EXTREME POINTS IN SPACES OF POLYNOMIALS

Konstantin M. Dyakonov

ABSTRACT. We determine the extreme points of the unit ball in spaces of complex polynomials (of a fixed degree), living either on the unit circle or on a subset of the real line and endowed with the supremum norm.

Introduction

Let \mathcal{P}_n stand for the space of all polynomials with complex coefficients of degree not exceeding *n*. Given a compact set $E \subset \mathbb{C}$, one may treat \mathcal{P}_n as a subspace of $C(E)$, the space of continuous functions on E , and equip it with the maximum norm

$$
||P||_{\infty} = ||P||_{\infty,E} := \max_{z \in E} |P(z)| \qquad (P \in \mathcal{P}_n).
$$

The resulting space will be denoted by $\mathcal{P}_n(E)$. We write

 $ball(\mathcal{P}_n(E)) := \{ P \in \mathcal{P}_n : ||P||_{\infty,E} \leq 1 \}$

for the unit ball of $\mathcal{P}_n(E)$, and we shall be concerned with the extreme points of this ball. (As usual, an element of a convex set *S* is said to be its extreme point if it is not the midpoint of any nondegenerate segment contained in *S*.)

In this paper, we explicitly characterize the extreme points of ball($\mathcal{P}_n(E)$) in the case where *E* is either the circle $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$ or a perfect compact subset of the real line R. The description obtained is, perhaps, a bit more complicated than one could at first expect; however, the complexity seems to be in the nature of things.

Let us begin by recalling that the extreme points of the unit ball in $L^{\infty}(\mathbb{T})$ – or in $C(\mathbb{T})$ – are precisely the functions of modulus 1. (The same applies to other sets in place of \mathbb{T} .) Further, in the space H^{∞} of bounded analytic functions on $\{|z| < 1\}$, as well as in the disk algebra $H^{\infty} \cap C(\mathbb{T})$, the extreme points are known to be the unit-norm functions f with $\int_{\mathbb{T}} \log(1 - |f(z)|^2)|dz| = -\infty$; see $[H, Chap. 9].$

Received September 30, 2002.

²⁰⁰⁰ *Mathematics Subject Classification*. 46B20, 46E30

Supported in part by Grant 02-01-00267 from the Russian Foundation for Fundamental Research, by a PIV fellowship from Generalitat de Catalunya, and by the Ramón y Cajal program (Spain).

Yet another relevant example is provided by a theorem of Konheim and Rivlin [KR], dealing with the space $\mathcal{P}_n^{\mathbb{R}}(I)$ of all *real* polynomials of degree $\leq n$ on the segment $I := [-1, 1]$. The theorem states that a unit-norm polynomial P is an extreme point of ball $(\mathcal{P}_n^{\mathbb{R}}(I))$ if and only if $\mathcal{N}_I(1 - P^2) > n$; here $\mathcal{N}_I(f)$ is the total number of zeros (multiplicities included) that *f* has on *I*. A similar result holds for real trigonometric polynomials on T; see [R] or Proposition 1 in Section 1 below.

With these examples in mind, one might be tempted to believe that, in order to recognize the extreme points among all unit-norm elements *P* of the complex space $\mathcal{P}_n(E)$ (say, with $E = \mathbb{T}$ or $E = I$), one only needs to know "how often" |P| takes the extremal value 1 on *E*. In other words, one might seek to characterize the extreme points P in terms of the zeros – and their multiplicities – of the polynomial $1 - |P|^2$. (Strictly speaking, $1 - |P|^2$ is a trigonometric polynomial for $P \in \mathcal{P}_n(\mathbb{T})$ and a true polynomial when *P* lives on \mathbb{R} .)

However, no such thing can be done. Indeed, along with solving the two versions of the problem in Sections 1 and 2 (one of these deals with the circle, and the other with subsets of \mathbb{R}), we also construct in each case a pair of unitnorm polynomials P_1 , P_2 in $\mathcal{P}_n(E)$ satisfying

$$
1 - |P_1|^2 = 2\left(1 - |P_2|^2\right),
$$

so that P_1 is a non-extreme point of ball $(\mathcal{P}_n(E))$, while P_2 is extreme. In fact, the construction is carried out for the smallest possible value of *n*, which equals 2 when $E = T$, and 3 when *E* is a real segment.

