, 5, 7, 13}. In particular, in analogy with (1.2), we are able to give an explicit
formula for the action of the theta-operator on any modular form for these genus
zero groups (see Theorem 2 below). As a consequence, we obtain formulas for
the exponents of infinite product expansions and recurrence relations for Fourier
coefficients of modular forms on these groups.

To state our results requires some notation. As usual, define Dedekind’s eta-
function by

η(z) := q
1
24

∞∏
n=1

(1 − qn).

Suppose that p is one of 2, 3, 5, 7, or 13. Then the genus of Γ0(p) is zero, and
the function

φp(z) :=
(

η(z)
η(pz)

) 24
p−1

is a univalent modular function on Γ0(p) with a simple pole at infinity and with
a simple zero (as measured in local coordinates) at 0. For these primes p, we
define a sequence of modular functions {j(p)

n (z)}∞n=1 as follows: j
(p)
n (z) is the

unique modular function on Γ0(p) which is holomorphic on H, which vanishes
at the cusp 0 and whose Fourier expansion at infinity has the form

(1.3) j(p)
n (z) = q−n + c(0) + c(1)q + c(2)q2 + . . . .

For n = 1 we have
j
(p)
1 (z) = φp(z),

and it is clear for n = 2, 3, . . . that such functions can be constructed as
monic polynomials in φp(z) with constant term equal to zero. To see that these
conditions determine the functions j

(p)
n uniquely, we note that that the difference

of two functions satisfying (1.3) has no poles in a fundamental domain, and must
therefore be constant. Since both forms vanish at 0, this constant must be zero.
As an example of this construction, we consider the case p = 5. We then have

j
(5)
1 (z) = φ5(z) = q−1 − 6 + 9q + 10q2 − 30q3 + . . . ,

j
(5)
2 (z) = φ5(z)2 + 12φ5(z) = q−2 − 18 + 20q + 21q2 + 192q3 + . . . ,

j
(5)
3 (z) = φ5(z)3 + 18φ5(z)2 + 81φ5(z) = q−3 − 24 − 90q + 288q2 + 144q3 + . . . ,

...
...

...
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As usual, we define the operator V (p) by the map z �→ pz; in other words,

( ∞∑
n=h

a(n)qn

)∣∣∣V (p) :=
∞∑

n=h

a(n)qpn.

Also, if τ ∈ H and p ∈ {2, 3, 5, 7, 13}, then we define

(1.4) H(p)
τ (z) :=

∞∑
n=1

j(p)
n (τ)qn.

With this notation we can state the main results. Our first theorem gives an
explicit formula for the functions H

(p)
τ .

Theorem 1. If p ∈ {2, 3, 5, 7, 13} and H
(p)
τ is as defined in (1.4), then

H(p)
τ (z) =

p · E2(z)
∣∣V (p) − E2(z)
p − 1

(
φp(z)

φp(z) − φp(τ)
− 1

)
.

In particular, H
(p)
τ is a weight two meromorphic modular form on Γ0(p).

We note, for the primes p under consideration, that the modular form

p · E2

∣∣V (p) − E2

p − 1
= 1 +

24
p − 1

· q + . . .

forms a basis for the one-dimensional space M2(Γ0(p)).
Our next theorem gives an explicit formula for the action of the theta oper-

ator on meromorphic modular forms for these subgroups Γ0(p). If p is prime,
then denote by Fp a fundamental domain for the action of Γ0(p) on H. Our
convention is that Fp does not include the two cusps ∞ and 0; in other words,
Fp corresponds to the usual non-compact Riemann surface Y0(p) := Γ0(p)\H. If
τ ∈ H then define �

(p)
τ ∈ {1, 2, 3} by

(1.5) �(p)
τ := the order of the isotropy subgroup of τ in Γ0(p)/{±I}.

If τ ∈ H, and f is a modular form for Γ0(p), then we define

(1.6) v(p)
τ (f) :=

1

�
(p)
τ

ordτ (f),

where ordτ (f) denotes the standard order of vanishing of f at the point τ ∈ H.
Then v

(p)
τ measures order of vanishing with respect to local coordinates on Y0(p)

(see [Sh, §2.4] for a complete discussion).
With this notation we can state the second theorem.
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Theorem 2. Suppose that p ∈ {2, 3, 5, 7, 13}, and that f(z) =
∑∞

n=h a(n)qn is
a meromorphic modular form of weight k for Γ0(p), normalized so that a(h) = 1.
Define the weight two modular form

fθ(z) :=
∑

τ∈Fp

v(p)
τ (f) · H(p)

τ (z).

