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COMPLETE INVARIANTS FOR COMPLEX SEMISIMPLE
HOPF ALGEBRAS

SUMANTH DATT, VIJAY KODIYALAM, AND V.S. SUNDER

ABSTRACT. We obtain a complete (and finite) list of isomorphism invariants of
complex semisimple Hopf algebras of a fixed dimension. We do this by proving
a generalisation of a theorem due to Procesi and Razmyslov (which, in turn, was
used to prove Artin’s conjecture).

1. Introduction

In this paper, we consider the problem of distinguishing two complex semisim-
ple Hopf algebras of dimension n specified in terms of their structure constants
with respect to some bases. As a solution to this problem, we give a finite list of
polynomials in the structure constants that are isomorphism invariant and that
distinguish the isomorphism classes.

The methods are those of classical invariant theory [Wyl] supplemented by the
diagrammatic formalism of Hopf algebras due to Kuperberg [Kpr| as expounded
by Kauffman and Radford [KffRdf]. We also rely on the theorem of Stefan [Stf]
that there are only finitely many complex semisimple Hopf algebras of any fixed
dimension.

In §2 we show that complex semisimple Hopf algebras (of dimension n) form a
nonsingular subvariety of the variety of complex bialgebras (of dimension n) and
that polynomial invariants separate their isomorphism classes. We devote §3 -
which is self contained - to a proof of a result in invariant theory that generalises
the Procesi-Razmyslov theorem proving Artin’s conjecture. §4 describes the
finite list of polynomial invariants which distinguish Hopf algebras. A final §5
contains some remarks, examples and questions.

2. The variety of semisimple Hopf algebras

For the rest of this paper, we fix a positive integer n which will be the dimen-
sion of the bialgebras and Hopf algebras that we consider. Let V' be a complex
vector space of dimension n and vy, ve, - - v, be a fixed basis of V.

A bialgebra structure on V is specified by giving its structure constants with
respect to this basis. With the usual notations u, A, n and € for the multiplica-
tion, comultiplication, unit and counit maps respectively, a bialgebra structure
on V is specified by giving complex numbers p?, AF i and ¢ - here and in
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the sequel, all indices range from 1 to n and we will use the Einstein summation
convention where each index that occurs as an ‘upper’ index and a ‘lower’ index
in a product is summed over its range - that satisfy the following equations:

HikHi = Mgl
AIAFT = ATATF
W= 86 =n'u;
A?et: 5 :Agtet

pightt = AYAT g
n'ad =
,u:f]-et = €€
ntet = 1

Thus the bialgebra structures on V form an affine variety B C A where d =
2n3 + 2n.

These equations are easier to appreciate in the symbolic notation due to
Kuperberg [Kpr| as explained in Kauffman and Radford [KffRdf]. We will give
a very brief summary of this. The bialgebra structure maps are represented as:

N\ /
T — A n— and —e€,
/ N\
while the equations defining the variety B are symbolically written:
N\ N\
(2.1) e e e T T
/ /
/ /!
(2.2) - A - A - = - A - A —
\ N\
\
/
/
(2 4) — A — € = — = — A — €
N\
\ S A = o
(2.5) N N
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/! n -

(2.6) n — A =
N n -
N — €

(2.7) nwo— € =
/! — €

(2.8) n — € = 1.

Equations (2.1) - (2.8) are to be interpreted thus. Each is an equality of one
or more ‘pictures’. A picture with k inputs and [ outputs represents a map from
V®F to V®!. By convention, the inputs for each picture are read anticlockwise
and the outputs clockwise. A general endomorphism p of V is represented by
— p — while the identity endomorphism of V' is represented by —.

There is also a structure constant interpretation for such a picture as a tensor
with [ upper and k lower indices. A picture that has a ‘bound’ arrow - one that
is neither an input nor an output - involves a contraction of a tensor. In the
structure constant interpretation of a pictorial equation, each arrow is decorated
with an index, bound arrows correspond to summing over the corresponding
index, and the equation is deemed to hold for all values of the indices of the
‘free’” arrows.

