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THE FUGLEDE SPECTRAL CONJECTURE

HOLDS FOR CONVEX PLANAR DOMAINS

Alex Iosevich, Nets Katz, and Terence Tao

Abstract. Let Ω be a compact convex domain in the plane. We prove that
L2(Ω) has an orthogonal basis of exponentials if and only if Ω tiles the plane by
translation.

0. Introduction

Let Ω be a domain in R
d, i.e., Ω is a Lebesgue measurable subset of R

d with
finite non-zero Lebesgue measure. We say that a set Λ ⊂ R

d is a spectrum of Ω
if {e2πix·λ}λ∈Λ is an orthogonal basis of L2(Ω).

Fuglede Conjecture. ([Fug74]) A domain Ω admits a spectrum if and only if
it is possible to tile R

d by a family of translates of Ω.

If a tiling set or a spectrum set is assumed to be a lattice, then the Fu-
glede Conjecture follows easily by the Poisson summation formula. In general,
this conjecture is nowhere near resolution, even in dimension one. However,
there is some recent progress under an additional assumption that Ω is con-
vex. In [IKP99], the authors prove that the ball does not admit a spectrum in
any dimension greater than one. In [Kol99], Kolountzakis proves that a non-
symmetric convex body does not admit a spectrum. In [IKT00], the authors
prove that any convex body in R

d, d > 1, with a smooth boundary, does not
admit a spectrum. In two dimensions, the same conclusion holds if the boundary
is piece-wise smooth and has at least one point of non-vanishing curvature. The
main result of this paper is the following:

Theorem 0.1. The Fuglede conjecture holds in the special case where Ω is a
convex compact set in the plane. More precisely, Ω admits a spectrum if and
only if Ω is either a quadrilateral or a hexagon.

Our task is simplified by the following result due to Kolountzakis. See [Kol99].
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Theorem 0.2. Convex non-symmetric subsets of R
d do not admit a spectrum.

Thus, it suffices to prove Theorem 0.1 for symmetric sets. Recall that a set
Ω is symmetric with respect to the origin when x ∈ ∂Ω if and only if −x ∈ ∂Ω.

This paper is organized as follows. The first section deals with basic properties
of spectra. The second section is dedicated to the properties of the Fourier
transform of the characteristic function of a convex set. In the third section we
prove Theorem 0.1 for polygons, and in the fourth section we prove that any
convex set which is not a polygon does not admit a spectrum, thus completing
the proof of Theorem 0.1.

1. Basic properties of spectra

Let

(1.1) ZΩ =
{

ξ ∈ R
d : χ̂Ω(ξ) =

∫
Ω

e−2πiξ·x dx = 0
}

.

The orthogonality of a spectrum Λ means precisely that

(1.2) λ − λ′ ∈ ZΩ for all λ, λ′ ∈ Λ, λ �= λ′.

It follows that the points of a spectrum Λ are separated in the sense that

(1.3) |λ − λ′| � 1 for all λ �= λ′, λ, λ′ ∈ Λ.

Here, and throughout the paper, a � b means that there exists a positive con-
stant C such that a ≤ Cb. We say that a ≈ b if a � b and a � b.

The following result is due to Landau. See [Lan67]. Let

(1.4) D+
R = max

x∈Rn
#{Λ ∩ QR(x)},

where QR(x) is a cube of sidelength 2R centered at x, and let

(1.5) D−
R = min

x∈Rn
#{Λ ∩ QR(x)}.

Then

(1.6) lim sup
R→∞

D±
R

(2R)n = |Ω|.

It is at times convenient to use the following related result. We only state the
special case we need for the proof of Theorem 0.1. For a more general version
see [IosPed99].
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Theorem 1.1. Let Ω be a convex domain in R
2. Then there exists a universal

constant C such that if

(1.7) R ≥ C

( |∂Ω|
|Ω|

)
,

then

(1.8) Λ ∩ QR(µ) �= ∅

for every µ ∈ R
2, and any set Λ such that EΛ is an exponential basis for L2(Ω),

where QR(µ) denotes the cube of sidelength 2R centered at µ.

The proofs of Theorem 1.1, and the preceding result due to Landau, are not
difficult. Both proofs follow, with some work, from the fact that Ω admits a
spectrum Λ if and only if

(1.9)
∑
Λ

|χ̂Ω(x − λ)|2 ≡ 1,

and some averaging arguments. To say that Ω admits a spectrum Λ means
that the Bessel formula ||f ||2L2(Ω) =

∑
Λ |f̂(λ)|2 holds. Since the exponentials

are dense, it is enough to establish such a formula with f = e2πix·ξ, which is
precisely the formula (1.9).