Then we have

θf

f
= −fθ +

h − k/12
p − 1

· pE2

∣∣V (p) +
pk/12 − h

p − 1
· E2.

Our next theorem gives a formula for the coefficients in the infinite product
expansion of any modular form on Γ0(p) with p ∈ {2, 3, 5, 7, 13} (see Lemma 2.1
below for details regarding this expansion). As usual, we define

σ(n) :=
∑
d|n

d,

and we agree that σ(n) := 0 if n ∈ N.

Theorem 3. Suppose that p ∈ {2, 3, 5, 7, 13}, and that f(z) =
∑∞

n=h a(n)qn is
a meromorphic modular form of weight k on Γ0(p), normalized so that a(h) = 1.
Let {c(n)}∞n=1 denote the complex numbers for which

f = qh
∞∏

n=1

(1 − qn)c(n).

Then for each n ≥ 1 we have
(1.7)∑

d|n
c(d)d =

∑
τ∈Fp

v(p)
τ (f)j(p)

n (τ) +
(

24h − 2k

p − 1

)
pσ(n/p) +

(
2pk − 24h

p − 1

)
σ(n).

Equivalently, we have
(1.8)

c(n) =
1
n

∑
d|n

µ(n/d)
∑

τ∈Fp

v(p)
τ (f)j(p)

d (τ) +
{

(2pk − 24h)/(p − 1) if p � n,

2k if p | n.

As an application of these results, we prove a theorem which gives a recurrence
for the Fourier coefficients of meromorphic modular forms

f(z) = qh +
∞∑

n=h+1

a(n)qn
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on the spaces Γ0(p) under consideration. For each n ≥ 1, define the polynomial

(1.9) F (p)
n (K, H, x1, . . . , xn−1) :=∑

m1+2m2+···+(n−1)mn−1=n,
m1,...,mn−1≥0

(−1)m1+m2+···+mn−1
(m1 + · · · + mn−1 − 1)!

m1!m2! . . . mn−1!
xm1

1 . . . x
mn−1
n−1

+
1
n

(
2K − 24H

p − 1

)
pσ(n/p) +

1
n

(
24H − 2pK

p − 1

)
σ(n).

Then we have

Theorem 4. Suppose that p ∈ {2, 3, 5, 7, 13} and that

f(z) = qh +
∞∑

n=h+1

a(n)qn

is a meromorphic modular form of weight k on Γ0(p). For each n ≥ 1, let the
polynomial F

(p)
n (K, H, x1, . . . , xn−1) be defined as in (1.9). Then we have

a(h + n) = F (p)
n (k, h, a(h + 1), . . . , a(h + n − 1)) − 1

n

∑
τ∈Fp

v(p)
τ (f)j(p)

n (τ).

The first several cases of Theorem 4 give the following formulas.

a(h + 1) = 24h−2pk
p−1 −

∑
τ∈Fp

v(p)
τ (f)j(p)

1 (τ),

a(h + 2) = 1
2a(h + 1)2+3

2

(
24h−2pk

p−1

)
+1

2

(
2k−24h

p−1

)
pσ(2/p) − 1

2

∑
τ∈Fp

v(p)
τ (f)j(p)

2 (τ),

a(h + 3) = − 1
3a(h + 1)3+ a(h + 1)a(h + 2)+4

3

(
24h−2pk

p−1

)
+ 1

3

(
2k−24h

p−1

)
pσ(3/p)

− 1
3

∑
τ∈Fp

v(p)
τ (f)j(p)

3 (τ),

a(h + 4) = 1
4a(h + 1)4 + 1

2a(h + 2)2 − a(h + 1)2a(h + 2) + a(h + 1)a(h + 3)

+ 7
4

(
24h−2pk

p−1

)
+ 1

4

(
2k−24h

p−1

)
pσ(4/p) − 1

4

∑
τ∈Fp

v(p)
τ (f)j(p)

4 (τ).