We will illustrate these interpretations for a picture that will play a particu-
larly important role in the sequel. Consider the picture in Figure 1 which has one

N

m —=

FIGURE 1. An element of V*

input and no outputs and so represents an element of V*. In terms of structure
constants, this corresponds to the picture of Figure 2 which is read as uf,. The
free arrow here is labelled by ¢ and the bound arrow by t.

Fix a point (g, A, n,€) on B. This gives a bialgebra structure on V for which,
for instance, v;v; = uﬁjvt. The trace of v; in the left regular representation is
therefore uf,. Hence the picture in Figure 1 represents the trace on V' in its left
regular representation.

Similarly, it may be verified that the picture in Figure 3 represents the trace
on V* in its left regular representation. In order to simplify drawing various
pictures that we will need, we will henceforth use — ¢ for the picture in Figure
1 and h — for the picture in Figure 3.
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N

m  —=

FIGURE 2. Structure constant interpretation

/

D

FIGURE 3. An element of V

There is a natural action of the group G = GL,(C) on A% defined as follows:
For a point (i, A,n,€) = (uék, Agk, n',€) € Al and g € G, define g-(u, A, 7, €) =
(/175,17,6) where

T A 7 H (S YT
X7k —1 j _k

AT = (g7 ) 9h9r AT,
i = g, and

€ = (9_1)5517'

It is easy to see that this action carries B onto itself and that points of B lie
in the same G-orbit precisely when they correspond to isomorphic bialgebra
structures on V.

We will be interested in the points on B that correspond to semisimple Hopf
algebra structures. We summarise some well known facts about such Hopf
algebras in the following proposition. See [LrsRdf] and [LrsRdf2] for proofs.
Recall that a two-sided integral in a Hopf algebra is an element h such that
hx = e(x)h = zh for each x in the algebra.

Proposition 1. Let H be a complex semisimple Hopf algebra of dimension n
with antipode S and let H* be the dual Hopf algebra. Let ¢ € H* (resp. h € H)
be the trace on H (resp. H*) in its left reqular representation. Then,

(a) H* is also semisimple,

(b) & (resp. h) is a two-sided integral for H* (resp.H ),
(¢) #(h) =n, and
)

(d) S is involutive, i.e., S% = idy. |
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Let SCH be the subset of B of all points that give semisimple Hopf algebra
structures on V.

Lemma 2. For a point (1, A,n,€) € B, the following two conditions are equiv-
alent :

(i) (u,A,m,€) € SCH.
(ii) The following pictorial equations hold:

N\ — €
(2.9) h — u — = = h —- p —
h — /S
—¢ /
(2100 — A — ¢ = - o A S
N n—
(2.11) h — ¢ = n.

Proof. Since the pictorial equations are equivalent to the requirements that ¢
and h be two-sided integrals for H and H* respectively with ¢(h) = n, Proposi-
tion 1(b,c) show that (i) = (i7). To see the reverse implication, consider a point
(1, A;n,€) € B satisfying the equations (2.9) - (2.11) and define an endomor-
phism S of V' by the equation:

- u o~ A =
S = L
10} h

The calculation in Figure 4 below shows that }_ ) S(z))z) = €(z) 1 (in
‘Sweedler’s notation’),

while another such similar calculation shows that »_ ) z(1)S(z@2)) = €(z).1.
Hence this bialgebra structure on V' admits an antipode and is therefore a Hopf
algebra structure on V. Consider now the calculation in Figure 5 where the
first equality follows from equation (2.4) and the second since the trace of the
identity endomorphism of V' is n. This shows that ¢(h) = n # 0 and therefore
by [LrsSwd] the Hopf algebra structure on V' is semisimple. Thus (i7) = (i). O

Corollary 3. Every point of SCH satisfies the following pictorial equation:

- pu — A - p — A —

l I l ! = n' (=)

¢ h ¢ h
Proof. The lemma states an equality of two endomorphisms of V' - the right side
being n? times the identity endomorphism , and the left side being the square
of the endomorphism

(2.12)

uw o o— A —
! T ;
1) h

—
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m=——

PN |

—= D ——=m ——= €q 1byﬂ —D m —

> ——=0

h—=D——=m—=phi h phi

eq 1lbyn >< eq 1byn m———=0D
—= D ————=m —= / \

eta——=

eq 1oy / e lbyn =y = epsicta —

FIGURE 4. Antipode verification

e

D eq &g n

FIGURE 5. Semisimplicity verification

this latter endomorphism is, however, seen to be nothing but nS (see the dis-
played picture defining n.S in the proof of Lemma 2). An appeal to Proposition
1(d) completes the proof. O

Proposition 4. The subset SCH is a nonsingular G-stable (closed) subvariety
of B that is a union of finitely many closed G-orbits.