2. Basic properties of χ̂Ω and related properties of convex sets

Throughout this section, and the rest of the paper, Ω denotes a convex com-
pact planar domain. The first two results in this section are standard and can
be found in many books on harmonic analysis or convex geometry. See, for
example, [Sogge93].

Lemma 2.1. |χ̂Ω(ξ)| � diamΩ
|ξ| . Moreover, if Ω is contained in a ball of radius

r centered at the origin, then |∇χ̂Ω(ξ)| � r2

|ξ| .

The lemma follows from the divergence theorem which reduces the integral
over Ω to the integral over ∂Ω with a factor of 1

|ξ| , and the fact that convexity
implies that the measure of the boundary ∂Ω is bounded by a constant multiple
of the diameter. The second assertion follows similarly.

Lemma 2.2. Suppose that ξ makes an angle of at least θ with every vector
normal to the boundary of Ω. Then

(2.1) |χ̂Ω(ξ)| � 1
θ|ξ|2

.
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Moreover, if Ω is contained in a ball of radius r, then |∇χ̂Ω(ξ)| � r
|θ|ξ|2| .

To prove this, one can again reduce the integral to the boundary while gain-
ing a factor 1

|ξ| . We may parameterize a piece of the boundary in the form
{(s,−γ(s) + c) : a ≤ s ≤ b}, where γ is a convex function, and, without loss of
generality, c = 0, a = 0, b = 1, and γ(0) = γ′(0) = 0. We are left to compute

(2.2)
∫ 1

0

ei(sξ1−γ(s)ξ2)J(s)ds,

where J(s) is a nice bounded function that arises in the application of the diver-
gence theorem. The gradient of the phase function sξ1−γ(s)ξ2 is ξ2

(
ξ1
ξ2

− γ′(s)
)
,

and our assumption that ξ makes an angle of at least θ with every vector normal
to the boundary of Ω means that the absolute value of this expression is bounded
from below by |ξ2|θ. Integrating by parts once we complete the proof in the case
|ξ1| � |ξ2|. If |ξ1| >> |ξ2|, the absolute value of the derivative of sξ1 − γ(s)ξ2 is
bounded below by |ξ1|, so integration by parts completes the proof. The second
assertion follows similarly.

Lemma 2.3. Let f be a non-negative concave function on an interval [−1/2, 1/2].
Then, for every 0 < δ � 1, there exists R ≈ 1

δ such that |f̂(R)| � δf
(

1
2 − δ

)
.

To see this, let φ be a positive function such that φ(x) � (1 + |x|)−2, φ̂ is
compactly supported, and φ(0) = 1 in a small neighborhood of the origin. (This
just amounts to constructing a smooth positive compactly supported φ̂ with∫

φ̂ = 1). Consider

(2.3)
∫

f

(
1
2
− δt

)
(φ(t + 1) − Kφ(K(t + 1)))dt,

where f is defined to be 0 outside of [a, b] and K is a large positive number. If
K is sufficiently large, concavity guarantees that (φ(t + 1) − Kφ(K(t + 1))) is
positive for t > 0, and ≈ 1 on [12 , 1]. It follows that

(2.4)
∫

f

(
1
2
− δt

)
(φ(t + 1) − Kφ(K(t + 1)))dt � f

(
1
2
− δ

)
.

Taking Fourier transforms, we see that

(2.5)
∫

1
δ
f̂

(r

δ

)
eiπr

(
φ̂(r) − φ̂

( r

K

))
dr � f

(
1
2
− δ

)
.

Multiplying both sides by δ and using the compact support of φ̂(r) − φ̂
(

r
K

)
,

we complete the proof.
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Corollary 2.4. Let Ω be a convex body of the form

(2.6) Ω = {(x, y) : a ≤ x ≤ b, −g(x) ≤ y ≤ f(x)},

where f and g are non-negative concave functions on [a, b]. Then for every
0 < δ � b − a, there exists R ≈ 1

δ such that

(2.6) |χ̂Ω| � δ

(
f

(
1
2
− δ

)
+ g

(
1
2
− δ

))
.

