EXTREME POINTS IN SPACES OF POLYNOMIALS

KONSTANTIN M. DYAKONOV

ABSTRACT. We determine the extreme points of the unit ball in spaces of complex polynomials (of a fixed degree), living either on the unit circle or on a subset of the real line and endowed with the supremum norm.

Introduction

Let \mathcal{P}_n stand for the space of all polynomials with complex coefficients of degree not exceeding n. Given a compact set $E \subset \mathbb{C}$, one may treat \mathcal{P}_n as a subspace of C(E), the space of continuous functions on E, and equip it with the maximum norm

$$||P||_{\infty} = ||P||_{\infty,E} := \max_{z \in E} |P(z)| \qquad (P \in \mathcal{P}_n).$$

The resulting space will be denoted by $\mathcal{P}_n(E)$. We write

 $\operatorname{ball}(\mathcal{P}_n(E)) := \{ P \in \mathcal{P}_n : \|P\|_{\infty, E} \le 1 \}$

for the unit ball of $\mathcal{P}_n(E)$, and we shall be concerned with the extreme points of this ball. (As usual, an element of a convex set S is said to be its *extreme point* if it is not the midpoint of any nondegenerate segment contained in S.)

In this paper, we explicitly characterize the extreme points of $\operatorname{ball}(\mathcal{P}_n(E))$ in the case where E is either the circle $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$ or a perfect compact subset of the real line \mathbb{R} . The description obtained is, perhaps, a bit more complicated than one could at first expect; however, the complexity seems to be in the nature of things.

Let us begin by recalling that the extreme points of the unit ball in $L^{\infty}(\mathbb{T})$ – or in $C(\mathbb{T})$ – are precisely the functions of modulus 1. (The same applies to other sets in place of \mathbb{T} .) Further, in the space H^{∞} of bounded analytic functions on $\{|z| < 1\}$, as well as in the disk algebra $H^{\infty} \cap C(\mathbb{T})$, the extreme points are known to be the unit-norm functions f with $\int_{\mathbb{T}} \log(1 - |f(z)|^2) |dz| = -\infty$; see [H, Chap. 9].

Received September 30, 2002.

²⁰⁰⁰ Mathematics Subject Classification. 46B20, 46E30

Supported in part by Grant 02-01-00267 from the Russian Foundation for Fundamental Research, by a PIV fellowship from Generalitat de Catalunya, and by the Ramón y Cajal program (Spain).

Yet another relevant example is provided by a theorem of Konheim and Rivlin [KR], dealing with the space $\mathcal{P}_n^{\mathbb{R}}(I)$ of all *real* polynomials of degree $\leq n$ on the segment I := [-1, 1]. The theorem states that a unit-norm polynomial P is an extreme point of ball $(\mathcal{P}_n^{\mathbb{R}}(I))$ if and only if $\mathcal{N}_I(1-P^2) > n$; here $\mathcal{N}_I(f)$ is the total number of zeros (multiplicities included) that f has on I. A similar result holds for *real* trigonometric polynomials on \mathbb{T} ; see [R] or Proposition 1 in Section 1 below.

With these examples in mind, one might be tempted to believe that, in order to recognize the extreme points among all unit-norm elements P of the *complex* space $\mathcal{P}_n(E)$ (say, with $E = \mathbb{T}$ or E = I), one only needs to know "how often" |P|takes the extremal value 1 on E. In other words, one might seek to characterize the extreme points P in terms of the zeros – and their multiplicities – of the polynomial $1 - |P|^2$. (Strictly speaking, $1 - |P|^2$ is a trigonometric polynomial for $P \in \mathcal{P}_n(\mathbb{T})$ and a true polynomial when P lives on \mathbb{R} .)

However, no such thing can be done. Indeed, along with solving the two versions of the problem in Sections 1 and 2 (one of these deals with the circle, and the other with subsets of \mathbb{R}), we also construct in each case a pair of unit-norm polynomials P_1 , P_2 in $\mathcal{P}_n(E)$ satisfying

$$1 - |P_1|^2 = 2(1 - |P_2|^2)$$

so that P_1 is a non-extreme point of ball $(\mathcal{P}_n(E))$, while P_2 is extreme. In fact, the construction is carried out for the smallest possible value of n, which equals 2 when $E = \mathbb{T}$, and 3 when E is a real segment.

