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FREE RESOLUTIONS FOR MULTIGRADED MODULES:
A GENERALIZATION OF TAYLOR’S CONSTRUCTION

Hara Charalambous and Alexandre Tchernev

Abstract. Let Q = k [x1, . . . , xn] be a polynomial ring over a field k with the
standard N

n-grading. Let φ be a morphism of finite free N
n-graded Q-modules.

We translate to this setting several notions and constructions that appear orig-
inally in the context of monomial ideals. First, using a modification of the
Buchsbaum-Rim complex, we construct a canonical complex T•(φ) of finite free
N

n-graded Q-modules that generalizes Taylor’s resolution. This complex provides
a free resolution for the cokernel M of φ when φ satisfies certain rank criteria.
We also introduce the Scarf complex of φ, and a notion of “generic” morphism.
Our main result is that the Scarf complex of φ is a minimal free resolution of M
when φ is minimal and generic. Finally, we introduce the LCM-lattice for φ and
establish its significance in determining the minimal resolution of M .

1. Introduction

There is a plethora of significant papers examining free and minimal resolu-
tions of monomial ideals. In contrast relatively little is known for Nn-graded
(multigraded) modules. Historically the prototype of a free resolution for mono-
mial ideals is the Taylor resolution, [Ta60]. More recently [BaPeSt98] and
[MiStYa00] give the minimal free resolution of generic monomial ideals, based on
the idea of the Scarf complex; while [GaPeWe99] discuss the significance of the
LCM-lattice in determining the minimal free resolution of an ideal. For multi-
graded modules, [ChDe01] discuss the second syzygies, while [Ya00] and [Mi00]
among others generalize results concerning homological invariants of monomial
ideals to multigraded modules.

In this paper we translate to the setting of morphisms of finite free multi-
graded modules several notions and constructions that appear originally in the
context of monomial ideals. For a morphism φ of finite free multigraded mod-
ules, by using the formalism of what we decided to call Buchsbaum-Rim-Taylor
systems, we construct canonical complexes T•(φ) and S•(φ) of finite free multi-
graded modules. The Taylor complex T•(φ) generalizes Taylor’s resolution of
a monomial ideal, and provides a free resolution for the cokernel M of φ when
certain rank criteria are satisfied for φ. Just as the underlying linear algebra of
the Taylor resolution is based on the Koszul complex, the linear algebra struc-
ture of the complex T•(φ) is based on the Buchsbaum-Rim complex [BuRi63].
The Scarf complex S•(φ) is a minimal subcomplex of the Taylor complex, and
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appears to be the appropriate generalization of the Scarf complex of a monomial
ideal.

We also introduce a notion of “generic” morphism. It is based on the com-
binatorial notion of generic monomial ideal of [BaPeSt98], together with the
requirement that the morphism be sufficiently generic also from linear algebra
point of view. Our main result, Theorem 5.6, is that the Scarf complex of φ is
a minimal free resolution of M when φ is a minimal presentation of M and is
a generic morphism. Finally, we introduce the LCM-lattice for a morphism φ,
and establish its significance in determining the minimal resolution of M .

The paper is organized as follows. In Section 2 we set our notation. For a
morphism φ we introduce the coefficient matrix: a matrix with entries from k

which determines the linear algebra structure of the resolution. We define certain
submatrices of the coefficient matrix, and the kernel of a dual map which will
turn out essential for the proof of the main theorem of this paper, Theorem 5.6.

In Section 3 we recall the construction of the Buchsbaum-Rim complex, pre-
senting it in a form that guarantees that the differentials of the complex stay
invariant under change of basis. This is important because, as it will be clear
in Section 5, to compute the minimal resolution one has to consider a change of
basis depending on the kernel of the dual map of Section 2.

In Section 4 we introduce the notion of a BRT (Buchsbaum-Rim-Taylor)
system, and use it to define a BRT complex for φ. The BRT complex for the full
BRT system is exact when the ranks of the submatrices of the coefficient matrix
are high enough. This full BRT complex is the Taylor complex.

In Section 5 we introduce the LCM-lattice, the Scarf simplicial complex, and
the notion of generic morphism. We describe the BRT system whose BRT com-
plex is the Scarf complex and formulate our main result, Theorem 5.6.