3. Lattice properties of spectra

Let Ω be a compact convex body in R2 which is symmetric around the origin,
but is not a quadrilateral. Let Λ be a spectrum of Ω which contains the origin.
The aim of this section is to prove the following two propositions which show
that if a spectrum exists, it must be very lattice-like in the following sense.

Proposition 3.1. Let I be a maximal closed interval in ∂Ω with midpoint x.
Then

(3.1) ξ · 2x ∈ Z

for all ξ ∈ Λ.

Proposition 3.2. Let x be an element of ∂Ω which has a unit normal n and
which is not contained in any closed interval in Ω. Then

(3.2) ξ · 2x ∈ Z

for all ξ ∈ Λ.

In the next Section we shall show how these facts can be used to show that
the only convex bodies which admit spectra are quadrilaterals and hexagons.

Proof of Proposition 3.1. We may rescale so that x = e1, the coordinate
direction (1, 0 . . . , 0), and I is the interval from (e1 − e2)/2 to (e1 + e2)/2. Thus,
we must show that

(3.3) Λ ⊂ Z × R.

We may assume after perhaps applying an affine transformation that the set
Ω thus contains the unit square Q := [−1/2, 1/2]2. (In general, it only contains
a parallelogram). Since we are assuming Ω is not a quadrilateral, we therefore
have |Ω| > 1. In particular, Λ has asymptotic density strictly greater than 1, i.e
the expression (1.6) is strictly greater than 1.

A direct computation shows that
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(3.4) χ̂Q(ξ1, ξ2) =
sin(πξ1) sin(πξ2)

π2ξ1ξ2
.

The zero set of this is

(3.5) ZQ := {(ξ1, ξ2) : ξ1 ∈ Z − {0} or ξ2 ∈ Z − {0}}.

Note that ZQ ⊂ G, where G is the Cartesian grid

(3.6) G := (Z × R) ∪ (R × Z).

Heuristically, we expect the zero set ZΩ of χ̂Ω to approximate ZQ in the region
|ξ1| � |ξ2|. The following result shows that this indeed the case.

Lemma 3.3. For every A � 1 and 0 < ε � 1, there exists an R � A depending
on A, ε, Ω, such that ZΩ∩SA,R lies within an O(

√
ε) neighborhood of ZQ, where

SA,R is the slab

(3.7) SA,R := {(ξ1, ξ2) : |ξ1| ≥ R; |ξ2| ≤ A}.

Proof. Fix A, ε. We may write

(3.8) χ̂Ω = χ̂Ω− + χ̂Q + χ̂Ω+

where Ω− is the portion of Ω below x2 = −1/2, and Ω+ is the portion above
x2 = 1/2. In light of (3.4), it thus suffices to show that

(3.9) |χ̂Ω±(ξ1, ξ2)| � ε/|ξ1|

on SA,R. By symmetry it suffices to do this for Ω+.
We may write Ω+ as

(3.10) Ω+ = {(x, y) : −1/2 ≤ x ≤ 1/2; 1/2 ≤ y ≤ 1/2 + f(x)}

where f is a concave function on [−1/2, 1/2] such that f(±1/2) = 0.
By continuity of f , we can find a 0 < δ � ε such that

(3.11) f(1/2 − δ), f(δ − 1/2) ≤ ε.

The line segment from (1/2, 1/2) to (1/2− δ, 1/2+ f(1/2− δ)), and the line seg-
ment from (−1/2, 1/2) to (−1/2+ δ, 1/2+f(−1/2+ δ) divide Ω+ into two small
convex bodies and one large convex body. The diameter of the small convex
bodies is O(ε), and so their contribution to (3.9) is acceptable by Lemma 2.1.
If R is sufficiently large depending on A, then (ξ1, ξ2) will always make an angle
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of � δ/ε with the normals of the large convex body. By Lemma 2.2, the con-
tribution of this large body is therefore O(δ/ε|ξ|2), which is acceptable if R is
sufficiently large.

Let A � 1 and 0 < ε � 1, and let R be as in Lemma 3.3. Since Λ−Λ ⊂ ZΩ,
then by Lemma 3.3 we see that Λ ∩ (ξ + S) lies in an O(

√
ε) neighborhood of

ZQ + ξ for all ξ ∈ Λ. Suppose that we could find ξ, ξ′ ∈ Λ such that |ξ− ξ′| � A
and

(3.12) dist(ξ − ξ′, G) �
√

ε.