In conclusion, we briefly mention the L^1 counterpart of the problem, i.e., the problem of determining the extreme points of the unit ball in certain L^1 -spaces of polynomials. Here, the real case was settled by Garkavi [G] and the complex case by the author [D]. Garkavi's, as well as Konheim and Rivlin's results were then rediscovered – or reproved – by Parnes in [P], where the current problem (the case of complex polynomials on \mathbb{T} with the sup-norm) was also considered, but not solved.

I thank Evgeny Abakumov for bringing Parnes' work to my attention.

1. Polynomials on the circle

Among the unit-norm polynomials in $\mathcal{P}_n(\mathbb{T})$, we single out the class of *mono*mials; these are of the form cz^k , where $c \in \mathbb{C}$, |c| = 1 and $0 \le k \le n$. Of course, every monomial is an extreme point of ball $(\mathcal{P}_n(\mathbb{T}))$.

Now if $P \in \mathcal{P}_n(\mathbb{T})$ satisfies $||P||_{\infty} = 1$ and is distinct from a monomial, let z_1, \ldots, z_N be an enumeration of the (nonempty) set $\{z \in \mathbb{T} : |P(z)| = 1\}$. The points z_1, \ldots, z_N are thus the distinct zeros of $1 - |P|^2$ lying on \mathbb{T} , and the multiplicities of these zeros will be denoted by $2\mu_1, \ldots, 2\mu_N$. The μ_j 's are positive integers, and their sum

$$\mu := \sum_{j=1}^{N} \mu_j$$

does not exceed n. To see why, note that the function $z \mapsto 1 - |P(z)|^2$ (living on \mathbb{T}) is a nonnegative trigonometric polynomial of degree $\leq n$, not vanishing identically. Therefore, its zeros lying on \mathbb{T} are necessarily of even order, while the total number of its zeros (multiplicities included) is at most 2n. Hence $2\mu_1 + \cdots + 2\mu_N \leq 2n$, so that $\mu \leq n$, as claimed above.

Next, for $z = e^{it} \in \mathbb{T}$ and $k \in \mathbb{N}$, consider the Wronski-type matrix

$$W(z;k) = \begin{pmatrix} \overline{z}^{\mu/2}P(z) & \overline{z}^{\mu/2+1}P(z) & \dots & \overline{z}^{n-\mu/2}P(z) \\ (\overline{z}^{\mu/2}P(z))' & (\overline{z}^{\mu/2+1}P(z))' & \dots & (\overline{z}^{n-\mu/2}P(z))' \\ \dots & \dots & \dots & \dots \\ (\overline{z}^{\mu/2}P(z))^{(k-1)} & (\overline{z}^{\mu/2+1}P(z))^{(k-1)} & \dots & (\overline{z}^{n-\mu/2}P(z))^{(k-1)} \end{pmatrix}.$$

The exponent $n - \mu/2$ in the last column should be viewed as $\mu/2 + (n - \mu)$; thus, W(z;k) is a $k \times (n - \mu + 1)$ matrix. The derivatives involved are with respect to the real variable $t = \arg z$.

Let $W_{\mathfrak{R}}(z;k)$ and $W_{\mathfrak{I}}(z;k)$ stand for the real and imaginary parts of W(z;k), respectively. Finally, we need the block matrix

$$W_{P} = \begin{pmatrix} W_{\Re}(z_{1};\mu_{1}) & W_{\Im}(z_{1};\mu_{1}) \\ W_{\Re}(z_{2};\mu_{2}) & W_{\Im}(z_{2};\mu_{2}) \\ \dots & \dots \\ W_{\Re}(z_{N};\mu_{N}) & W_{\Im}(z_{N};\mu_{N}) \end{pmatrix}.$$

Here, each "entry" $W_{\Re}(z_j; \mu_j)$ or $W_{\Im}(z_j; \mu_j)$ is actually a $\mu_j \times (n - \mu + 1)$ submatrix, as defined above, where everything is computed at the point z_j . In particular, W_P is a $\mu \times 2(n - \mu + 1)$ matrix, and its rank is therefore bounded by $\min(\mu, 2(n - \mu + 1))$.

Theorem 1. Let $P \in \mathcal{P}_n(\mathbb{T})$, $||P||_{\infty} = 1$. The following are equivalent.

- (i) P is an extreme point of $\text{ball}(\mathcal{P}_n(\mathbb{T}))$.
- (ii) Either P is a monomial, or rank $W_P = 2(n \mu + 1)$.

