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ON SECTIONS WITH ISOLATED SINGULARITIES OF
TWISTED BUNDLES AND APPLICATIONS TO FOLIATIONS

BY CURVES
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Dedicated to the memory of A.N. Tyurin

Abstract. Let E −→ M be a holomorphic rank n vector bundle over a compact
Kähler manifold of dimension n, having a positive (or ample) line bundle L −→ M
and consider a global section s, with isolated singularities, of the twisted bundle
E ⊗ L⊗r, where r is an integer.

We prove that if r is large enough, then s is uniquely determined, up to a
global endomorphism of the bundle E, by its subscheme of singular points (which
we call the singular subscheme of s).

If in particular E is simple, then s is uniquely determined, up to a scalar factor,
by its singular subscheme.

We recall that the last statement holds in case s is a holomorphic foliation by
curves, with isolated singularities, on a projective manifold M with stable tangent
bundle, so it holds in particular if M is a compact irreducible Hermitian symmetric
space or a Calabi-Yau manifold.

If L −→ P
n is the hyperplane bundle, we show that it holds for every r ≥ 1.

1. Introduction

In the previous paper [5], the authors have shown that an algebraic foliation
of degree at least 2 in the projective plane is determined by the subscheme of
its singular points (or its singular subscheme, after Definition 2.1 below). This
result was known to hold for foliations by curves in projective spaces having a
reduced singular subscheme (see [8]).

In this paper we study our previuos result in a general context, providing
the following extension: A foliation by curves (with isolated singularities) of a
sufficiently high degree on a compact projective manifold whose tangent bundle
is simple, is determined by its singular subscheme (Corollary 3.2).

Since stable bundles are simple (Proposition 2.5 below), this holds in partic-
ular for the manifolds studied in [19] and [22]. We shall show (also in Corollary
3.2) that it holds as well for the classes of the so-called compact irreducible Her-
mitian symmetric spaces (see [10] or [1] for the definition and classification of
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these objects) and Calabi-Yau Manifolds (see Definition 3.1 for our convention
on these).

For such foliations in projective spaces, we derive a precise generalization of
the above-mentioned results from [5] and [8] in Theorem 3.5 below.

To our belief, the interest of such results relies on the fact that they allow to
translate the algebro-geometrical, differential or even integral features of such a
foliation into ones which deal only with the geometry of a scheme of points in
the manifold. They provide, hence, a new scope to tackle the study of differ-
ential equations on projective manifolds, an area with several well-known open
problems.

In particular, they may serve as a complementary tool for the classification
of foliations on surfaces (see [3] for that of non-singular foliations and [4] for an
account on the singular case).

Although our main interest is in foliations by curves, our results are based
in one of a general character, that may be of interest in its own (Theorem 2.2
below). Thus, we will start by proving a general result for sections (with isolated
singularities) of rank-n vector bundles over n-dimensional compact projective
manifolds. Its precise statement, proof and applications are the content of the
next section.

2. The general Theorem and its applications

Throughout the paper, M = (M, g) will be a compact, connected Kähler
manifold of dimension n ≥ 2, with Kähler form Φ; L will denote an ample line
bundle on M (so that M is projective algebraic), and E = (E, h) −→ M will
stand for an hermitian vector bundle of rank n. Its sheaves of sections will be
denoted respectively by L and E and the structure sheaf of M , by OM . For an
OM -sheaf G, we will write G(r) for G ⊗L⊗r, if r ≥ 0 and G ⊗ (L∗)⊗|r|, if r < 0.

Definition 2.1. Let r be an integer and let s be a global section in H0(M, E(r)).
The set Z = Zs of points p such that s(p) = 0 will be called the singular set of
s. The closed subscheme SingS(s) = (Z,OZ) of M will be called the singular
subscheme of s. The defining ideal sheaf J = JZ of Zs will be called the singular
ideal of s. It is related with the structure sheaves by the following short exact
sequence:

0 −→ J −→ OM
s̃0−→ OZ −→ 0.

As usual, we shall say that the section s has isolated singularities if Z is zero-
dimensional (i.e. if it consists of isolated points).