It follows that

(3.13) Λ ∩ (ξ + SA,R) ∩ (ξ′ + SA,R)

lies in an O(
√

ε) neighborhood of G+ξ and in an O(
√

ε) neighborhood of G+ξ′.
Since Λ has separation � 1, it follows that Λ has density at most 1 + O(1/A)

in the set (ξ + SA,R) ∩ (ξ′ + SA,R). However, this is a contradiction for A large
enough since Λ needs to have asymptotic density 1/|Ω| < 1/|Q| = 1.

By letting ε → 0 and A → ∞ we see that

(3.14) ξ − ξ′ ∈ G

for all ξ, ξ′ ∈ Λ. In particular, Λ ⊂ Gsince (0, 0) ∈ Λ.
Now suppose for contradiction that (3.3) failed. Then there exists (ξ1, ξ2) ∈ Λ

such that ξ1 �∈ Z. Since Λ ⊂ G, we thus have that ξ2 ∈ Z. From (3.14) we thus
see that

(3.15) Λ ⊂ R × Z.

For each integer k, let Rk denote the intersection of Λ with R × {k}.
Let A � 1 and 0 < ε � 1, and let R be as in Lemma 3.3. If ξ, ξ′ ∈ Rk

and |ξ − ξ′| � R, then by Lemma 3.3 we see that ξ − ξ′ lies in an O(
√

ε)
neighbourhood of Z. From this and the separation of Λ we see that one has

(3.16) #{(ξ1, k) ∈ Rk : |ξ1| ≤ M} � M + R

for all k and M . Summing this for −M < k < M and then letting M → ∞ we
see that Λ has asymptotic density at most 1, a contradiction. This proves (3.3),
and Proposition 3.1 is proved.

Proof of Proposition 3.2. By an affine rescaling we may assume that x = e1/2
and n = e1, so that our task is again to show (3.3). We shall prove the following
analogue of Lemma 3.3.
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Lemma 3.4. For all A � 1, 0 < ε � 1 there exists an R � 1 depending on A,
ε, Ω such that ZΩ ∩ B(Re1, A) lies within O(ε) of Z × R.

Proof. Fix A, ε. We can write Ω as

(3.17) Ω = {(x, y) : −1/2 ≤ x ≤ 1/2;−f(−x) ≤ y ≤ f(x)}

where f(x) is a concave function on [−1/2, 1/2] which vanishes at the endpoints
of this interval but is positive on the interior.

For each 0 < δ � 1, define

(3.18) S(δ) :=
f(1/2 − δ) + f(−1/2 + δ)

δ
.

The function δS(δ) is decreasing to 0 as δ → 0. Thus we may find a 0 < δ0 � ε/A
such that δ0S(δ0) � ε/A.

Fix δ0, and let l+, l− be the line segments from (1/2 − 2δ0, 0) to (1/2 −
δ0, f(1/2− δ0)) and (1/2− δ0,−f(−1/2 + δ0)) respectively, and let −l+, −l− be
the reflections of these line segments through the origin.

By symmetry we have

(3.19) χ̂Ω = 2�(χ̂Ω+ + χ̂Γ0)

where Ω+ is the portion of Ω above l+, −l−, and the e1 axis, and Γ0 is the small
portion of Ω between l+ and l−.

Since we are assuming Ω to have normal e1 at e1/2, we see that S(δ) → ∞
as δ → 0. Thus we may find a 0 < δ � δ0 such that

(3.20) S(δ) � 1 +
1
ε
S(δ0).

Fix this δ. By Corollary 2.4 we may find an R ∼ 1/δ such that

(3.21) |χ̂Γ0(Re1)| � (f(1/2 − δ) + f(−1/2 + δ))δ = δ2S(δ).

Fix this R. Let m+, m− be the line segments from (1/2 − 2δ, 0) to (1/2 −
δ, f(1/2 − δ)) and (1/2 − δ0,−f(−1/2 + δ)) respectively. We can partition

(3.22) χ̂Γ0 = χ̂Γ+ + χ̂Γ− + χ̂Γ

where Γ+ is the portion of Γ above m+ and the e1 axis, Γ− is the portion below
m− and the e1 axis, and Γ is the portion between m+ and m−.