The proof will be preceded by a brief discussion.

First of all, the condition rank $W_P = 2(n - \mu + 1)$ can only be met if $\mu \ge 2(n - \mu + 1)$, i.e., if $\mu \ge \frac{2}{3}(n + 1)$. (The weaker condition $\mu > n/2$ was pointed out in [P] as necessary in order that P be an extreme point.) The inequalities $\frac{2}{3}(n+1) \le \mu \le n$ being incompatible for n = 0 and n = 1, there are no nontrivial extreme points for these n. (Here and below, "nontrivial" means "distinct from a monomial".) Now for n = 2, 3, 4, the two inequalities – in conjunction with the fact that $\mu \in \mathbb{N}$ – reduce to the condition $\mu = n$, which must be therefore fulfilled by each nontrivial extreme point P of ball($\mathcal{P}_n(\mathbb{T})$).

On the other hand, for $n \ge 2$, the nontrivial extreme points P with $\mu = n$ are characterized by the condition rank $W_P = 2$, which means that the two columns of W_P are linearly independent. This, in turn, is equivalent to saying that there

is no straight line in $\mathbb C$ passing through the origin and containing the set

$$\bigcup_{j=1}^{N} \left\{ \overline{z}_{j}^{n/2} P(z_{j}), \left(\overline{z}^{n/2} P \right)^{\prime}(z_{j}), \ldots, \left(\overline{z}^{n/2} P \right)^{(\mu_{j}-1)}(z_{j}) \right\}.$$

Now let us consider an example.

Example 1. Put $P_0(z) := \frac{1}{2}(z + z^{-1})$, so that $P_0(e^{it}) = \cos t$; then define

$$P_1(z) := zP_0(z) = \frac{1}{2}(z^2 + 1)$$

and

$$P_2(z) := \frac{z}{\sqrt{2}} \left(P_0(z) + i \right) = \frac{1}{2\sqrt{2}} (z^2 + 2iz + 1).$$

Clearly, P_1 and P_2 are unit-norm polynomials in $\mathcal{P}_2(\mathbb{T})$. In fact, for $z = e^{it} \in \mathbb{T}$,

$$|P_1(z)|^2 = P_0^2(z) = \cos^2 t$$

and

$$|P_2(z)|^2 = \frac{1}{2} (P_0^2(z) + 1) = \frac{1}{2} (\cos^2 t + 1).$$

In particular,

$$1 - |P_1(z)|^2 = 2(1 - |P_2(z)|^2), \qquad z \in \mathbb{T}$$

(indeed, both sides equal $\sin^2 t$), and so the two polynomials have the same z_j 's and μ_j 's. Specifically, these are $z_1 = 1$, $z_2 = -1$ (or vice versa) and $\mu_1 = \mu_2 = 1$, so that $N = \mu = n = 2$.

However, while P_1 is the arithmetic mean of two monomials, z^2 and 1, and hence a *non-extreme* point of ball($\mathcal{P}_2(\mathbb{T})$), it turns out that P_2 is an *extreme* point thereof. This last fact follows by Theorem 1, since the matrix

$$W_{P_2} = \begin{pmatrix} \Re\left(P_2(1)\right) & \Im\left(P_2(1)\right) \\ \Re\left(-P_2(-1)\right) & \Im\left(-P_2(-1)\right) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

has rank 2.

The proof of Theorem 1 will rely on two elementary observations. The first of these, stated for an arbitrary compact set $E \subset \mathbb{C}$, will also be used when proving Theorem 2 in the next section.

Observation 1. Clearly, a given unit-norm polynomial $P \in \mathcal{P}_n$ is an extreme point of ball $(\mathcal{P}_n(E))$ if and only if the only polynomial $Q \in \mathcal{P}_n$ satisfying

(1.1)
$$||P + Q||_{\infty} \le 1 \text{ and } ||P - Q||_{\infty} \le 1$$

is $Q \equiv 0$. Rewriting (1.1) as

$$|P \pm Q|^2 = |P|^2 \pm 2\Re(\overline{P}Q) + |Q|^2 \le 1$$

and noting that $\max(x, -x) = |x|$ for all $x \in \mathbb{R}$, we see that P is extreme iff there is no nontrivial $Q \in \mathcal{P}_n$ for which

(1.2)
$$2|\Re(\overline{P}Q)| + |Q|^2 \le 1 - |P|^2$$

everywhere on E.