Recall that on an open trivialization U ⊂ M of the bundle E, the singular
ideal J of s is given by the ideal J (U) ⊂ OM (U) generated by the coefficients
of s, relative to the trivialization.

Consider the projective space ProjH0(M, E(r)) of lines through 0 in
H0(M, E(r)). Clearly, if s′ ∈ [s] ∈ ProjH0(M, E(r)) then SingS(s′) = SingS(s).
Our general theorem provides conditions for the converse to this remark to
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hold. Recalling that a bundle E is said to be simple if H0(M, E ⊗ E∗) =
H0(M, End(E)) = C · Id, it is the following:

Theorem 2.2. Let M be a compact Kähler manifold of dimension n ≥ 2, with
an ample line bundle L −→ M and let E −→ M be a holomorphic vector bundle
of rank n. There exists an integer r0 such that, for every integer r ≥ r0, the
following condition holds:

Given a global section s ∈ H0(M, E(r)) with isolated singularities:

(1) A global section s′ ∈ H0(M, E(r)) satisfies that SingS(s′) ⊇ SingS(s) if and
only if s′ = ϕ(s), for some global endomorphism ϕ ∈ H0(M, E ⊗ E∗).

(2) In particular, if the bundle E is simple, then SingS(s′) ⊇ SingS(s) if and
only if s′ = k ·s, for some k ∈ C

∗. To wit, the class [s] ∈ ProjH0(M, E(r))
is uniquely determined by the singular subscheme SingS(s).

Proof. Fix s ∈ H0(M, E(r)) with isolated singularities and consider the Koszul
resolution

C∗ −→
{
OM → OZ → 0
JZ → 0

associated to Z = Zs (see [9]). It follows from standard arguments (see [11], for
instance) that it is given by the following complex of sheaves:

0 → ΛnE∗(−nr) s̃n→ · · · s̃3→ Λ2E∗(−2r) s̃2→ Λ1E∗(−r) s̃1→
{
OM

s̃0→ OZ → 0
JZ → 0

.

(2.1)

Now, consider the complex C∗⊗E(r) obtained from the upper sequence in (2.1).
To simplify the notation, let

Gq = ΛqE∗(−qr) ⊗ E , for q = 1, . . . , n,(2.2)

so that

Gq(r) = ΛqE∗ ⊗ E(r − qr) = ΛqE∗(−qr) ⊗ E(r), for q = 1, . . . , n.

In particular G1(r) = Λ1E∗(−r)⊗E(r) = E∗⊗E = G1. Since OZ ⊗E(r) = E(r)|Z
(the sheaf restricted to the scheme), it follows that C∗ ⊗ E(r) is given by

0 → Gn(r) sn→ · · · s3→ G2(r) s2→ E∗ ⊗ E s1→ E(r) s0→ E(r)|Z → 0.(2.3)

The long exact sequence above breaks into the short exact sequences given by

0 −→ K0(r) −→ E(r) s0−→ E(r)|Z → 0, for p = 0;(2.4)

0 −→ K1(r) −→ E∗ ⊗ E s1−→ K0(r) → 0, for p = 1;(2.5)

0 −→ Kp(r) −→ Gp(r)
sp−→ Kp−1(r) → 0, for p = 2, . . . , n − 2;(2.6)

0 −→ Gn(r) −→ Gn−1(r)
sp−→ Kn−2(r) → 0, for p = n − 1;(2.7)

after identifying the sheaves Kn−1(r) and Gn(r) through the injective map sn.
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The relevant parts of its associated exact cohomology sequences are given, for
p = 0, by

0 −→ H0(M,K0(r)) −→ H0(M, E(r))
s0
0−→ H0(M, E(r)|Z) −→ . . . ;(2.8)

for p = 1, by

0 −→ H0(M,K1(r)) −→ H0(M, E∗ ⊗ E)
s0
1−→ H0(M,K0(r))

δ0
1−→(2.9)

δ0
1−→ H1(M,K1(r)) −→ H1(M, E∗ ⊗ E) −→ H1(M,K0(r)) −→ . . . ;

for 2 ≤ p ≤ n − 2, by

. . . −→ Hp−2(M,Kp(r)) −→ Hp−2(M,Gp(r))
sp−2

p−→ Hp−2(M,Kp−1(r))
δp−2

p−→
(2.10)