Section 6 is devoted to the proof of Theorem 5.6.
Finally, in Section 7 we show how to extend to a certain class of morphisms

(the morphisms of uniform rank) the arguments in [GaPeWe99] Theorem 3.3.
This allows us to exhibit the role that the LCM-lattice plays in determining the
structure of the minimal resolutions of these morphisms.

2. Preliminaries

Throughout this paper k is a field, and Q = k[x1, . . . , xn] is the polynomial
ring in n variables over k. Let α = (a1, . . . , an) be an element of Nn. The support
of α is the set supp(α) = {i | ai �= 0}. We write xα for the monomial xa1

1 . . . xan
n ,

and we set the degree of xα to be |xα| = α. This makes Q into a Nn-graded (or
multigraded) algebra. We consider the partial order on Nn given by

α = (a1, . . . , an) � β = (b1, . . . , bn) ⇐⇒ ai ≤ bi for i = 1, . . . , n.

In addition, we define the join or lcm of α and β by

lcm(α, β) = α ∨ β =
(
max(a1, b1), . . . ,max(an, bn)

)
.
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The tensor product of multigraded k-vector spaces is multigraded with |x⊗y| =
|x| + |y|. Unadorned tensor products are over k.

Let E and G be finite free multigraded Q-modules of ranks e and g respec-
tively, and let φ : E −→ G be a multigraded morphism. We fix homogeneous
bases ε1, . . . , εe of E and γ1, . . . , γg of G, and we let Φ = (fij) be the matrix of
φ in these bases. Thus the jth column Φj of Φ gives the image of εj in G. We
say that the degree of the column Φj is |εj |.

To every such map φ we associate a map s : U −→ W of vector spaces U and
W , where we let U be the k-vector space with basis ε1, . . . , εe and let W be the
k-vector space with basis γ1, . . . , γg The matrix C of the map s in terms of the
given bases is the coefficient matrix of Φ : each entry fij of Φ is of the form
fij = cijx

αij where cij ∈ k, and C = (cij). Clearly rankC = rank Φ = rankφ.
Let α = (a1, . . . , an) be a multidegree. In Section 5 we will make use of

the maps sα and the vector spaces Vα and Kα which we define below. First,
let Uα be the vector subspace of U with basis those basis vectors of U whose
multidegree in E is at most α. Next, let Φα be the submatrix of Φ on columns of
degree � α, let Cα be the coefficient matrix of Φα, and let sα be the restriction
of the map s to Uα. The matrix of sα is Cα, and we write Vα for the image of
Uα under s. Note that Uα ⊆ Uβ and Vα ⊆ Vβ when α � β.

Remark 2.1.
(a) The coefficient matrix C is precisely the matrix obtained by removing the

row and column labeling from the corresponding monomial matrix of φ in
the sense of [Mi00].

(b) It is clear that the definitions of Uα, Vα, and sα are independent of the
choice of the homogeneous basis of E. In particular the definition of the
map s is independent of the choice of homogeneous bases of E and G.

Let I be a subset of {1, . . . , e}. We write UI for the vector subspace of U
with basis {εi | i ∈ I}. We call VI the image of UI under s, and denote by sI

the restriction of s to UI .
For a k-vector space Z we set Z∗ = Homk(Z, k). If V is the image of s

then the inclusions Vα −→ V and VI −→ V induce surjections V ∗ −→ V ∗
α and

V ∗ −→ V ∗
I , and we write Kα and KI for the corresponding kernels. Note that

if v ∈ Kα and u ∈ Uα then v
(
s(u)

)
= 0.

Finally, if M is a complex of vector spaces with ith differential ∂i : Mi −→
Mi−1, then its shift M[k] is the complex with M [k]i = Mi+k and differential
given by ∂[k]i = ∂k+i. We say that the complex M is exact if Hi(M) = 0 for
i �= 0. We say that M is split exact if it is exact, and H0(M) = 0 as well.

3. The Buchsbaum-Rim complex

Let s : U −→ W be a k-vector space map. For the convenience of the reader,
and to establish notation, we recall in this section the Buchsbaum-Rim complex
of the map s, cf. [BuRi63], or [Ei95] Section A2.6.1.
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Let V be a subspace of rank r of W such that V contains the image of s. We
recall that the ith divided power DiV

∗ is the dual (SiV )∗ of the ith symmetric
power SiV , and refer to [Ei95] for the properties of these functors. For any
integers m, k ≥ 0 let Am,k

• (s, V ) be the complex

0 −→ Am,k
e−k

σm,k
e−k−−−−→ Am,k

e−k−1

σm,k
e−k−1−−−−−→ · · · σm,k

2−−−−→ Am,k
1

σm,k
1−−−−→ Am,k

0 −→ 0

where

Am,k
i = Dm+iV

∗ ⊗ ∧k+iU.