Observation 2. If $z = e^{it}$ and $\zeta_j = e^{it_j}$ (j = 1, ..., N) are points of \mathbb{T} , and if k_1, \ldots, k_N are positive integers with $\sum_{j=1}^N k_j = k$, then the identities

$$z - \zeta_j = 2ie^{it_j/2}e^{it/2}\sin\frac{t - t_j}{2}$$

yield

(1.3)
$$\prod_{j=1}^{N} (z - \zeta_j)^{k_j} = c e^{ikt/2} \prod_{j=1}^{N} \left(\sin \frac{t - t_j}{2} \right)^{k_j},$$

where

$$c = (2i)^k \prod_{j=1}^N \exp\left(\frac{ik_j t_j}{2}\right).$$

Proof of Theorem 1. (ii) \implies (i). We shall assume that P is distinct from a monomial (otherwise, it is obviously extreme) and that rank $W_P = 2(n - \mu + 1)$. Now suppose (1.2) holds for some $Q \in \mathcal{P}_n$. In particular, we have then

$$|Q(z)|^2 \le 1 - |P(z)|^2, \qquad z \in \mathbb{T},$$

and so, for j = 1, ..., N, the polynomial Q vanishes at z_j with multiplicity at least μ_j . (Recall that the multiplicity of z_j as a zero of $1 - |P|^2$ is $2\mu_j$.) Hence Q is divisible by $\prod_{j=1}^{N} (z - z_j)^{\mu_j}$ and takes the form

(1.4)
$$Q(z) = Q_0(z) \cdot z^{\mu/2} \prod_{j=1}^N \left(\sin \frac{t - t_j}{2} \right)^{\mu_j}, \qquad z = e^{it} \in \mathbb{T},$$

for some $Q_0 \in \mathcal{P}_{n-\mu}$; by t_j we now denote $\arg z_j$. Here, to arrive at (1.4), we have used (1.3) with z_j in place of ζ_j and with μ_j (resp., μ) in place of k_j (resp., k). From (1.4) we get

(1.5)
$$\Re\left(\overline{P}(z)Q(z)\right) = \prod_{j=1}^{N} \left(\sin\frac{t-t_j}{2}\right)^{\mu_j} \Re\left(z^{\mu/2}\overline{P}(z)Q_0(z)\right).$$

Combining this with the fact that

$$\left|\Re\left(\overline{P}(z)Q(z)\right)\right| \le 1 - |P(z)|^2$$

(which is contained in (1.2)) yields

(1.6)
$$\left| \Re \left(z^{\mu/2} \overline{P}(z) Q_0(z) \right) \right| \leq \left(1 - |P(z)|^2 \right) \prod_{j=1}^N \left| \sin \frac{t - t_j}{2} \right|^{-\mu_j}, \quad z = e^{it} \in \mathbb{T}.$$

The right-hand side of (1.6) being $O(|z-z_j|^{\mu_j})$ as $z \to z_j$, the left-hand side must also vanish at each z_j with multiplicity at least μ_j . In other words, for each $j = 1, \ldots, N$, one has

(1.7)
$$\Re \left(z^{\mu/2} \overline{P} Q_0 \right)^{(l)} (z_j) = 0 \qquad (l = 0, 1, \dots, \mu_j - 1).$$

Putting

$$Q_0(z) = \sum_{k=0}^{n-\mu} (c_k + id_k) z^k$$

and substituting this into (1.7), we obtain

(1.8)
$$\sum_{k=0}^{n-\mu} c_k \Re \left(z^{\mu/2+k} \overline{P} \right)^{(l)} (z_j) - \sum_{k=0}^{n-\mu} d_k \Im \left(z^{\mu/2+k} \overline{P} \right)^{(l)} (z_j) = 0$$
$$(j = 1, \dots, N; \ l = 0, 1, \dots, \mu_j - 1),$$

which can be viewed as a homogeneous system of $\mu_1 + \cdots + \mu_N = \mu$ linear equations with $2(n-\mu+1)$ real unknowns $c_0, \ldots, c_{n-\mu}, d_0, \ldots, d_{n-\mu}$. The matrix of this system is precisely W_P , and the hypothesis rank $W_P = 2(n-\mu+1)$ implies that the only solution is

$$c_0 = \dots = c_{n-\mu} = d_0 = \dots = d_{n-\mu} = 0.$$

Thus $Q_0 \equiv 0$, whence also $Q \equiv 0$, and P is an extreme point.