The convex body Γ−e1/2 is contained inside a ball of radius O(S(δ)δ), hence
by (0.2) we have

(3.23) |∇χ̂Γ−e1/2(ξ)| � (δS(δ))2/R � (δ0S(δ0))δ2S(δ) � ε

A
δ2S(δ)
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for ξ ∈ B(Re1, A).
If ξ ∈ B(Re1, A), then ξ makes an angle of

(3.24) O(A/R) = O(Aδ) � O(δ/(δ0S(δ0))) = O(δ/(δS(δ))) = O(1/S(δ))

with the e1 axis, and hence makes an angle of � 1/S(δ) with the convex bodies
Γ+ − e1/2, Γ− − e1/2. Since these bodies are in a ball of radius O(S(δ0)δ0) =
O(ε/A), we see from Lemma 2.2 that

(3.25) |∇χ̂Γ±−e1/2(ξ)| � ε

A
S(δ)/R2 ∼ ε

A
δ2S(δ).

Summing, we obtain

(3.26) |∇(eπiξ1 χ̂Γ0(ξ))| � ε

A
δ2S(δ).

Integrating this and (3.21) we get

(3.27) χ̂Γ(ξ) = χ̂Γ0(Re1)(eπi(R−ξ1) + O(ε)).

If ξ ∈ B(Re1, A), then ξ makes an angle of � 1/S(δ0) with every normal of
Ω+. From Lemma 2.2 we get

(3.28) |χ̂Ω+(ξ)| � S(δ0)/R2 ∼ S(δ0)δ2 � εδ2S(δ)

on B(Re1, A). From this, (3.20), (3.22), and (3.23) we obtain

(3.29) χ̂Ω(ξ) = 2�(χ̂Γ(Re1)(eπi(R−ξ1) + O(ε)))

on B(Re1, A), and the Lemma follows.

Let A � 1, 0 < ε � 1, and let R be as in Lemma 3.4. If ξ ∈ Λ are such that
|ξ| � A, then from Lemma 3.4 we see that

(3.30) ZΩ ∩ B(Re1 + ξ, A) ∩ B(Re1, A)

lies within O(ε) of (Z × R), and within O(ε) of (Z × R) + ξ. Since ZΩ has
asymptotic density 1/|Ω|, it has a non-empty intersection with B(Re1, A) ∩
B(Re1 + ξ, A), and thus ξ must lie within O(ε) neighbourhood of Z×R. Taking
ε → 0 and then A → ∞ we obtain (3.3), and Proposition 3.2 is proved.
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Conclusion of the argument

We now use Proposition 3.1 and 3.2 to show that the only convex symmetric
bodies with spectra are the quadrilaterals and hexagons. We may assume of
course that Ω is not a quadrilateral or a hexagon.

Suppose that there are two points x, x′ in ∂Ω for which either Proposition 3.1
or Proposition 3.2 applies. From elementary geometry we thus see that Λ must
live in a lattice of density |2x ∧ 2x′|. It follows that

(4.1) 4|x ∧ x′| ≥ |Ω|

for all such x, x′. Since |x| ∼ 1 on ∂Ω, this implies that there are only a finite
number of x for which Proposition 3.1 and Proposition 3.2 applies. Since almost
every point in ∂Ω has a unit normal, the only possibility left is that Ω is a
polygon.

Label the vertices of Ω cyclically by x1, . . . , x2n. Since Ω is not a quadrilateral
or a hexagon, we have n ≥ 4. By symmetry we have xn+i = −xi for all i (here
we use the convention that x2n+i = xi).

From Proposition 3.1 we have

(4.2) ξ · (xi − xn+i−1) ∈ Z

for all ξ ∈ Λ. First suppose that n is even. Then n− 1 is coprime to 2n, and by
repeated application of (4.2) we see that

(4.3) ξ · (xi − xj) ∈ Z

for all i, j. Arguing as in the derivation of (4.1) we thus see that

(4.4) |(xi − xj) · (xi − xk)| ≥ |Ω|

for all i, j, k. In other words, the triangle with vertices xi, xj , xk has area at
least |Ω|/2 for all i, j, k. But Ω can be decomposed into 2n− 2 such triangles, a
contradiction since n ≥ 4.

Now suppose that n is odd, so that n ≥ 5. Then n − 1 and 2n have the
common factor of 2. Arguing as before we see that (4.3) holds for all i, j, k of the
same parity. But Ω contains the three disjoint triangles with vertices (x1, x3, x5),
(x1, x5, x7), and (x1, x7, x9) respectively, and we have a contradiction.
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