In conclusion, we briefly mention the $L¹$ counterpart of the problem, i.e., the problem of determining the extreme points of the unit ball in certain *L*¹-spaces of polynomials. Here, the real case was settled by Garkavi [G] and the complex case by the author [D]. Garkavi's, as well as Konheim and Rivlin's results were then rediscovered – or reproved – by Parnes in $[P]$, where the current problem (the case of complex polynomials on T with the sup-norm) was also considered, but not solved.

I thank Evgeny Abakumov for bringing Parnes' work to my attention.

1. Polynomials on the circle

Among the unit-norm polynomials in $\mathcal{P}_n(\mathbb{T})$, we single out the class of mono*mials*; these are of the form cz^k , where $c \in \mathbb{C}$, $|c| = 1$ and $0 \leq k \leq n$. Of course, every monomial is an extreme point of ball $(\mathcal{P}_n(\mathbb{T}))$.

Now if $P \in \mathcal{P}_n(\mathbb{T})$ satisfies $||P||_{\infty} = 1$ and is distinct from a monomial, let z_1, \ldots, z_N be an enumeration of the (nonempty) set $\{z \in \mathbb{T} : |P(z)| = 1\}.$ The points z_1, \ldots, z_N are thus the distinct zeros of $1 - |P|^2$ lying on T, and the multiplicities of these zeros will be denoted by $2\mu_1, \ldots, 2\mu_N$. The μ_j 's are positive integers, and their sum

$$
\mu:=\sum_{j=1}^N \mu_j
$$

does not exceed *n*. To see why, note that the function $z \mapsto 1 - |P(z)|^2$ (living on \mathbb{T}) is a nonnegative trigonometric polynomial of degree $\leq n$, not vanishing identically. Therefore, its zeros lying on T are necessarily of even order, while the total number of its zeros (multiplicities included) is at most $2n$. Hence $2\mu_1 + \cdots + 2\mu_N \leq 2n$, so that $\mu \leq n$, as claimed above.

Next, for $z = e^{it} \in \mathbb{T}$ and $k \in \mathbb{N}$, consider the Wronski-type matrix

$$
W(z;k) = \begin{pmatrix} \overline{z}^{\mu/2} P(z) & \overline{z}^{\mu/2+1} P(z) & \dots & \overline{z}^{n-\mu/2} P(z) \\ (\overline{z}^{\mu/2} P(z))' & (\overline{z}^{\mu/2+1} P(z))' & \dots & (\overline{z}^{n-\mu/2} P(z))' \\ \dots & \dots & \dots & \dots & \dots \\ (\overline{z}^{\mu/2} P(z))^{(k-1)} & (\overline{z}^{\mu/2+1} P(z))^{(k-1)} & \dots & (\overline{z}^{n-\mu/2} P(z))^{(k-1)} \end{pmatrix}.
$$

The exponent $n - \mu/2$ in the last column should be viewed as $\mu/2 + (n - \mu)$; thus, $W(z; k)$ is a $k \times (n - \mu + 1)$ matrix. The derivatives involved are with respect to the real variable $t = \arg z$.

Let $W_{\mathfrak{R}}(z; k)$ and $W_{\mathfrak{I}}(z; k)$ stand for the real and imaginary parts of $W(z; k)$, respectively. Finally, we need the block matrix

$$
W_P = \begin{pmatrix} W_{\Re}(z_1; \mu_1) & W_{\Im}(z_1; \mu_1) \\ W_{\Re}(z_2; \mu_2) & W_{\Im}(z_2; \mu_2) \\ \dots & \dots & \dots \\ W_{\Re}(z_N; \mu_N) & W_{\Im}(z_N; \mu_N) \end{pmatrix}.
$$

Here, each "entry" $W_{\Re}(z_j; \mu_j)$ or $W_{\Im}(z_j; \mu_j)$ is actually a $\mu_j \times (n - \mu + 1)$ submatrix, as defined above, where everything is computed at the point z_j . In particular, W_P is a $\mu \times 2(n - \mu + 1)$ matrix, and its rank is therefore bounded by $\min(\mu, 2(n - \mu + 1)).$

Theorem 1. Let $P \in \mathcal{P}_n(\mathbb{T})$, $||P||_{\infty} = 1$. The following are equivalent.

- (i) *P* is an extreme point of ball $(\mathcal{P}_n(\mathbb{T}))$.
- (ii) *Either P is a monomial, or rank* $W_P = 2(n \mu + 1)$ *.*

The proof will be preceded by a brief discussion.