(i) \Longrightarrow (ii). The above argument can be essentially reversed. Indeed, suppose that (ii) fails, so that P is distinct from a monomial and rank $W_P < 2(n-\mu+1)$. The homogeneous system (1.8) has then a nontrivial solution, and the equations (1.7) hold for j = 1, ..., N with some $Q_0 \in \mathcal{P}_{n-\mu}, Q_0 \not\equiv 0$. Multiplying Q_0 by a number $\varepsilon > 0$ (if necessary), we may assume in addition that the norm $||Q_0||_{\infty}$ is appropriately small; we shall specify our choice later.

Now that we have such a Q_0 at our disposal, let us define Q by (1.4), where, as before, it is understood that $z_j = e^{it_j}$. By Observation 2, we have $Q \in \mathcal{P}_n$; we also remark that $Q \neq 0$, because $Q_0 \neq 0$, and that (1.5) holds true. We further claim that

(1.9)
$$|Q(z)|^2 = O\left(1 - |P(z)|^2\right), \qquad z \in \mathbb{T},$$

and

(1.10)
$$\left|\Re\left(\overline{P}(z)Q(z)\right)\right| = O\left(1 - |P(z)|^2\right), \qquad z \in \mathbb{T}.$$

Indeed, (1.9) is fulfilled because Q is divisible by $\prod_{j=1}^{N} (z-z_j)^{\mu_j}$, and so $|Q(z)|^2$ vanishes at those points of \mathbb{T} (viz., z_1, \ldots, z_N) where $1 - |P(z)|^2$ does, with at least the same multiplicities (viz., $2\mu_1, \ldots, 2\mu_N$). Similarly, to verify (1.10), one checks that its left-hand side has a zero at each z_j of multiplicity $\geq 2\mu_j$; this is due to (1.5) and (1.7).

In view of the above discussion, we could have started with a Q_0 for which the quantity $||Q_0||_{\infty}$, and hence also the "big oh" constants in (1.9) and (1.10), are as small as desired. In particular, a suitable choice ensures that

$$|Q(z)|^2 \le \frac{1}{2} \left(1 - |P(z)|^2\right), \qquad z \in \mathbb{T},$$

and

$$2\left|\Re\left(\overline{P}(z)Q(z)\right)\right| \leq \frac{1}{2}\left(1-|P(z)|^2\right), \qquad z \in \mathbb{T}.$$

Summing, we arrive at (1.2) and conclude that P is not an extreme point. The proof is complete.

One might also consider the space \mathcal{T}_n of all trigonometric polynomials of degree $\leq n$; these are, by definition, functions of the form $\sum_{k=-n}^{n} c_k z^k$ living on \mathbb{T} . A trigonometric polynomial $T \in \mathcal{T}_n$ is an extreme point of ball (\mathcal{T}_n) if and only if $z^n T$ is an extreme point of ball (\mathcal{P}_{2n}) . Thus, the extreme points T of ball (\mathcal{T}_n) are actually described by Theorem 1, where obvious adjustments are needed: one should first replace n by 2n, and then P by $z^n T$. (Of course, the monomials in the theorem's statement should now include those with negative exponents, too.)

Finally, we briefly discuss the subspace $\mathcal{T}_n^{\mathbb{R}}$ of real-valued functions in \mathcal{T}_n ; a trigonometric polynomial $\sum_{k=-n}^{n} c_k z^k$ is thus in $\mathcal{T}_n^{\mathbb{R}}$ iff $c_{-k} = \overline{c}_k$ for $|k| \leq n$. As before, given a nonconstant $P \in \mathcal{T}_n^{\mathbb{R}}$ with $||P||_{\infty} = 1$, we let $z_j = e^{it_j}$ $(j = 1, \ldots, N)$ be the distinct zeros that the (nonnegative) trigonometric polynomial $1 - P^2$ happens to have on \mathbb{T} ; the (even) multiplicity of the zero z_j is again denoted by $2\mu_j$, and we write $\mu = \sum_{j=1}^{N} \mu_j$. This time, however, $1 - P^2$ is of degree $\leq 2n$, so the only a priori estimate on μ is that $\mu \leq 2n$. As to the constant polynomials $P \equiv 1$ and $P \equiv -1$, for each of these we put $\mu = +\infty$.