The formulas of Theorems 3 and 4 are of course simplest when the divisor of f
is supported at the cusps of Γ0(p). Many such forms can be constructed using
the eta-function; for an example, we could take

(p = 5, k = 0, h = −1) : φ5(z) =
η6(z)
η6(5z)

= q−1−6+9q+10q2−30q3+6q4−25q5+. . . .
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We also remark that these results can be extended to forms with Nebentypus
(by applying the stated results to an appropriate power of the form in question).
In the next section we prove Theorem 3, and in the subsequent sections we use
it to derive Theorems 1, 2, and 4. Our method follows roughly that of [B-K-O];
for convenience we work with differentials on the Riemann surface X0(p) instead
of working directly with the relevant contour integrals. Adjustments must of
course be made to handle the increased complexity of the fundamental domains
Fp. Finally, we mention that two recent papers (see [At], [C-K]) consider similar
problems with respect to certain other subgroups of SL2(R).

2. Proof of Theorem 3.

We begin by stating a lemma whose proof may be found in [B-K-O, Prop.
2.1].

Lemma 2.1. Suppose that f =
∑∞

n=h a(n)qn is a meromorphic function in a
neighborhood of q = 0 and that a(h) = 1. Then there are uniquely determined
complex numbers c(n) such that

f = qh
∞∏

n=1

(1 − qn)c(n),

where the product converges in some neighborhood of q = 0. Moreover, we have
the identity

θf

f
= h −

∞∑
n=1

∑
d|n

c(d)dqn.

In the next lemma we construct a modular form which will be important in
what follows.

Lemma 2.2. Suppose that p is prime and that f is a meromorphic modular
form of weight k on Γ0(p). If h is any constant, then the function

(2.1) F := θf +
{

k/12 − h

p − 1
· pE2

∣∣V (p) +
h − pk/12

p − 1
· E2

}
· f

is a meromorphic modular form of weight k + 2 on Γ0(p).

Proof of Lemma 2.2. If γ =
(

a b

c d

)
∈ SL2(Z), then we have [Sch, p. 68] the

transformation formula

(2.2) E2(γz) = (cz + d)2E2(z) − 6ic

π
(cz + d).

Suppose for the duration of the proof that γ =
(

a b

c d

)
∈ Γ0(p). Then, since

pγz = γ′(pz), where γ′ =
(

a pb

c/p d

)
, we see by (2.2) that

(2.3) E2(pγz) = (cz + d)2E2(pz) − 6ic

pπ
(cz + d).
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From the fact that f(γz) = (cz + d)kf(z), together with the definition (1.1), we
find that

(2.4) (θf)(γz) = (cz + d)k+2 · θf(z) +
kc

2πi
(cz + d)k+1f(z).

A computation using (2.2), (2.3), and (2.4) shows that, with F (z) as defined in
the statement of the lemma, we have

F (γz) = (cz + d)k+2F (z).

The lemma follows. �
As usual, we let X0(p) be the compact Riemann surface obtained by adjoining

the two cusps 0 and ∞ to Y0(p). If G(z) is a meromorphic weight two modular
form on Γ0(p), then on the Riemann surface X0(p) we have the corresponding
abelian differential ωG := G(z)dz. A fundamental fact is that∑

Q∈X0(p)

ResQ ωG = 0

(our convention will be that ResQ ωG will denote the residue at Q with respect
to local coordinates on X0(p), while Resz=τ G(z) will denote the usual residue
at a point τ ∈ H).

If f is a function on H, k ∈ Z, and
(

a b

c d

)
∈ GL+

2 (R), then we define the
operator |k by

f(z)
∣∣
k

(
a b
c d

)
:= (ad − bc)k/2(cz + d)−kf

(
az + b

cz + d

)
.

Suppose that G has the following expansions at the cusps:

G(z) =
∑

n≥n0

a(n)qn at ∞,

G(z)
∣∣
2
( 0 −1

1 0 ) =
∑

n≥n′
0

b(n)qn/p at 0.

For τ ∈ H∪{0,∞}, let Qτ ∈ X0(p) be the point associated to τ under the usual
identification. Then, computing with respect to local variables, we find that

(2.5) ResQ∞ ωG =
1

2πi
a(0), ResQ0 ωG =

p

2πi
b(0).