First of all, the condition rank $W_P = 2(n - \mu + 1)$ can only be met if $\mu \geq$ $2(n - \mu + 1)$, i.e., if $\mu \geq \frac{2}{3}(n + 1)$. (The weaker condition $\mu > n/2$ was pointed out in $[P]$ as necessary in order that P be an extreme point.) The inequalities $\frac{2}{3}(n+1) \leq \mu \leq n$ being incompatible for $n=0$ and $n=1$, there are no nontrivial extreme points for these *n*. (Here and below, "nontrivial" means "distinct from a monomial".) Now for $n = 2, 3, 4$, the two inequalities – in conjunction with the fact that $\mu \in \mathbb{N}$ – reduce to the condition $\mu = n$, which must be therefore fulfilled by each nontrivial extreme point P of ball $(\mathcal{P}_n(\mathbb{T}))$.

On the other hand, for $n \geq 2$, the nontrivial extreme points P with $\mu = n$ are characterized by the condition rank $W_P = 2$, which means that the two columns of *W^P* are linearly independent. This, in turn, is equivalent to saying that there

is no straight line in C passing through the origin and containing the set

$$
\bigcup_{j=1}^N \left\{ \overline{z}_j^{n/2} P(z_j), \left(\overline{z}^{n/2} P \right)'(z_j), \ldots, \left(\overline{z}^{n/2} P \right)^{(\mu_j - 1)}(z_j) \right\}.
$$

Now let us consider an example.

Example 1. Put $P_0(z) := \frac{1}{2}(z + z^{-1})$, so that $P_0(e^{it}) = \cos t$; then define

$$
P_1(z) := z P_0(z) = \frac{1}{2}(z^2 + 1)
$$

and

$$
P_2(z) := \frac{z}{\sqrt{2}} (P_0(z) + i) = \frac{1}{2\sqrt{2}} (z^2 + 2iz + 1).
$$

Clearly, P_1 and P_2 are unit-norm polynomials in $\mathcal{P}_2(\mathbb{T})$. In fact, for $z = e^{it} \in \mathbb{T}$,

$$
|P_1(z)|^2 = P_0^2(z) = \cos^2 t
$$

and

$$
|P_2(z)|^2 = \frac{1}{2} (P_0^2(z) + 1) = \frac{1}{2} (\cos^2 t + 1).
$$

In particular,

$$
1 - |P_1(z)|^2 = 2\left(1 - |P_2(z)|^2\right), \qquad z \in \mathbb{T}
$$

(indeed, both sides equal $\sin^2 t$), and so the two polynomials have the same z_j 's and μ_j 's. Specifically, these are $z_1 = 1$, $z_2 = -1$ (or vice versa) and $\mu_1 = \mu_2 = 1$, so that $N = \mu = n = 2$.

However, while P_1 is the arithmetic mean of two monomials, z^2 and 1, and hence a *non-extreme* point of ball $(\mathcal{P}_2(\mathbb{T}))$, it turns out that P_2 is an *extreme* point thereof. This last fact follows by Theorem 1, since the matrix

$$
W_{P_2} = \begin{pmatrix} \Re(P_2(1)) & \Im(P_2(1)) \\ \Re(-P_2(-1)) & \Im(-P_2(-1)) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}
$$

has rank 2.

The proof of Theorem 1 will rely on two elementary observations. The first of these, stated for an arbitrary compact set $E \subset \mathbb{C}$, will also be used when proving Theorem 2 in the next section.

Observation 1. Clearly, a given unit-norm polynomial $P \in \mathcal{P}_n$ is an extreme point of ball $(\mathcal{P}_n(E))$ if and only if the only polynomial $Q \in \mathcal{P}_n$ satisfying

(1.1)
$$
||P + Q||_{\infty} \le 1
$$
 and $||P - Q||_{\infty} \le 1$

is $Q \equiv 0$. Rewriting (1.1) as

$$
|P \pm Q|^2 = |P|^2 \pm 2\Re(\overline{P}Q) + |Q|^2 \le 1
$$

and noting that $\max(x, -x) = |x|$ for all $x \in \mathbb{R}$, we see that *P* is extreme iff there is no nontrivial $Q \in \mathcal{P}_n$ for which

(1.2)
$$
2|\Re(\overline{P}Q)| + |Q|^2 \le 1 - |P|^2
$$

everywhere on *E*.