Proof. Since isomorphic bialgebra structures on V lie in the same G-orbit, SCH
is a union of G-orbits and hence G-stable, while Lemma 2 shows that SCH is
a closed subvariety of B. By the results of Stefan - see Corollary 1.5, Corollary
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1.6, Theorem 2.1 of [Stf] - and Proposition 1(a), there are only finitely many
orbits of semisimple Hopf algebras in B each of which is open in B and therefore
also in SCH. Thus each such orbit is also closed in SCH and being the finite
disconnected union of closed nonsingular orbits, SCH is itself nonsingular. [
Consider the dual action of the group G on the coordinate ring R = (C[u;:- k> Ag k,
of A%, which is a polynomial ring in d = 2n3 + 2n variables. Let R® denote the
ring of invariants. Given a bialgebra A of dimension n and an element f € R®
one may ‘evaluate f on A’ by taking the structure constants of A with respect
to an arbitrary basis as the coordinates of a point on B and evaluating f at that
point. The result, which we will denote f(A), is independent of the chosen basis
since a change of basis corresponds to moving in a G-orbit on B and f € RS,

Corollary 5. Two complex semisimple Hopf algebras Hy and Hy of dimension
n are isomorphic if and only if for each f € R®, we have f(H,) = f(Hs).

Proof. If H; and H, are isomorphic, then they have the same structure con-
stants with respect to appropriately chosen bases and therefore for each f € RY,
f(Hy) = f(H2). Conversely, if H; and Hs are not isomorphic, then their struc-
ture constants with respect to any choice of bases belong to different G-orbits in
SCH. Since the G-orbits in SC'H are closed by Proposition 4, it follows from
what [MmfFgrKrw] refers to as the ‘only really important geometric property
implied by the reductivity of G’ - see Corollary 1.2 of Chapter 1, §2 - that there
isan f € RS that is 1 on H; and 0 on Hs. O

Remark 6. The results of this section hold, mutatis mutandis, when SCH is
the subset of semisimple and cosemisimple Hopf algebra structures - and there-
fore the choice of notation SCH - of the variety B of bialgebra structures on an
n-dimensional vector space over an algebraically closed field of arbitrary charac-
teristic.

3. Invariants of tensors

Let V' be a complex vector space of dimension n, and let G = GL(V). For
non-negative integers ¢ and b, let V;! be the G-module V® t @ (V*)® .

Given tuples (¢;,b;) of non-negative integers, for i = 1,2,--- |k, consider the
G-module defined by W (= W({(t;, ;) : i =1,2,-- ,k}) ) = &F_, V)", We wish
to describe, in this section, the polynomial invariants of the G-module W - by
which is meant the following: regard W as an affine variety with a G action and
consider the dual action on the coordinate ring C[W*]; a polynomial invariant
of W is just a G-invariant element of C[IW*].

Explicitly, choose a basis v1, - - , v, of V and let v!, - - - o™ be the dual basis of
V*. Then, a basis of Vbt is given by all vy, @y, ®- - -®vy, vt ®- - -@v' where the
indices uy, - - ug, 1, -+ ,lp all range from 1 to n. Let ﬂ?}.','l'b“‘ be the coordinate

function on V;! that gives the coefficient of vy, ® vy, ® -+ @ vy, @V @ -+ @ VM.
Thus C[(V;})*] is identified with the polynomial ring C[T}!! ;"] in nb+t variables.