The differential σm,k
i of Am,k

• is defined as the composition

Dm+iV
∗ ⊗ ∧k+iU�δ⊗δ

Dm+i−1V
∗ ⊗ V ∗ ⊗ U ⊗ ∧k+i−1U�1⊗µ◦(1⊗s)⊗1

Dm+i−1V
∗ ⊗ ∧k+i−1U,

where δ is the diagonal map, and µ : V ∗ ⊗ V −→ k is the canonical pairing.
The complexes Am,k

• (s, V ) have been extensively studied. In the sequel we
will use the following well known property.

Proposition 3.1. The complex A0,k
• (s, V ) is exact if and only if either k ≥ e,

or V = Im(s). The complex Am,0
• (s, V ) is split exact if m > 0 and V = Im(s).

Proof. The result is clear for k ≥ e. Assume 0 ≤ k < e. Fixing a basis of U pro-
vides an isomorphism ∧tU ∼= ∧e−tU∗ and this identifies the complexes A0,k

• (s, V )
and Am,0

• (s, V ) with the complexes Ck and Cm+e studied by Lebelt [Le73]. In
particular, the proposition is an immediate consequence of [Le73], Corollary 1
to Theorem 5 and Corollary to Theorem 13; or see [Tc96], Theorem 4.1.

When V is equal to the image of s we write Ak
•(s) instead of A0,k

• (s, V ). In
that case the induced by s map U −→ V is surjective, its dual V ∗ −→ U∗ is
an inclusion, and we use it to identify V ∗ as a subspace of U∗. It is now an
elementary exercise in multilinear algebra to show that Coker(σk

1 ) is isomorphic
to ∧e−k(U∗/V ∗) when k ≤ e, and is 0 otherwise. In particular, we have

Corollary 3.2. If k < r the complex Ak
•(s) is split exact. If s is injective, then

the complex Ak
•(s) is split exact for k �= e.

In order to define the Buchsbaum-Rim complex, we splice together the com-
plex A0,r+1

• (s, V ) ⊗ ∧rV ∗ and the complex U
s−→W , to obtain a diagram

B•(s, V ) = A0,r+1
• (s, V ) ⊗ ∧rV ∗ s2−−−−→ U

s−−−−→ W.

Thus the complex B•(s, V ) has the form

B•(s, V ) = 0 −→ Be−r+1
se−r+1−−−−→ Be−r

se−r−−−−→ . . .
s2−−−−→ B1

s−−−−→ B0 −→ 0
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where B0 = W and B1 = U , while Bi = Ar+1
i−2 ⊗∧rV ∗ for i ≥ 2. The splice map

s2 : ∧r+1U ⊗ ∧rV ∗ −→ U

is defined as the composition

∧r+1U ⊗ ∧rV ∗
(
(1⊗∧rs)◦δ

)
⊗1−−−−−−−−−−→ U ⊗ ∧rV ⊗ ∧rV ∗ 1⊗µ−−−−→ U ⊗ k = U,

and for i ≥ 3 we have si = σr+1
i−2 ⊗1. We note that the factor ∧rV ∗ is just a copy

of k, but is needed in order to make the differentials of B• invariant under change
of basis in V . We will have to consider such a change of basis in Section 5.

Now that we have an invariant description of the differentials si, we can
describe them in terms of basis elements as follows. Let ε1, . . . , εe be a basis of
U , let γ1, . . . , γg be a basis of W , let υ1, . . . , υr be a basis of V ∗, and consider the
dual basis on V . Let C = (cij) be the matrix of the induced by s map U −→ V
with respect to the above bases. Let β = (b1, . . . , br) be a sequence of integers
with b1 + · · · + br = p. The elements of the form υ(β) = υ

(b1)
1 . . . υ

(br)
r where all

the bis are nonnegative are a basis for DpV
∗, and the element υ[r] = υ1∧· · ·∧υr

forms a basis for ∧rV ∗. Also, we set υ(β) = 0 if bi < 0 for some i, and we write
βj for the sequence βj = (b1, . . . , bj−1, bj − 1, bj+1, . . . , bk).