Observation 2. If $z = e^{it}$ and $\zeta_j = e^{it_j}$ $(j = 1, ..., N)$ are points of T, and if k_1, \ldots, k_N are positive integers with $\sum_{j=1}^{N} k_j = k$, then the identities

$$
z - \zeta_j = 2ie^{it_j/2}e^{it/2}\sin\frac{t-t_j}{2}
$$

yield

(1.3)
$$
\prod_{j=1}^{N} (z - \zeta_j)^{k_j} = ce^{ikt/2} \prod_{j=1}^{N} \left(\sin \frac{t - t_j}{2} \right)^{k_j},
$$

where

$$
c = (2i)^k \prod_{j=1}^N \exp\left(\frac{ik_j t_j}{2}\right).
$$

Proof of Theorem 1. (ii) \implies (i). We shall assume that *P* is distinct from a monomial (otherwise, it is obviously extreme) and that rank $W_P = 2(n - \mu + 1)$. Now suppose (1.2) holds for some $Q \in \mathcal{P}_n$. In particular, we have then

$$
|Q(z)|^2 \le 1 - |P(z)|^2, \qquad z \in \mathbb{T},
$$

and so, for $j = 1, \ldots, N$, the polynomial *Q* vanishes at z_j with multiplicity at least μ_j . (Recall that the multiplicity of z_j as a zero of $1 - |P|^2$ is $2\mu_j$.) Hence *Q* is divisible by $\prod_{j=1}^{N} (z - z_j)^{\mu_j}$ and takes the form

(1.4)
$$
Q(z) = Q_0(z) \cdot z^{\mu/2} \prod_{j=1}^N \left(\sin \frac{t - t_j}{2} \right)^{\mu_j}, \qquad z = e^{it} \in \mathbb{T},
$$

for some $Q_0 \in \mathcal{P}_{n-\mu}$; by t_j we now denote arg z_j . Here, to arrive at (1.4), we have used (1.3) with z_j in place of ζ_j and with μ_j (resp., μ) in place of k_j (resp., *k*). From (1.4) we get

(1.5)
$$
\mathfrak{R}\left(\overline{P}(z)Q(z)\right) = \prod_{j=1}^N \left(\sin\frac{t-t_j}{2}\right)^{\mu_j} \mathfrak{R}\left(z^{\mu/2}\overline{P}(z)Q_0(z)\right).
$$

Combining this with the fact that

$$
\left| \Re \left(\overline{P}(z) Q(z) \right) \right| \leq 1 - |P(z)|^2
$$

(which is contained in (1.2)) yields

$$
(1.6)\left|\Re\left(z^{\mu/2}\overline{P}(z)Q_0(z)\right)\right| \le (1-|P(z)|^2)\prod_{j=1}^N\left|\sin\frac{t-t_j}{2}\right|^{-\mu_j}, \quad z=e^{it}\in\mathbb{T}.
$$

The right-hand side of (1.6) being $O(|z - z_j|^{\mu_j})$ as $z \to z_j$, the left-hand side must also vanish at each z_j with multiplicity at least μ_j . In other words, for each $j = 1, \ldots, N$, one has

(1.7)
$$
\Re\left(z^{\mu/2}\overline{P}Q_0\right)^{(l)}(z_j) = 0 \qquad (l = 0, 1, \dots, \mu_j - 1).
$$

Putting

$$
Q_0(z) = \sum_{k=0}^{n-\mu} (c_k + id_k) z^k
$$

and substituting this into (1.7), we obtain

(1.8)
$$
\sum_{k=0}^{n-\mu} c_k \Re \left(z^{\mu/2 + k} \overline{P} \right)^{(l)}(z_j) - \sum_{k=0}^{n-\mu} d_k \Im \left(z^{\mu/2 + k} \overline{P} \right)^{(l)}(z_j) = 0
$$

$$
(j = 1, ..., N; l = 0, 1, ..., \mu_j - 1),
$$

which can be viewed as a homogeneous system of $\mu_1 + \cdots + \mu_N = \mu$ linear equations with $2(n-\mu+1)$ real unknowns $c_0, \ldots, c_{n-\mu}, d_0, \ldots, d_{n-\mu}$. The matrix of this system is precisely W_P , and the hypothesis rank $W_P = 2(n - \mu + 1)$ implies that the only solution is

$$
c_0 = \dots = c_{n-\mu} = d_0 = \dots = d_{n-\mu} = 0.
$$

Thus $Q_0 \equiv 0$, whence also $Q \equiv 0$, and P is an extreme point.