77i7 61‘}
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The group G is identified with GL,,(C) using the basis of V. The dual action of
G on this polynomial ring is then given by:

t b
1y I
g@i = [l e TIb o,
i=1 j=1
where, of course, the summation convention is used.
More generally, for W = W ({(t;,b;) : i =1,2,--- , k}), we identify the coordi-
nate ring C[W*] with the polynomial ring (C[T(z)zllqb“] in Zk

1=

, nbitti variables.
Here, i ranges from 1 to k and all the indices of the T'(7) from 1 to n. This poly-

U,

nomial ring has an N*-grading where deg(T'(i),,..,, ') = (0,0,---,0,1,0,---,0)

- where the 1 is in the i*" place - independent of the sub- and super-scripts. The
G-action preserves this grading and so the ring of invariants is a graded subring
of C[W™].

Fix W = W({(t;,b;) : i =1,2,--- ,k}). By a picture invariant on W we

shall mean the following: it is determined by the data of (a) a k-tuple of non-

negative integers m = (my,--- ,my) such that Ele mit; = Zle m;b; = N for

some N € N, and (b) a permutation o € Xy - the symmetric group on N letters.
The associated picture invariant is the following element of C[W*]:

ﬁ ﬁ T(i)T:(t p<i Mptp+(G—1)t;+1)’ ' :v(f p<i mptp+it;)
=1\t (Z p<i mpbp'*'(j—l)bi‘*'1)7 ’ (z p<i MpbpFib;)
ie., we take N dummy indices r1,--- ,7y, take a product of my T'(1)’s, mq
T(2)’s, - -+, my T'(k)’s and write the lower indices in order and the upper indices
in the permuted order given by o. It should be clear that this ‘picture invariant’
is homogeneous of degree (my,---,my) in the N¥-grading. (We will soon show
- see Proposition 7 - that picture invariants are indeed invariant.)

By means of one example - which is the main case of interest for our purposes -

we will explain how picture invariants are represented by pictures. Suppose that
W =ViaV2aViaVL. Wewill use i, A, n and € instead of T'(1),T/(2), T(3) and
T(4). Consider, for instance, the 4-tuple (2,1,1,0) for which 2(1,2) + 1(2,1) +
1(1,0) + 0(0,1) = (5,5) and the permutation (123)(45) € 5. The picture
invariant associated to this data is equal to p;2, py2,. A7L™sn™. To this ‘picture
invariant’, we shall associate the pictures in Figure 6.
In Figure 6, in the picture on the left, we have numbered the input and output
arrows so as to make clear the role of the permutation in drawing the invariant.
So briefly, a picture invariant - in this case, i.e., when &k = 4 and W is specified
by the tuple {(1,2),(2,1),(1,0),(0,1)} as above - is constructed by taking, in
order, a collection of basic pictures of the types

N /!

I — A n — — €

/ N\
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D

N\

-
N
/

e

CE
o ] i

FIGURE 6. An example of a picture invariant

the numbers of each of which are specified by the 4-tuple, and then joining the
it" output arrow to the (i) input arrow for each i to get a ‘closed picture’,
i.e., one with no free arrows. We will not distinguish between a picture invariant
and any picture that represents it.

Note that if a picture invariant is disconnected - as in the example considered
- then, its components also define picture invariants, the product of all of which
gives the full picture invariant.

We may now state our main observation about the picture invariants.

Proposition 7. Let V be a finite dimensional complex vector space and (t;,b;)
fori=1,2,---  k be tuples of non-negative integers. Let W = EB?ZIVE: and set
R = C[W*]. Then, RY, for the G = GL(V) action, is linearly spanned by the
picture invariants on W.

Before proving this, we pause to point out a corollary - see Theorem 1.3 of
[Prc] and [Rzm].