Similarly, the elements εI = εi1 ∧ · · · ∧ εiq

(
where the subset I = {i1, . . . , iq}

with i1 < · · · < iq ranges over all q-element subsets of {1, . . . , t}) form a basis
of ∧qU . Then we have for i ≥ 3

si(υ(β) ⊗ εI ⊗ υ[r]) =
r∑

j=1

∑
l∈I

sgn(l, I � l) υj

(
s(εl)

)
υ(βj) ⊗ εI�l ⊗ υ[r],

while

s2

(
εJ ⊗ υ[r]

)
=

∑
l∈J

sgn(l, J � l) det(CJ�l) εl,

where |J | = r + 1. Note that if V = W and υ1, . . . , υr is the dual basis of
γ1, . . . , γg then the coefficients υj

(
s(εl)

)
in the description of si are just the

entries cjl.
We have the following well known property of the complex B•(s, V ).

Proposition 3.3. When the rank r of V is greater than or equal to the rank e
of U the complex B•(s, V ) is exact if and only if the map s is injective. When
r < e the complex B•(s, V ) is exact if and only if V = Im(s).

Proof. The proposition is immediate from Proposition 3.1, and [Ei95], Theo-
rem A2.10.c.

When V = Im(s) we write B•(s) instead of B•(s, V ). The exact complex
B•(s) is called the Buchsbaum-Rim complex of the map s.

Finally, we assign a multigrading on the components Bi of the Buchsbaum-
Rim complex B•(s). The spaces B0 = W and B1 = U have the multigrading
induced by the multidegrees of their basis elements γ1, . . . , γg and ε1, . . . , εe,
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respectively. We set the multidegree of εI = εi1 ∧ · · · ∧ εip
in ∧pU to be |εI | =

lcm(|εi1 |, . . . , |εip |), and thus obtain a multigrading on each of the vector spaces
∧pU . We also assign the multidegree 0 to all elements of Di−2V

∗ and ∧rV ∗.
This way we get a multigrading of Bi = Di−2V

∗ ⊗ ∧i+r−1U ⊗ ∧rV ∗ for i ≥ 2.

4. Buchsbaum-Rim-Taylor theory

Let s : U −→ W be the map associated to the multigraded map φ : E −→ G
as described in Section 2, and let r = rankφ. In this section we introduce
the notion of a BRT system and show how a BRT system gives rise to a BRT
complex : a finite free complex of multigraded Q-modules. This allows us to
generalize to the case of multigraded modules the Taylor resolution [Ta60].

Recall that ∆ is the full simplex on the vertices {1, . . . , e}.
Definition 4.1. A family of vector spaces F = {FI}I∈∆ is a Buchsbaum-Rim-
Taylor (BRT) system for the map s if the following three conditions are satisfied:

1. FI = 0 whenever |I| ≤ r;
2. FI ⊆ D|I|−r−1V

∗ whenever |I| ≥ r + 1; and
3. F is s-compatible: whenever |I| = p ≥ r + 2, then

sp−r+1(FI ⊗ εI ⊗ ∧rV ∗) ⊆
⊕

|J| = p − 1
J⊂I

FJ ⊗ εJ ⊗ ∧rV ∗.

Example 4.2. The main example of a BRT system is the full BRT system Ffull

where

FI =

{
D|I|−r−1V

∗ if |I| ≥ r + 1,

0 otherwise.

The full BRT system is maximal, in the sense that it contains every other BRT
system. In Section 5 we give another important example of a BRT system, the
Scarf system.

Having a BRT system F allows us to construct a complex R•(F, φ) of multi-
graded Q-modules as follows.

Definition 4.3. We set R0 = Q ⊗ B0 = G, and R1 = Q ⊗ B1 = E. For i ≥ 2
we define the multigraded Q-module

Ri =
⊕

|I|=r+i−1

Q ⊗ FI ⊗ εI ⊗ ∧rV ∗.