 $(i) \Longrightarrow (ii)$. The above argument can be essentially reversed. Indeed, suppose that (ii) fails, so that *P* is distinct from a monomial and rank $W_P < 2(n - \mu + 1)$. The homogeneous system (1.8) has then a nontrivial solution, and the equations (1.7) hold for $j = 1, ..., N$ with some $Q_0 \in \mathcal{P}_{n-\mu}$, $Q_0 \not\equiv 0$. Multiplying Q_0 by a number $\varepsilon > 0$ (if necessary), we may assume in addition that the norm $||Q_0||_{\infty}$ is appropriately small; we shall specify our choice later.

Now that we have such a Q_0 at our disposal, let us define Q by (1.4) , where, as before, it is understood that $z_j = e^{it_j}$. By Observation 2, we have $Q \in \mathcal{P}_n$; we also remark that $Q \neq 0$, because $Q_0 \neq 0$, and that (1.5) holds true.

We further claim that

(1.9)
$$
|Q(z)|^2 = O(1 - |P(z)|^2), \qquad z \in \mathbb{T},
$$

and

(1.10)
$$
\left| \Re \left(\overline{P}(z) Q(z) \right) \right| = O \left(1 - |P(z)|^2 \right), \qquad z \in \mathbb{T}.
$$

Indeed, (1.9) is fulfilled because *Q* is divisible by $\prod_{j=1}^{N} (z - z_j)^{\mu_j}$, and so $|Q(z)|^2$ vanishes at those points of \mathbb{T} (viz., z_1, \ldots, z_N) where $1 - |P(z)|^2$ does, with at least the same multiplicities (viz., $2\mu_1, \ldots, 2\mu_N$). Similarly, to verify (1.10), one checks that its left-hand side has a zero at each z_j of multiplicity $\geq 2\mu_j$; this is due to (1.5) and (1.7).

In view of the above discussion, we could have started with a Q_0 for which the quantity $||Q_0||_{\infty}$, and hence also the "big oh" constants in (1.9) and (1.10), are as small as desired. In particular, a suitable choice ensures that

$$
|Q(z)|^2 \le \frac{1}{2} (1 - |P(z)|^2) , \qquad z \in \mathbb{T},
$$

and

$$
2\left|\Re\left(\overline{P}(z)Q(z)\right)\right|\leq\frac{1}{2}\left(1-|P(z)|^2\right),\qquad z\in\mathbb{T}.
$$

Summing, we arrive at (1.2) and conclude that *P* is not an extreme point. The \Box proof is complete.

One might also consider the space T_n of all *trigonometric polynomials* of degree $≤ n$; these are, by definition, functions of the form $\sum_{k=-n}^{n} c_k z^k$ living on T. A trigonometric polynomial $T \in \mathcal{T}_n$ is an extreme point of ball (\mathcal{T}_n) if and only if z^n is an extreme point of ball(\mathcal{P}_{2n}). Thus, the extreme points *T* of ball(\mathcal{T}_n) are actually described by Theorem 1, where obvious adjustments are needed: one should first replace *n* by $2n$, and then *P* by z^nT . (Of course, the monomials in the theorem's statement should now include those with negative exponents, too.)

Finally, we briefly discuss the subspace $\mathcal{T}_n^{\mathbb{R}}$ of real-valued functions in \mathcal{T}_n ; a trigonometric polynomial $\sum_{k=-n}^{n} c_k z^k$ is thus in $\mathcal{T}_n^{\mathbb{R}}$ iff $c_{-k} = \overline{c}_k$ for $|k| \leq n$. As before, given a nonconstant $P \in \mathcal{T}_n^{\mathbb{R}}$ with $||P||_{\infty} = 1$, we let $z_j = e^{it_j}$ (*j* = $1, \ldots, N$) be the distinct zeros that the (nonnegative) trigonometric polynomial 1 − P^2 happens to have on T; the (even) multiplicity of the zero z_j is again denoted by $2\mu_j$, and we write $\mu = \sum_{j=1}^N \mu_j$. This time, however, $1 - P^2$ is of degree $\leq 2n$, so the only *a priori* estimate on μ is that $\mu \leq 2n$. As to the constant polynomials $P \equiv 1$ and $P \equiv -1$, for each of these we put $\mu = +\infty$.

The following proposition is a trigonometric version of the Konheim–Rivlin result that can be found in [R]; a short self-contained proof will be given here for the sake of completeness.