If τ ∈ H, then, with �τ as defined in (1.5), a computation using local coordinates
shows that

(2.6) ResQτ ωG =
1
�τ

Resτ G.
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We now turn to the proof of Theorem 3; for the duration of this section we
will fix a prime p ∈ {2, 3, 5, 7, 13}. For each m ≥ 1, let jm(z) be the modular
function defined in (1.3) (since p is fixed, we will drop the superscript (p) in our
notation). Suppose that f is a meromorphic modular form of weight k on Γ0(p),
and that, as in the statement of Theorem 3, we have

(2.7) f = qh
∞∏

n=1

(1 − qn)c(n).

Then let F (z) be the modular form of weight k + 2 defined in Lemma 2.2 (in
that Lemma we choose for h the value given by (2.7)). We will apply the
considerations of the last two paragraphs to the differential

(2.8) ωm :=
F (z)
f(z)

· jm(z) dz.

We begin by computing Res∞ ωm. By (1.3) we may write

jm(z) = q−m + cm(0) + O(q)

with some constant cm(0). Using (2.1), the definition of E2(z), the description
of θf

f given in Lemma 2.1, and (2.5), we find that

2πiRes∞ ωm = −
∑
d|m

c(d)d +
(

24h − 2k

p − 1

)
p

∑
d|m

p

d +
(

2pk − 24h

p − 1

) ∑
d|m

d

+ cm(0) ·
{

h +
kp/12 − ph

p − 1
+

h − kp/12
p − 1

}
.

Therefore

(2.9) 2πiRes∞ ωm = −
∑
d|m

c(d)d+
(

24h − 2k

p − 1

)
pσ(m/p)+

(
2pk − 24h

p − 1

)
σ(m).

We now claim that

(2.10) Res0 ωm = 0.

To establish (2.10), recall that jm(z) vanishes at 0; its expansion at 0 therefore
has the form

(2.11) jm(−1/z) = cq
1
p + higher order terms.

Define wp :=
(

0 −1

p 0

)
. Using (2.5), (2.8), and (2.11), we see that to prove (2.10),

it will suffice to show that

(2.12)
F

f
(z)

∣∣∣
2
wp has an expansion in non-negative powers of q.
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For convenience, let g(z) := f(z)
∣∣
k
wp. Since g(z) is again a modular form of

weight k on Γ0(p), we conclude from Lemma 2.1 that we have an expansion of
the form

(2.13)
θg

g
(z) = h′ +

∞∑
n=1

∑
d|n

c′(d)dqn.

Now, since g(z) = p−k/2 · z−kf(−1/pz), a computation using (1.1) shows that

(2.14)
θf

f
(z)

∣∣∣
2
wp =

θg

g
(z) +

k

2πiz
.

By (2.2) we have

z−2E2(−1/z) = E2(z) +
12

2πiz
.

Therefore, we obtain

E2(z)
∣∣∣
2
wp = pE2(pz) +

12
2πiz

,(2.15) (
E2(z)

∣∣∣V (p)
) ∣∣∣

2
wp = p−1E2(z) +

12
2πipz

.(2.16)

Using (2.1), (2.14), (2.15), and (2.16), we compute that

(2.17)
F

f
(z)

∣∣∣
2
wp =

θg

g
(z) +

k/12 − h

p − 1
· E2(z) +

h − pk/12
p − 1

· pE2(z)
∣∣∣V (p).

Our claim (2.12), and with it (2.10), now follows easily from (2.17) and (2.13).
We now compute the residue of ωm at points Qτ ∈ Y0(p) corresponding to

points τ ∈ H. Since E2(z) and jm(z) are holomorphic on H, and since

θf

f
(z) =

1
2πi

f ′

f
(z),

we find for τ ∈ H that

2πiResz=τ
F (z)
f(z)

· jm(z) = 2πi

(
Resz=τ

θf

f
(z)

)
· jm(τ) = ordτf · jm(τ).

Using (2.6) and (1.6) we find that for τ ∈ H we have

(2.18) 2πiResQτ ωm = v(p)
τ (f) · jm(τ).

Using (2.9), (2.10), (2.18), the fact that the residues sum to zero, and the bijec-
tion between points τ ∈ Fp and points Qτ ∈ Y0(p), we conclude that

∑
d|m

c(d)d =
(

24h − 2k

p − 1

)
pσ(m/p) +

(
2pk − 24h

p − 1

)
σ(m) +

∑
τ∈Fp

v(p)
τ (f) · jm(τ).