Corollary 8. The ring of invariants of the group GL,(C) acting by simulta-
neous conjugation on k square matrices A(1),--- , A(k) is linearly spanned by
monomials in the tr(A(i1)A(iz) - - - A(i;)) where A(i1)A(i2) - - - A(i;) is any pos-
sible (non-commutative) monomial.
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Proof. This corresponds to choosing all the k tuples to be equal to (1,1). The
basic pictures in this case are — A(i) — and so any connected picture in-
variant must be as illustrated in Figure 7. In terms of the entries of the ma-

al ai2

FIGURE 7. A connected picture invariant

trices A(), this picture invariant evaluates to tr(A(i1)A(i2) - - - A(3;)). A gen-
eral picture invariant that is possibly disconnected is therefore a monomial in
the tr(A(i1)A(i2) - - - A(4;)) and now an appeal to Proposition 7 completes the
proof. O

Proof of Proposition 7. We need to see that the picture invariants span the in-
variant ring C[W*]¢. Note that C[W*] = Symc(W*) = @g>0Sym&(W*)
= Ba>0 D{(my, ,mp):Sims=d} ®f:13ym(7cni((‘/bi")*) - as G-modules. Hence it suf-
fices to see that picture invariants span each (®%_; Symg" ((‘/thL)*))G

As the natural map of ®@}_, ((V,)*)®™ onto ®¥_, Sym{*((V;*)*) is a G-map,
the reductivity of G implies that (®F_, ((V; )*)®mi)G maps onto (®F_, Sym{" ((V,* )*))G
Clearly, ®%_, ((Vbi_'i )*)®™i is isomorphic as a G-module to Vi) where N = 3", m;b;
and M = Zz mltl

We now appeal to the fact from classical invariant theory - see Theorem 4.3.1
in [GAmW]I]] - that non-zero GL(V) invariants exist in V{J only if N = M and
in that case the space of invariants is spanned by all v,, @ Uy, ® -+ - Vpy @ VD @
v @ - .- p"e(V) as ¢ ranges over Xy .

Chasing through the isomorphisms, the images of the G-invariants in V' are
seen to be precisely the picture invariants, thereby completing the proof. O

4. Invariants of semisimple Hopf algebras

Let V be a finite dimensional complex vector space, G = GL(V) and W =
Vi @ VE @ Vi @ VP for which we label the coordinate tensors p, A, 7 and e.
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Corollary 5 may be restated to say that isomorphism classes of complex
semisimple Hopf algebras are separated by the polynomial invariants of W. By
Proposition 7, the phrase ‘polynomial invariants’ of the previous sentence may
be replaced by the phrase ‘picture invariants’ in this case, i.e., built out of u, A, n
and e. Our goal is to identify a suitable ‘small’ subset of the picture invariants
which accomplishes the same task. In this section, we shall be slightly sloppy
and also refer to a scalar multiple of a picture invariant as a picture invariant.

Definition 9. Two picture invariants on W are said to be equivalent modulo
SCH if they agree on SCH.

Pictorially, if a picture invariant can be transformed into another by ‘moves’
that locally replace a subpicture appearing on one side of an equality in equations
(2.1)-(2.12) by one appearing on the other, then, the two picture invariants are
equivalent modulo SCH. Thus, for instance, Corollary 3 shows that any arrow
in a picture may be replaced by a more complicated sub-picture which contains
no directed path from the beginning to the end, so that the resulting picture is
equivalent modulo SCH to the initial one.

In order to state our next proposition we will find it convenient to introduce
some notation for iterated products and coproducts - see p.108 of [Kpr]| - as well
as for certain picture invariants. First, let

— A= == =—pu —

and for p,q > 1, inductively define

/ / /
— A, = S5 A S Ap_q :
N\ N\
and
N\ N N
g — = Hg—1 — [ —
/ /

Also, if p=(p1,--- ,pk), 4= (q1,-- ,q) are tableaux of equal size N (say)
. k 1
-le,pr > Z2pe >0, > >q>0,and Yo pi =30, ¢; =N - and
if 0 € ¥, we shall define the picture invariant Z(p,q, o) to be the following
picture:
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h‘ - Apl :ufh - ¢

Pr

| |/

where the central ‘box’ labelled ¢ is meant to indicate that the i-th output of the
picture to the left of the box is to be joined to the o(i)-th input of the picture
to the right of the box, and we have used the symbols i and ¢ for the pictures
associated with them in Figures 3 and 1 respectively.

Proposition 10. Any picture invariant on W is equivalent modulo SCH to an
Z(p,q,0). If the total number of p’s and A’s in a picture invariant is k, then
we may choose Z(p,q,0) so that Y p; = q; < 13k/2.