Proposition 1. Let $P \in \mathcal{T}_n^{\mathbb{R}}$, $||P||_{\infty} = 1$. Then *P* is an extreme point of ball $(T_n^{\mathbb{R}})$ *if and only if* $\mu > n$.

Proof. To prove the "if" part, assume that $\mu > n$ and that (1.1) holds for some $Q \in \mathcal{T}_n^{\mathbb{R}}$. We have then $\pm P \pm Q \leq 1$ on \mathbb{T} , where the signs can be chosen in the four possible ways. Consequently,

$$
|Q| \le 1 - |P| \le 1 - P^2.
$$

Now since the right-hand side has in total 2μ ($> 2n$) zeros on T, while *Q* is of degree $\leq n$, it follows that $Q \equiv 0$ and P is an extreme point.

To establish the "only if" part, assume that $\mu \leq n$ and put

$$
Q(e^{it}) := \varepsilon \prod_{j=1}^N \left(\sin \frac{t - t_j}{2} \right)^{2\mu_j},
$$

with a suitable $\varepsilon > 0$. Then $Q \in \mathcal{T}_n^{\mathbb{R}}$, and making ε sufficiently small we can arrange it so that

$$
|Q| \le \frac{1}{2} (1 - P^2) \le 1 - |P|.
$$

From this, (1.1) follows immediately, and *P* fails to be extreme.

We remark, in conclusion, that every nonconstant trigonometric polynomial in ball $(\mathcal{T}_n^{\mathbb{R}})$ is a non-extreme point of ball (\mathcal{T}_n) , the unit ball of the *complex* space \mathcal{T}_n .

2. Polynomials on subsets of R

Let *K* be a perfect compact subset of \mathbb{R} (as usual, "perfect" means "having no isolated points"), and let P be a nonconstant polynomial in $\mathcal{P}_n(K)$ with $||P||_{\infty} = 1$. Here and throughout this section, $||P||_{\infty}$ stands for $||P||_{\infty,K} :=$ $\max_{x \in K} |P(x)|$. (Likewise, some of the other symbols below should not be confused with their namesakes in Section 1.)

Further, let x_1, \ldots, x_N be the distinct elements of the set $\{x \in K : |P(x)| =$ 1}, and let m_1, \ldots, m_N denote the respective multiplicities of these points, regarded as zeros for $1 - |P|^2$. (We remark that m_j need not be even, unless x_j is an interior point for *K*.) The function $x \mapsto 1 - |P(x)|^2$ being a polynomial of degree $\leq 2n$, we have $m_1 + \cdots + m_N \leq 2n$. Next, we introduce the numbers

$$
\mu_j := \left[\frac{m_j+1}{2}\right] \qquad (j=1,\ldots,N),
$$

where $[\cdot]$ denotes the integral part, and their sum $\mu := \sum_{j=1}^{N} \mu_j$. Finally, let M be the number of those *j*'s for which $m_j \geq 2$. Thus $0 \leq M \leq N$, and we may assume that the inequality $m_j \geq 2$ holds precisely for $1 \leq j \leq M$.

For a constant polynomial $P \equiv c$ with $|c| = 1$, we put $\mu = +\infty$.

Now suppose P is a unit-norm polynomial in $\mathcal{P}_n(K)$ with the property $\mu \leq n$. To such a *P*, we associate the Wronski-type matrix

$$
W(x;k) = \begin{pmatrix} P(x) & xP(x) & \dots & x^{n-\mu}P(x) \\ P'(x) & (xP(x))' & \dots & (x^{n-\mu}P(x))' \\ \dots & \dots & \dots & \dots \\ P^{(k-1)}(x) & (xP(x))^{(k-1)} & \dots & (x^{n-\mu}P(x))^{(k-1)} \end{pmatrix},
$$

where $x \in \mathbb{R}$ and $k \in \mathbb{N}$. The real and imaginary parts of $W(x; k)$ will be denoted by $W_{\mathfrak{R}}(x;k)$ and $W_{\mathfrak{I}}(x;k)$. This said, we form the block matrix

$$
W_P = \begin{pmatrix} W_{\Re}(x_1; m_1 - \mu_1) & W_{\Im}(x_1; m_1 - \mu_1) \\ W_{\Re}(x_2; m_2 - \mu_2) & W_{\Im}(x_2; m_2 - \mu_2) \\ \cdots & \cdots & \cdots \\ W_{\Re}(x_M; m_M - \mu_M) & W_{\Im}(x_M; m_M - \mu_M) \end{pmatrix},
$$

which has $\sum_{j=1}^{N} m_j - \mu$ rows and $2(n - \mu + 1)$ columns. In the case that $M = 0$ (i.e., when $m_j = \mu_j = 1$ for all *j*), it is understood that W_P is the zero matrix (of any order), so that rank $W_P = 0$.