The following proposition is a trigonometric version of the Konheim–Rivlin result that can be found in [R]; a short self-contained proof will be given here for the sake of completeness.

Proposition 1. Let $P \in \mathcal{T}_n^{\mathbb{R}}$, $||P||_{\infty} = 1$. Then P is an extreme point of ball $(\mathcal{T}_n^{\mathbb{R}})$ if and only if $\mu > n$.

Proof. To prove the "if" part, assume that $\mu > n$ and that (1.1) holds for some $Q \in \mathcal{T}_n^{\mathbb{R}}$. We have then $\pm P \pm Q \leq 1$ on \mathbb{T} , where the signs can be chosen in the four possible ways. Consequently,

$$|Q| \le 1 - |P| \le 1 - P^2.$$

Now since the right-hand side has in total 2μ (> 2n) zeros on \mathbb{T} , while Q is of degree $\leq n$, it follows that $Q \equiv 0$ and P is an extreme point.

To establish the "only if" part, assume that $\mu \leq n$ and put

$$Q(e^{it}) := \varepsilon \prod_{j=1}^{N} \left(\sin \frac{t - t_j}{2} \right)^{2\mu_j},$$

with a suitable $\varepsilon > 0$. Then $Q \in \mathcal{T}_n^{\mathbb{R}}$, and making ε sufficiently small we can arrange it so that

$$|Q| \le \frac{1}{2} (1 - P^2) \le 1 - |P|.$$

From this, (1.1) follows immediately, and P fails to be extreme.

We remark, in conclusion, that every nonconstant trigonometric polynomial in ball $(\mathcal{T}_n^{\mathbb{R}})$ is a non-extreme point of ball (\mathcal{T}_n) , the unit ball of the *complex* space \mathcal{T}_n .

2. Polynomials on subsets of \mathbb{R}

Let K be a perfect compact subset of \mathbb{R} (as usual, "perfect" means "having no isolated points"), and let P be a nonconstant polynomial in $\mathcal{P}_n(K)$ with $\|P\|_{\infty} = 1$. Here and throughout this section, $\|P\|_{\infty}$ stands for $\|P\|_{\infty,K} := \max_{x \in K} |P(x)|$. (Likewise, some of the other symbols below should not be confused with their namesakes in Section 1.)

Further, let x_1, \ldots, x_N be the distinct elements of the set $\{x \in K : |P(x)| = 1\}$, and let m_1, \ldots, m_N denote the respective multiplicities of these points, regarded as zeros for $1 - |P|^2$. (We remark that m_j need not be even, unless x_j is an interior point for K.) The function $x \mapsto 1 - |P(x)|^2$ being a polynomial of degree $\leq 2n$, we have $m_1 + \cdots + m_N \leq 2n$. Next, we introduce the numbers

$$\mu_j := \left[\frac{m_j + 1}{2}\right] \qquad (j = 1, \dots, N),$$

where $[\cdot]$ denotes the integral part, and their sum $\mu := \sum_{j=1}^{N} \mu_j$. Finally, let M be the number of those j's for which $m_j \ge 2$. Thus $0 \le M \le N$, and we may assume that the inequality $m_j \ge 2$ holds precisely for $1 \le j \le M$.

For a constant polynomial $P \equiv c$ with |c| = 1, we put $\mu = +\infty$.

Now suppose P is a unit-norm polynomial in $\mathcal{P}_n(K)$ with the property $\mu \leq n$. To such a P, we associate the Wronski-type matrix

$$W(x;k) = \begin{pmatrix} P(x) & xP(x) & \dots & x^{n-\mu}P(x) \\ P'(x) & (xP(x))' & \dots & (x^{n-\mu}P(x))' \\ \dots & \dots & \dots & \dots \\ P^{(k-1)}(x) & (xP(x))^{(k-1)} & \dots & (x^{n-\mu}P(x))^{(k-1)} \end{pmatrix}$$

where $x \in \mathbb{R}$ and $k \in \mathbb{N}$. The real and imaginary parts of W(x;k) will be denoted by $W_{\mathfrak{R}}(x;k)$ and $W_{\mathfrak{I}}(x;k)$. This said, we form the block matrix

$$W_P = \begin{pmatrix} W_{\Re}(x_1; m_1 - \mu_1) & W_{\Im}(x_1; m_1 - \mu_1) \\ W_{\Re}(x_2; m_2 - \mu_2) & W_{\Im}(x_2; m_2 - \mu_2) \\ \dots & \dots \\ W_{\Re}(x_M; m_M - \mu_M) & W_{\Im}(x_M; m_M - \mu_M) \end{pmatrix},$$

which has $\sum_{j=1}^{N} m_j - \mu$ rows and $2(n - \mu + 1)$ columns. In the case that M = 0 (i.e., when $m_j = \mu_j = 1$ for all j), it is understood that W_P is the zero matrix (of any order), so that rank $W_P = 0$.