Proof. Begin with a picture invariant, say P, on W. From its ‘equivalence class
modulo SCH’, pick a picture invariant, say P, for which the total number
k(Py) of w's and A’s is minimal. Next, pick a picture invariant, say P, in the
‘equivalence class modulo SCH’ of P such that the total number of n’s and €’s
in P is minimal among all picture invariants @ in the ‘equivalence class modulo
SCH’ of P for which k(Q) = k(Py).

We assert that P, has no n’s or €’s. For suppose that there is an n. Its output
must go into either a p or a A or a e. In these cases, it follows from equations
(2.3), (2.6) and (2.8) that the minimality requirements defining P, (on u’s and
A’s in the first two cases, and on 7’s and €’s in the last case) are violated. A
similar argument shows that P, cannot have any €’s either.

Since P; is a closed picture - i.e., has no free arrows - it is easy to see that
the number of u’s = number of A’s = [, where 2l = k(P) < k(P) = k; from
which it follows that the total number of arrows in P, is 3. Now use Corollary
3 to replace each arrow of P, to get an equivalent picture modulo SCH, say Ps,
with 13[ each of the p’s and A’s - the original | together with the 4 new ones
introduced for each of the 3/ arrows replaced. (Recall that each h (resp., ¢) is a
picture with a self-loop containing one A (resp., p).)

We claim that P3 has no directed loops - except possibly for self loops on the
w's and A’s that are inherent in h and ¢. Note first that the only arrows of
P5 are the newly introduced ones; and the newly introduced substitutes for the
edges of P, are seen to not contain any edges that can be part of a non-trivial
loop. This establishes the claim about ‘no loops in P3’. Further, an inspection of
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the newly introduced substitutes for the edges of P, also reveals that Ps; contains
no directed edge from a p to a A.

To finish the proof it suffices to see that if a picture invariant on W (a)
involves only p’s and A’s, (b) has no directed loops except for self loops, and (c)
has no directed edge from a p to a A, then such a picture invariant is necessarily
equivalent modulo SCH to an Z(p, q,0).

We prove this as follows. Begin with such a picture invariant and delete all
arrows that go from a A to a . Consider a connected component of the picture
that remains. Each such component contains either only u’s or only A’s. Fix
a component, say C, containing only A’s, say p of them. Each edge of C' feeds
into a different A (since the ‘in-degree’ of A is one) so there are exactly p edges.

Let C'y denote the graph obtained by removing self-loops from C' and regarding
the remaining graph as an undirected graph. We assert that C is a tree. To see
this, since it is clearly connected, it is enough to verify that C; contains no loops.
Suppose L were such a loop. Let us associate the ordered pair (d;p, doyet) of ‘in-’
and ‘out’-degrees to every vertex of L when regarded as a vertex of the directed
subgraph of C' corresponding to L. Each such ordered pair must d priori be
(1,1),(2,0) or (0,2); but our observation about ‘no directed loops in C” means
that not all pairs can be (1,1). So at least one vertex must correspond to (2,0)
or (0,2). Since the sum of the in-degrees (as also the out-degrees) of all the
vertices of L must be equal to the number of edges of L, we may conclude that
at least one vertex of L must have in-degree 2; but our graph C contains only
A’s which have in-degree 1.

Since a tree with p vertices has exactly (p — 1) edges, we deduce that C
contains exactly one self loop.

Let C5 be the picture obtained from C' as a result of adding all those arrows
of P3 which emanated from a A of C and terminated in a p. It is a consequence
of co-associativity in Hopf algebras, that C' is ‘equivalent modulo SCH’ to the
standard picture (independent of the structure of the tree C):

/
hHApf'
N

(We have been slightly glib in using the expression ‘equivalent modulo SCH’
for general pictures which are not picture invariants (but more general tensors);
we trust the meaning should be clear.)

A dual verification shows that a component containing only u’s - say g of
them - is equivalent modulo SC'H to the picture
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Let k denote the number of components (such as C' above) which contain only
A’s ; and suppose p; > - -+ > pi is the non-increasing sequence of the numbers of
vertices in these components. Let [ and ¢; > -+ > ¢; denote the corresponding
numbers for the ‘only p components’. It should then be clear that our picture
invariant Ps (and hence also P) is equivalent modulo SCH to Z(p,q,0) for an
appropriately chosen permutation o.