Theorem 2. Let $P \in \mathcal{P}_n(K)$ and $||P||_{\infty} = 1$. The following are equivalent.

- (i) *P* is an extreme point of ball $(\mathcal{P}_n(K))$.
- (ii) Either $\mu > n$, or rank $W_P = 2(n \mu + 1)$.

One easily checks that for $n \leq 2$, condition (ii) reduces to just saying that $\mu > n$. It is for $n \geq 3$ that things become more complicated, as the following example shows.

Example 2. Let $K = [-1, 2]$, and put

$$
P_1(x) := \frac{1}{2}(x^3 - 3x),
$$
 $P_2(x) := \frac{1}{\sqrt{2}} (P_1(x) + i).$

One easily verifies that $|P_1(x)| \leq 1$ for $x \in K$, the equality being attained at the points

$$
(2.1) \t\t x_1 = -1, \t x_2 = 1, \t x_3 = 2.
$$

Then one deduces a similar fact for P_2 by noting that

$$
|P_2(x)|^2 = \frac{1}{2} (P_1^2(x) + 1).
$$

Thus, P_1 and P_2 are unit-norm elements of $\mathcal{P}_3(K)$. Furthermore,

$$
1 - P_1^2(x) = 2\left(1 - |P_2(x)|^2\right) = -\frac{1}{4}(x+2)(x+1)^2(x-1)^2(x-2).
$$

The zeros of this last polynomial belonging to *K* (i.e., the common x_j 's for P_1 and P_2) are given by (2.1) , and the corresponding (common) multiplicities are

$$
m_1 = 2
$$
, $m_2 = 2$, $m_3 = 1$.

Hence $\mu_1 = \mu_2 = \mu_3 = 1$, so that $N = \mu = n = 3$ and $M = 2$. Theorem 2 tells us now that P_1 is a non-extreme point of ball $(\mathcal{P}_3(K))$, while P_2 is extreme. Indeed, the polynomial P_1 being real-valued, the second column of the (2×2) -matrix W_{P_1} is null, whence rank $W_{P_1} = 1$, whereas the matrix

$$
W_{P_2} = \begin{pmatrix} \Re(P_2(-1)) & \Im(P_2(-1)) \\ \Re(P_2(1)) & \Im(P_2(1)) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}
$$

has rank 2.

Proof of Theorem 2. (ii) \implies (i). Suppose (1.1) is fulfilled for some $Q \in \mathcal{P}_n$. Then (1.2) holds everywhere on *K*, whence in particular

$$
|Q(x)|^2 \le 1 - |P(x)|^2, \qquad x \in K.
$$

Here, the right-hand side is $O(|x - x_j|^{m_j})$ as $x \to x_j$, and so

(2.2)
$$
Q(x) = O(|x - x_j|^{m_j/2})
$$
 as $x \to x_j, x \in K$.

Since *Q* is a polynomial, while μ_j is the smallest integer in the interval $[m_j/2,\infty)$, it actually follows from (2.2) that *Q* has a zero of multiplicity $\geq \mu_j$ at x_j . Hence

(2.3)
$$
Q(x) = Q_0(x) \prod_{j=1}^{N} (x - x_j)^{\mu_j}
$$

for some polynomial *Q*0.

Now if $\mu > n$, then (2.3) is only possible for $Q \equiv 0$, which implies that *P* is an extreme point.

It remains to consider the case where $\mu \leq n$ and rank $W_P = 2(n - \mu + 1)$. In this case, (2.3) holds for some $Q_0 \in \mathcal{P}_{n-\mu}$, and we write

(2.4)
$$
Q_0(x) = \sum_{k=0}^{n-\mu} (c_k + id_k) x^k
$$

with $c_k, d_k \in \mathbb{R}$. Also, (2.3) yields

(2.5)
$$
\mathfrak{R}\left(\overline{P}(x)Q(x)\right) = \prod_{j=1}^N (x-x_j)^{\mu_j} \mathfrak{R}\left(\overline{P}(x)Q_0(x)\right).
$$