Theorem 2. Let $P \in \mathcal{P}_n(K)$ and $||P||_{\infty} = 1$. The following are equivalent.

- (i) P is an extreme point of ball $(\mathcal{P}_n(K))$.
- (ii) Either $\mu > n$, or rank $W_P = 2(n \mu + 1)$.

One easily checks that for $n \leq 2$, condition (ii) reduces to just saying that $\mu > n$. It is for $n \geq 3$ that things become more complicated, as the following example shows.

Example 2. Let K = [-1, 2], and put

$$P_1(x) := \frac{1}{2}(x^3 - 3x), \qquad P_2(x) := \frac{1}{\sqrt{2}}(P_1(x) + i).$$

One easily verifies that $|P_1(x)| \leq 1$ for $x \in K$, the equality being attained at the points

$$(2.1) x_1 = -1, x_2 = 1, x_3 = 2.$$

Then one deduces a similar fact for P_2 by noting that

$$|P_2(x)|^2 = \frac{1}{2} \left(P_1^2(x) + 1 \right).$$

Thus, P_1 and P_2 are unit-norm elements of $\mathcal{P}_3(K)$. Furthermore,

$$1 - P_1^2(x) = 2\left(1 - |P_2(x)|^2\right) = -\frac{1}{4}(x+2)(x+1)^2(x-1)^2(x-2).$$

The zeros of this last polynomial belonging to K (i.e., the common x_j 's for P_1 and P_2) are given by (2.1), and the corresponding (common) multiplicities are

$$m_1 = 2, \quad m_2 = 2, \quad m_3 = 1.$$

Hence $\mu_1 = \mu_2 = \mu_3 = 1$, so that $N = \mu = n = 3$ and M = 2. Theorem 2 tells us now that P_1 is a *non-extreme* point of ball ($\mathcal{P}_3(K)$), while P_2 is *extreme*. Indeed, the polynomial P_1 being real-valued, the second column of the (2×2) -matrix W_{P_1} is null, whence rank $W_{P_1} = 1$, whereas the matrix

$$W_{P_2} = \begin{pmatrix} \Re(P_2(-1)) & \Im(P_2(-1)) \\ \Re(P_2(1)) & \Im(P_2(1)) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

has rank 2.

Proof of Theorem 2. (ii) \implies (i). Suppose (1.1) is fulfilled for some $Q \in \mathcal{P}_n$. Then (1.2) holds everywhere on K, whence in particular

$$|Q(x)|^2 \le 1 - |P(x)|^2, \qquad x \in K.$$

Here, the right-hand side is $O(|x - x_j|^{m_j})$ as $x \to x_j$, and so

(2.2)
$$Q(x) = O\left(|x - x_j|^{m_j/2}\right) \quad \text{as } x \to x_j, \ x \in K$$

Since Q is a polynomial, while μ_j is the smallest integer in the interval $[m_j/2, \infty)$, it actually follows from (2.2) that Q has a zero of multiplicity $\geq \mu_j$ at x_j . Hence

(2.3)
$$Q(x) = Q_0(x) \prod_{j=1}^N (x - x_j)^{\mu_j}$$

for some polynomial Q_0 .

Now if $\mu > n$, then (2.3) is only possible for $Q \equiv 0$, which implies that P is an extreme point.