This establishes (1.7). Formula (1.8) follows directly by Möbius inversion. �
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3. Proof of Theorem 2.

Theorem 2 follows easily from Theorem 3. If f is as in Theorem 2, then by
Lemma 2.1, Theorem 3, and (1.4), we have

θf

f
=h −

∑
τ∈Fp

v(p)
τ (f)H(p)

τ (z)

+
(

h − k/12
p − 1

) (
−24p

∞∑
n=1

σ(n/p)qn

)
+

(
pk/12 − h

p − 1

) (
−24

∞∑
n=1

σ(n)qn

)

=h −fθ+
(

h − k/12
p − 1

)
pE2

∣∣∣V (p)+
(

pk/12 − h

p − 1

)
E2−

h − k/12
p − 1

· p −pk/12 − h

p − 1

= − fθ +
(

h − k/12
p − 1

)
pE2

∣∣∣V (p) +
(

pk/12 − h

p − 1

)
E2.

This gives Theorem 2. �

4. Proof of Theorem 1.

To prove Theorem 1, we first apply Lemma 2.2 with f(z) = φp(z), k = 0, and
h = −1. We find that

Gp :=
θφp

φp
+

pE2

∣∣V (p) − E2

p − 1

is a modular form of weight two on Γ0(p) with constant term 0. Moreover, Gp is
holomorphic on H and at the cusps (the only thing which needs to be checked is
holomorphicity at 0; this can be verified using an argument as in (2.12)-(2.17)).
Since, for the values of p under consideration, the spaces M2(Γ0(p)) are one-

dimensional, and spanned by
pE2

∣∣V (p)−E2

p−1 = 1 + . . . , we find that Gp = 0, or in
other words that

θφp

φp
=

E2 − pE2

∣∣V (p)
p − 1

.

It follows that for τ ∈ H we have

(3.1)
θ (φp(z) − φp(τ))

φp(z) − φp(τ)
=

E2 − pE2

∣∣V (p)
p − 1

· φp(z)
φp(z) − φp(τ)

.

Finally, we apply Theorem 2 with f(z) = φp(z)−φp(τ). Since f is a univalent
function, we have the simple relation

fθ(z) = H(p)
τ (z).

Therefore, Theorem 2 gives

(3.2)
θ (φp(z) − φp(τ))

φp(z) − φp(τ)
= −H(p)

τ (z) +
E2(z) − pE2(z)

∣∣V (p)
p − 1

.

Theorem 1 follows upon comparing (3.1) and (3.2). �
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5. Proof of Theorem 4.

Let f be as given in the statement of Theorem 4, and write

f(z) = qh +
∞∑

n=h+1

a(n)qn = qh ·
∞∏

n=1

(1 − qn)c(n)

as in Lemma 2.1. We define

b(n) :=
∑
d|n

c(d)d;

by Theorem 3 we have

(4.1) b(n) =
∑

τ∈Fp

v(p)
τ (f)j(p)

n (τ) +
(

24h − 2k

p − 1

)
pσ(n/p) +

(
2pk − 24h

p − 1

)
σ(n).

From Lemma 2.1 we find that(
qh +

∞∑
n=h+1

a(n)qn

) (
h −

∞∑
n=1

b(n)qn

)
= hqh +

∞∑
n=h+1

na(n)qn.

It follows that for n ≥ 1 we have

(4.2) na(h + n) = −b(1)a(h + n − 1) − b(2)a(h + n − 2) − · · · − b(n).

In order to solve for b(1), b(2), . . . we use the fact that the recurrence (4.2) is
essentially the same as that which relates the usual complete symmetric functions
and power sums. The solution to this recurrence is well known (see, for instance,
(2.11) and Example 20 in §1.2 of [M]). In particular, for n ≥ 1 we have

(4.3) b(n) = −na(h + n)+

n·
∑

m1+2m2+···+(n−1)mn−1=n,
m1,...,mn−1≥0

(−1)m1+···+mn−1
(m1+ . . .+mn−1−1)!
m1!m2! · · ·mn−1!

a(h+1)m1. . . a(h+n−1)mn−1 .

Theorem 4 now follows from (4.1), (4.3), and the definition (1.9). �
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