Finally, ¥p;, = ¥¢; = 131 < 13k/2. O

Theorem 11. Two complex semisimple Hopf algebras Hy and Ho of dimension
n are isomorphic if and only if for every positive integer N, tableauzr p,q of
size N and permutation o € Xy, we have Z(p,q,0)(H1) = Z(p,q,0)(Hz). It
suffices to verify this only for N < (2n + 1)(2”2+5),

Proof. By Corollary 5, H; and Hj are isomorphic if and only if f(Hy) = f(H2)
for all f € RY. Now Proposition 7 and Proposition 10 immediately imply the
first assertion of the theorem. The bound on N follows from computational
invariant theory - see §4.7 of [DrkKmp]. By Proposition 4.7.16 and Theorem
4.7.4 of [DrkKmp] RY is generated as an algebra by its elements of degree at
most k = %(2713—|—2n)(n—i—1)2(2n—|—1)2"2 - the numbers 2n3+2n, n+1, 2n+1 and
n? being upper bounds for what they call r, C, A and m respectively. Therefore
picture invariants involving at most k& p’s and A’s separate isomorphism classes
of semisimple Hopf algebras. Now the second assertion of Proposition 10 finishes
the proof. O

5. Remarks and questions

This section is a collection of a simple example, some possibly naive questions
and a possibly rash conjecture.

Example 12 (Group algebras). Ewvaluated on a semisimple Hopf algebra H, we
may write

Z(p,q,0)(H) = (Ap,(h) @@ Ap (h) [ 0| Bg,(9) @ -+ @ Ag,(0))

where this means: compute the elements of H®N and (H*)®N given by the left
and the right sides of the above expression and pair them off by pairing the i-
th tensor factor on the left with the o(i)-th tensor factor on the right. In the
case when H is the complex group algebra of a finite group G, it is not hard
to see that these picture invariants give essentially the data of the number of
solutions in G of all systems of equations of the form m; = mg = ---my =1
where 1 is the identity element of G and mq,--- ,m; are monomials in the (non-
commuting) variables Xy, -+ , Xy. Theorem 11 then implies that - as can also be
seen by a pleasant application of the inclusion-exclusion principle - these numbers
determine the group G.

Question 13 (Relations between invariants and reconstruction). A natural ques-
tion that arises is what the “second fundamental theorem” for these invariants is.
Explicitly, consider a polynomial ring in the infinitely many variables X (p q.0)
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and determine the ideal I, of all polynomials that vanish when evaluated on any
n-dimensional semisimple Hopf algebra. A related problem is to reconstruct the
Hopf algebra from the invariants.

Conjecture 14 (The characteristic p case). We conjecture that the picture in-
variants separate isomorphism classes of semisimple and cosemisimple Hopf al-
gebras over an algebraically closed field of arbitrary characteristic. Note that
the analogue to the Procesi-Razmyslov theorem has been proved by Donkin in
[Duk] and it is not clear how to interpret this pictorially. Our “justifications” for
making this conjecture are the results of Etingof and Gelaki - see [TngGlk] - on
lifting theorems from characteristic p to characteristic 0.

Question 15 (subfactors). The original motivation for considering this prob-
lem comes from subfactor theory where the problem we wish to solve is: decide
whether or not two finite-depth hyperfinite subfactors are isomorphic. Consid-
ering the gauge group action on the space of flat connections on the graph in-
variants, we expect that a similar invariant theoretic answer must exist. The
difference now will be that the groups involved are real Lie groups acting on
smooth manifolds. This question is settled in [KdlSnd].

Question 16 (The general isomorphism problem). Is there an explicit decision
procedure for the isomorphism problem for general (not neccessarily semisimple)
finite - dimensional complex Hopf algebras ¢

Question 17 (Efficient computability). This relatesto finding better bounds on
the number and size of invariants needed to distinguish semisimple Hopf algebras.
In particular, can this be ‘done in polynomial time’?
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