It remains to consider the case where $\mu \leq n$ and rank $W_P = 2(n - \mu + 1)$. In this case, (2.3) holds for some $Q_0 \in \mathcal{P}_{n-\mu}$, and we write

(2.4)
$$Q_0(x) = \sum_{k=0}^{n-\mu} (c_k + id_k) x^k$$

with $c_k, d_k \in \mathbb{R}$. Also, (2.3) yields

(2.5)
$$\Re\left(\overline{P}(x)Q(x)\right) = \prod_{j=1}^{N} (x-x_j)^{\mu_j} \Re\left(\overline{P}(x)Q_0(x)\right).$$

Substituting this into the inequality

$$\left|\Re\left(\overline{P}(x)Q(x)\right)\right| \le 1 - |P(x)|^2, \qquad x \in K$$

(which is a consequence of (1.2)), we get

(2.6)
$$\prod_{j=1}^{N} |x - x_j|^{\mu_j} \left| \Re\left(\overline{P}(x)Q_0(x)\right) \right| \le 1 - |P(x)|^2, \qquad x \in K.$$

The right-hand side of (2.6) being $O(|x - x_j|^{m_j})$ as $x \to x_j$, we deduce that

(2.7)
$$\Re\left(\overline{P}(x)Q_0(x)\right) = O\left(|x-x_j|^{m_j-\mu_j}\right) \quad \text{as } x \to x_j, \ x \in K.$$

Here, the restriction $x \in K$ can be actually dropped (i.e., replaced by $x \in \mathbb{R}$), since $\Re(\overline{P}Q_0)$ is a polynomial. Thus (2.7) tells us that $\Re(\overline{P}Q_0)$ vanishes at x_j with multiplicity at least $m_j - \mu_j$; of course, this is only meaningful for $1 \leq j \leq M$, since otherwise $m_j = \mu_j = 1$. Therefore,

(2.8)
$$\Re \left(\overline{P}Q_0\right)^{(l)}(x_j) = 0 \quad (1 \le j \le M, \ 0 \le l \le m_j - \mu_j - 1).$$

With (2.4) plugged in, (2.8) becomes a homogeneous system of linear equations with respect to the unknowns $c_0, \ldots, c_{n-\mu}, d_0, \ldots, d_{n-\mu}$. The matrix of the system is W_P , and the hypothesis rank $W_P = 2(n - \mu + 1)$ ensures that the only solution is the trivial one. Hence $Q_0 \equiv 0$, which implies $Q \equiv 0$ and proves that P is an extreme point.

(i) \implies (ii). Conversely, if $\mu \leq n$ and rank $W_P < 2(n - \mu + 1)$, then the homogeneous system just mentioned has a nontrivial solution, so that (2.8) holds with some $Q_0 \in \mathcal{P}_{n-\mu}$, $Q_0 \neq 0$. Now if the norm $||Q_0||_{\infty}$ is appropriately small (which can be safely assumed), then the nontrivial polynomial $Q \in \mathcal{P}_n$ defined by (2.3) will satisfy

(2.9)
$$|Q|^2 \le \frac{1}{2} \left(1 - |P|^2\right)$$

and

(2.10)
$$2\left|\Re\left(\overline{P}Q\right)\right| \le \frac{1}{2}\left(1 - |P|^2\right)$$

everywhere on K. Indeed, for j = 1, ..., N, the left-hand sides of (2.9) and (2.10) vanish at x_j with multiplicity at least m_j each. (To see why, recall that $2\mu_j \ge m_j$ and use the relations (2.5) and (2.8).)

Taken together, (2.9) and (2.10) yield (1.2), and we conclude that P fails to be extreme in ball $(\mathcal{P}_n(K))$.

References

- [D] K. M. Dyakonov, Polynomials and entire functions: zeros and geometry of the unit ball, Math. Res. Lett. 7 (2000), 393–404.
- [G] A. L. Garkavi, The unit sphere of the space of polynomials with an integral metric, Mat. Zametki 1 (1967), 299–304. (Russian)
- [H] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962.
- [KR] A. G. Konheim and T. J. Rivlin, Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly 73 (1966), 505–507.
 - [P] L. D. Parnes, Extreme points of unit balls in polynomial spaces, Functional Analysis, 31, 111–116, Ul'yanovsk. Gos. Ped. Inst., Ul'yanovsk, 1990. (Russian)
 - [R] H.-J. Rack, Extreme Punkte in der Einheitskugel des Vektorraumes der trigonometrischen Polynome, Elem. Math. 37 (1982), 164–165.

STEKLOV INSTITUTE OF MATHEMATICS, ST. PETERSBURG BRANCH (POMI), FONTANKA 27, ST. PETERSBURG, 191011, RUSSIA.

E-mail address: dyakonov@pdmi.ras.ru

 $Current \ address:$

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, E-08071 Barcelona, Spain.

E-mail address: dyakonov@mat.ub.es