δp−2
p−→ Hp−1(M,Kp(r)) −→ Hp−1(M,Gp(r))

sp−1
p−→ Hp−1(M,Kp−1(r))

δp−1
p−→

δp−1
p−→ Hp(M,Kp(r)) −→ Hp(M,Gp(r)) −→ Hp(M,Kp−1(r)) −→ . . . ;

and finally, for p = n − 1, by

. . . −→ Hn−3(M,Gn(r)) −→ Hn−3(M,Gn−1(r))
sn−3

n−1−→ Hn−3(M,Kn−2(r))
δn−3

n−1−→
(2.11)

δn−3
n−1−→ Hn−2(M,Gn(r)) −→ Hn−2(M,Gn−1(r))

sn−2
n−1−→ Hn−2(M,Kn−2(r))

δn−2
n−1−→

δn−2
n−1−→ Hn−1(M,Gn(r)) −→ Hn−1(M,Gn−1(r)) −→ Hn−1(M,Kn−2(r)) −→ . . .

Now, to prove statement (1), let s′ ∈ H0(M, E(r)) be a global section such that
Sing(s′) ⊇ Sing(s). By construction, both sections s and s′ belong to the kernel
of the map s0

0 in (2.8). Since the map s0
1 in (2.9) is given by s0

1(ϕ) = ϕ(s), it
suffices to show that there exists an integer r0 such that s0

1 is an isomorphism
for every r ≥ r0. In view of (2.9), this is equivalent to the conditions

H0(M,K1(r)) = H1(M,K1(r)) = 0, for some r ≥ r0.

A diagram chase in the cohomology sequences (2.10) and (2.11) shows that the
conditions above hold, if there exists an r0 such that

Hp(M,Gq(r)) = 0, for r ≥ r0, 2 ≤ q ≤ n, q − 2 ≤ p ≤ q − 1,(2.12)

where Gq was defned in (2.2).
The existence of such an r0 is provided by the Serre-dual of the Cartan-Serre

Theorem B (see [9]). This finishes the proof of statement (1), from which (2)
follows at once.

Remark 2.3. Let us point out in Theorem 2.2 that the section s′ is not assumed
to have isolated singularities.
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Now, for the applications of Theorem 2.2 (2), recall the notion of (Mumford-
Takemoto) L-stability of a bundle E (see [20]), its differential geometric coun-
terpart of Φ-stability (see [14, V§7]) and the following results:

Proposition 2.4. [14, (V.8.3)] Every irreducible Einstein-Hermitian vector bun-
dle (E, h, M, g) is Φ-stable

Proposition 2.5. [14, (V.7.14)] and [20, Corollary 1.8] Every Φ (or L)-stable
bundle E is simple.

For a converse of Proposition 2.4, see [23] or [6] (and further discussion in
[21], [22] or [17]). A converse of Proposition 2.5 for bundles on surfaces may be
found in [15].

We shall apply the Propositions above in the following section.

3. On manifolds with simple tangent bundle

In this section we focus on the case E = TM , the tangent bundle of M . As
usual in this context, we shall denote the sheaves of sections E and E∗ respectively
by ΘM and ΩM , and will say (following [14]) that M is Einstein-Kähler (resp.
simple) whenever TM is Einstein-Hermitian (resp. simple).

Now recall from [7] that, given a line bundle H −→ M , the projective space

ProjH0(M, ΘM ⊗H) = ProjH0(M,Hom(H∗, ΘM )).(3.1)

is the space of holomorphic foliations by curves (or meromorphic vector fields)
on M with tangent line bundle H. We shall denote it by Fol(M,H) and in
accordance, the class [s] ∈ Fol(M,H) of a global section s will be denoted by
F = Fs.

It turns out (see [7]) that the Chern class c1(H) is a discrete numerical invari-
ant in the space Fol(M) of foliations by curves on M and in particular that, if
the first Betti number b1(M) of M vanishes, then Fol(M) is the disjoint union
of the projective spaces given by (3.1), indexed by the admissible Chern classes
c1(H) ∈ H2(M, Z).