Substituting this into the inequality

$$
\left| \Re \left(\overline{P}(x) Q(x) \right) \right| \le 1 - |P(x)|^2, \qquad x \in K
$$

(which is a consequence of (1.2)), we get

(2.6)
$$
\prod_{j=1}^{N} |x - x_j|^{\mu_j} \left| \Re \left(\overline{P}(x) Q_0(x) \right) \right| \leq 1 - |P(x)|^2, \qquad x \in K.
$$

The right-hand side of (2.6) being $O(|x-x_j|^{m_j})$ as $x \to x_j$, we deduce that

(2.7)
$$
\mathfrak{R}\left(\overline{P}(x)Q_0(x)\right) = O\left(|x-x_j|^{m_j-\mu_j}\right) \text{ as } x \to x_j, x \in K.
$$

Here, the restriction $x \in K$ can be actually dropped (i.e., replaced by $x \in \mathbb{R}$), since $\Re(\overline{P}Q_0)$ is a polynomial. Thus (2.7) tells us that $\Re(\overline{P}Q_0)$ vanishes at *x*^{*j*} with multiplicity at least $m_j - \mu_j$; of course, this is only meaningful for $1 \leq j \leq M$, since otherwise $m_j = \mu_j = 1$. Therefore,

(2.8)
$$
\Re(\overline{P}Q_0)^{(l)}(x_j) = 0
$$
 $(1 \le j \le M, 0 \le l \le m_j - \mu_j - 1).$

With (2.4) plugged in, (2.8) becomes a homogeneous system of linear equations with respect to the unknowns $c_0, \ldots, c_{n-\mu}, d_0, \ldots, d_{n-\mu}$. The matrix of the system is W_P , and the hypothesis rank $W_P = 2(n - \mu + 1)$ ensures that the only solution is the trivial one. Hence $Q_0 \equiv 0$, which implies $Q \equiv 0$ and proves that *P* is an extreme point.

(i) \implies (ii). Conversely, if $\mu \leq n$ and rank W_P < 2(*n* − *µ* + 1), then the homogeneous system just mentioned has a nontrivial solution, so that (2.8) holds with some $Q_0 \in \mathcal{P}_{n-\mu}$, $Q_0 \neq 0$. Now if the norm $||Q_0||_{\infty}$ is appropriately small (which can be safely assumed), then the nontrivial polynomial $Q \in \mathcal{P}_n$ defined by (2.3) will satisfy

(2.9)
$$
|Q|^2 \le \frac{1}{2} (1 - |P|^2)
$$

and

(2.10)
$$
2\left|\Re\left(\overline{P}Q\right)\right| \leq \frac{1}{2}\left(1-|P|^2\right)
$$

everywhere on *K*. Indeed, for $j = 1, \ldots, N$, the left-hand sides of (2.9) and (2.10) vanish at x_j with multiplicity at least m_j each. (To see why, recall that $2\mu_j \geq m_j$ and use the relations (2.5) and (2.8).)

Taken together, (2.9) and (2.10) yield (1.2), and we conclude that *P* fails to be extreme in ball $(\mathcal{P}_n(K))$.

References

- [D] K. M. Dyakonov, *Polynomials and entire functions: zeros and geometry of the unit ball*, Math. Res. Lett. **7** (2000), 393–404.
- [G] A. L. Garkavi, *The unit sphere of the space of polynomials with an integral metric*, Mat. Zametki **1** (1967), 299–304. (Russian)
- [H] K. Hoffman, *Banach Spaces of Analytic Functions*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962.
- [KR] A. G. Konheim and T. J. Rivlin, *Extreme points of the unit ball in a space of real polynomials*, Amer. Math. Monthly **73** (1966), 505–507.
	- [P] L. D. Parnes, *Extreme points of unit balls in polynomial spaces*, Functional Analysis, **31**, 111–116, Ul'yanovsk. Gos. Ped. Inst., Ul'yanovsk, 1990. (Russian)
	- [R] H.-J. Rack, *Extreme Punkte in der Einheitskugel des Vektorraumes der trigonometrischen Polynome*, Elem. Math. **37** (1982), 164–165.

Steklov Institute of Mathematics, St. Petersburg Branch (POMI), Fontanka 27, St. Petersburg, 191011, Russia.

E-mail address: dyakonov@pdmi.ras.ru

Current address:

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, E-08071 Barcelona, Spain.

E-mail address: dyakonov@mat.ub.es