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ON POWER MAPS IN ALGEBRAIC GROUPS

Robert Steinberg

Our goal in this note is a simple proof of the following result.

Theorem 1. Let G be a (connected) semisimple algebraic group, p the charac-
teristic exponent of the base field K, and n a positive integer which is prime to
p. Then the power map Pn on G defined by x → xn is surjective if and only
if n is prime to the bad primes for G and also to the central primes, those that
divide the order of the center of G.

It will be recalled that p is defined to be 1 or the characteristic of K according
as that characteristic is 0 or not, while a bad prime is one which divides some
coefficient of the highest root of some simple component of G. For the simple
groups, the bad primes are: 2 for all types except An, 3 for all exceptional types,
and 5 only for the type E8; and the central primes (all of which occur if G is
simply connected and none if G is adjoint) are: all primes dividing n+1 for type
An, 2 for types Bn, Cn, Dn and E7, and 3 for type E6.

Chatterjee [C, Theorem C] has proved this result under the restriction that
p = 1, i.e., that char K = 0. Our proof is considerably simpler than his, in
part because his proof is imbedded in a development in which a number of other
interesting results are obtained. Following his general approach, we base our
proof of Theorem 1 on the following result (see [C, Theorem 4.1]).

Theorem 2. Let G be an arbitrary (linear) algebraic group and assume, as in
Theorem 1, that n is prime to p. Then Pn is surjective on G if and only if n is
prime to |ZG(u)/ZG(u)0| for every unipotent element u of G.

We call attention also to Proposition 4 below in which a necessary and suffi-
cient condition for the surjectivity of Pn on the set of semisimple elements of an
algebraic group is given.

We continue with our proof of Theorem 2 (given in Propositions 3 and 4
below) and conclude with a brief discussion of how Theorem 2 implies Theorem 1.
Although the transition proceeds exactly as in [C], we want to at least indicate
here how the assumptions on n come into play.

To start our development, we prove:
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Proposition 3. Assume, as in Theorem 2, that G is any algebraic group, p is
the characteristic exponent of the base field K and n is a positive integer prime
to p.

(a) If u is any unipotent element of G, there exists a unique unipotent ele-
ment v of G such that vn = u. Thus Pn is surjective on the unipotent
elements of G. Further ZG(v) = ZG(u).

(b) If x is any element of G and x = su is its Jordan decomposition (so that
s and u are its semisimple and unipotent parts), then x is an nth power
in G if and only if s is an nth power in ZG(u).

(c) Pn is surjective on G if and only if it is surjective on the semisimple
elements of ZG(u) for every unipotent element u of G.

Proof. (a) If p = 1, this holds (as in [C]) because every unipotent element is
contained in a unique 1-parameter subgroup. If p �= 1, then the order of every
unipotent element is a power of p. Let q be a power of p so large that wq = 1
for every unipotent w in G, and let a and b be integers such that an + bq = 1.
Then v = ua is a unipotent element such that vn = u, and it is unique because
from vn = u it follows that v = ua. Finally, the centralizers ZG(u) and ZG(v)
are clearly contained in each other. We note that for the surjectivity here,
the condition (n, p) = 1 is also necessary, at least whenever G has nontrivial
unipotent elements, for if it fails, so that p is a prime and p divides n, then any
unipotent element of the maximal possible order cannot be an nth power.

(b) Assume that x is an nth power in G, so that x = yn for some y. Let
y = tv be its Jordan decomposition. Then s = tn and u = vn. Since t ∈ ZG(v),
it follows from (a) that t ∈ ZG(u) and thus that s is an nth power in ZG(u).
Clearly the converse holds.

(c) This follows at once from (b). �
In view of (c), Theorem 2 follows from:

Proposition 4. If H is any algebraic group and p is the characteristic exponent
of the base field K, then Pn is surjective on the semisimple elements of H if and
only if n is prime to |H/H0|′, the part of the number |H/H0| that is prime to p.

Proof. We use (∗) if yH0 is semisimple as an element of H/H0, i.e., if its order
is prime to p, then ys ∈ yH0. Here ys is the semisimple part of y. Since the mor-
phism of algebraic groups f : H → H/H0 preserves the Jordan decomposition,
f(ys) = f(y)s = f(y), the last because f(y) is semisimple. Thus ys ∈ yH0 and
(∗) holds. Now assume in Proposition 4 that Pn is surjective on the semisimple
elements of H. Then by (∗) it is also surjective on the elements of H/H0 of
orders prime to p. Thus (∗∗) n is prime to |H/H0|′, which proves the easy half
of our proposition.

Consider the converse, where it is assumed that (∗∗) holds. Let s be any
semisimple element of H and m its order in H/H0. Then m divides |H/H0| and
it is prime to p because s is semisimple. Thus (m, n) = 1 by (∗∗). Assuming,
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from now on, only the condition (m, n) = 1 on s and no condition at all on H,
we shall show that s is an nth power in H.

We reduce first to the case in which sm lies in the center of H0, by replacing
H by ZH(sm). This may be done because sm, since it is in H0, lies in a torus
in H and hence also lies in ZH(sm)0.

We next reduce to the case in which H0 is a torus T . Since s acts, by the
conjugation is, as a semisimple automorphism of H0, it stabilizes a maximum
torus T [St, Theorem 7.5], and we may replace H by 〈T, s〉, and thus H0 by T ,
because sm lies in T , in fact lies in every maximal torus of H, because it is a
semisimple element of the center of H0.

We next show that Pn is surjective on ZT (s). Let σ denote conjugation by s,
acting on T , so that ZT (s) is just the set of elements of T that are fixed by σ.
We have σm = 1 because sm ∈ T . Now if x ∈ ZT (s) is arbitrary we must find
a t ∈ ZT (s) such that tn = x. Since T is a torus, there exists t0 ∈ T such that
tn0 = x. Although σ might not fix t0, it does fix t1 =

∏
σi(t0) (0 ≤ i ≤ m − 1)

and t2 = tn0 = x. Further, tn1 = xm and tn2 = xn, the first because σi(t0)n =
σi(tn0 ) = σi(x) = x for every i. Since (m, n) = 1, there exist integers a and b
such that am + bn = 1. Then t = ta1tb2 is fixed by σ and tn = xamxbn = x, as
required.

Since sm ∈ ZT (s), it follows from what has just been shown that sm = tn for
some t ∈ ZT (s). Then, with a and b as above, (tasb)n = tansbn = samsbn = s.
Thus s is an nth power in H, and Proposition 4 and Theorem 2 are completely
proved. �

Consider now Theorem 1. The proof given in [C] that this result follows from
Theorem 2 works in all characteristics and we have nothing new to add to it.
Thus we shall discuss it very briefly. One must show, of course, that the primes
that occur as divisors of the various numbers |ZG(u)/ZG(u)0| for the groups
in Theorem 1 are, aside from p, the bad primes and the central primes. If u
is a regular unipotent element of G, one which is contained in a unique Borel
subgroup B, it is easy to see that ZG(u) = Z(G) · ZU (u) (see [S-St, III 3.7(a)])
with U the unipotent radical of B, and then that |Z(G)| divides |ZG(u)/ZG(u)0|.
Thus the central primes all occur. For the bad primes, other than p, one uses
regular unipotent elements of suitably chosen semisimple subgroups of G. That
no other primes can occur is a result of Springer [S-St, III 3.17], which holds,
remarkably, even if the unipotent element u is replaced by a collection of several
such elements.
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