If moreover Pic(M) = Z, so that every line bundle H on M is of the form
L⊗r, for some very ample line bundle L = O(1) and some integer r ∈ Z, then
we may write Fol(M,H) = Fol(M,L⊗r) = Folr(M,L) and hence

Fol(M) =
∐

r≥r1∈Z

Folr(M,L).

It is well-known that this description holds, in particular, if M is a compact
irreducible Hermitian symmetric space (in which case, L may be taken to be the
canonical bundle, see [16] or [18], for instance).

On the other hand, we shall adopt from [12] the following

Definition 3.1. A Calabi-Yau manifold is a compact connected Kähler mani-
fold (M, J, g) of dimension n ≥ 2, such that the holonomy group Hol(g) = SU(n).
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Now we claim that Theorem 2.2 (2) holds in this context, whenever M is a
compact irreducible Hermitian symmetric space or a Calabi-Yau manifold:

Corollary 3.2. Let M be a compact projective simple manifold and let L −→ M
be an ample line bundle. There exists an integer r0 such that, for any integer r ≥
r0, the following condition holds: Given a holomorphic foliation by curves F ∈
Folr(M,L) with isolated singularities, if F ′ ∈ Folr(M,L) is another foliation
such that SingS(F ′) ⊇ SingS(F), then F ′ = F .

In particular, this holds true if M is a
(a) Compact irreducible Hermitian symmetric space, or a
(b) Projective K3 surface or a Calabi-Yau manifold of dimension n ≥ 3,

Proof. It suffices to show, in both cases, that the metric g under consideration is
Einstein-Kähler and has irreducible holonomy group, for it will then follow from
Propositions 2.4 and 2.5 that TM is simple. We just recall how this is done:
(a) This is the content of (IV.6.2) and (IV.6.3) in [14]. For a direct proof of the
stability of TM , see [16].
(b) To start with, recall that a Calabi-Yau manifold of dimension n ≥ 3 is
projective ([12, (6.2.7)]) and that the two-dimensional Calabi-Yau manifolds are
precisely the K3 surfaces ([12, (7.3.13)]).

Now, being Hol(g) = SU(n), it is irreducible and moreover, g is Ricci-flat
[1, (10.29)] and its Ricci form ρ = 0 [1, (10.30)], hence g is an Einstein-Kähler
metric [1, (11.12)].

Remark 3.3. By Proposition 2.5, Corollary 3.2 holds in case M is a complex
projective manifold whose tangent bundle is H-stable, for some ample line bundle
H −→ M . Examples of such manifolds can be found in [19], [22] or [14].

An accurate version of Theorem 2.2 (and in particular, of Corollary 3.2) can be
given in case E is a homogeneous vector bundle over a homogeneous manifold M :
Bott’s Theorem [2] is an effective tool to compute the least integer r0 satisfying
(2.12).

If L −→ P
n is the hyperplane bundle on the n-dimensional complex projective

space, this computation gives the value r0 = 1:

Proposition 3.4. [8, (1.3 (2))] Let n ≥ 2 and let L −→ P
n be the hyperplane

bundle. Let Gq(r) = (ΛqΩPn) ⊗ ΘPn((1 − q)r), where r > 0, 0 ≤ q ≤ n; then
Hp(Pn,Gq(r)) = 0 if p < q, except for H0(Pn,G1(r)), which is one dimensional.

This, together with Corollary 3.2, gives the following

Theorem 3.5. Let n ≥ 2 and let L −→ P
n be the hyperplane bundle. Let

F ∈ Folr(Pn,L) be a holomorphic foliation by curves of degree r ≥ 1, with
isolated singularities, and let F ′ ∈ Folr(Pn,L) be another foliation such that
SingS(F ′) ⊇ SingS(F). Then F ′ = F .

This result generalizes both Theorem 2.6 in [8], where SingS(F) is assumed to
be reduced, and Theorem 3.5 in [5], where n = 2 and the degree r′ used therein
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was taken to be that of a homogeneous polynomial vector field X in C
n+1 giving

rise to F , so that r = r′ − 1.
Actually, these two results were the starting point of the present paper.
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