We set φ1 = φ. For i ≥ 2 we define the differentials φi : Ri −→ Ri−1 by
homogenizing the restrictions of the maps si to the free modules specified by
the BRT system. More precisely, if z ∈ FI ⊗ εI ⊗ ∧rV ∗ and y ∈ Q, and if sI,J

i

is the component of si that sends FI ⊗ εI ⊗ ∧rV ∗ to FJ ⊗ εJ ⊗ ∧rV ∗, then the
corresponding component φI,J

i of φi is

φI,J
i (y ⊗ z) = x|εI |−|εJ |y ⊗ sI,J

i (z).
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Since each map φi is obtained from the map si by adjusting the multidegrees,
and B•(s) is a complex, it follows that

R•(F, φ) = 0 −→ Re−r+1
φe−r+1−−−−→ Re−r −−−−→ . . .

φ2−−−−→ R1
φ−−−−→ R0 −→ 0

is also a complex. We call R•(F, φ) the Buchsbaum-Rim-Taylor (BRT) complex
for the system F and the map φ.

Definition 4.4. We write T•(φ) for the complex R•(Ffull, φ), where Ffull is the
full BRT system, and call it the Taylor complex of the map φ.

Note that if J is a monomial ideal and φ is the minimal presentation map for
the module Q/J , then T•(φ) is precisely the Taylor resolution [Ta60] of Q/J .

We give a necessary and sufficient condition for the exactness of the complex
T•(φ). For a multidegree α we say that the coefficient matrix Cα is of maximal
rank if rankCα = min(r, rankUα), that is, if the rank of Cα is the smaller of the
rank of φ and the number of columns of Cα.

Theorem 4.5. The complex T•(φ) is exact if and only if for every multidegree
α the matrix Cα is of maximal rank.

Proof. First we remark that a complex of multigraded Q-modules is exact if and
only if it is exact in every multidegree α.

Next we notice that the multihomogeneous element xν ⊗ v(β) ⊗ εI ⊗ v[r] in Ri

is of multidegree α if and only if the multidegree ν of the monomial xν added to
the multidegree of εI equals α. In other words, εI contributes to the component
of multidegree α precisely when |εi| ≤ α for each i ∈ I. Therefore the component
of T•(φ) of multidegree α is canonically isomorphic to the complex B•(sα, V ),
where V = Im(s), therefore by Proposition 3.3 is exact if and only if the matrix
Cα is of maximal rank.

Definition 4.6. We say that a multigraded morphism φ of rank r is of uniform
rank if all g × r submatrices of its coefficient matrix C have rank equal to r.

The condition of Theorem 4.5 is of course guaranteed whenever φ is of uniform
rank. Thus we have

Corollary 4.7. If φ is of uniform rank, then T•(φ) is exact.

Remark 4.8. The notion of uniform rank provides us with a precise description
of what we mean when we say that a map φ is “sufficiently generic” from the
point of view of linear algebra. Thus Corollary 4.7 states that if φ is sufficiently
generic from the point of view of linear algebra, then the exactness of the Taylor
complex does not depend on the combinatorial structure of φ and the choices on
the multidegrees of the generators of E and G.

We conclude this section with an example.

Example 4.9. Let E = Q4 with standard basis ε1, . . . , ε4 of multidegrees

|ε1| = (3, 0), |ε2| = (2, 1), |ε3| = (1, 2), |ε4| = (0, 3),
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and let G = Q2 with standard basis of multidegrees |γ1| = (0, 0), and |γ2| =
(1, 0).

Let φ : E −→ G be the multigraded homomorphism with standard matrix

Φ =
(

x3 x2y xy2 y3

x2 2xy 3y2 0

)
.

Thus the coefficient matrix of φ is

C =
(

1 1 1 1
1 2 3 0

)
,

we have r = rankφ = rank s = 2, and V = Im s = W . For the basis υ1, υ2 of
V ∗ = W ∗ we choose the dual of the standard basis γ1, γ2 of W . Then the Taylor
complex T•(φ) is

0 −→ T3




y 0
−1 −3
1 2
−x −x




−−−−−−−−−−−→ T2




y2 −2y3 −3y3 0
−2xy xy2 0 −3y2

x2 0 x2y 2xy
0 x3 2x3 x2




−−−−−−−−−−−−−−−−−−−−−−−−−−→ E
Φ−→G −→ 0;

where the multidegrees of the generators of T2 = Q ⊗ ∧3U ⊗ ∧2V ∗ ∼= Q4 are

|1 ⊗ ε{1,2,3} ⊗ υ{1,2}| = (3, 2),
|1 ⊗ ε{1,2,4} ⊗ υ{1,2}| = (3, 3),
|1 ⊗ ε{1,3,4} ⊗ υ{1,2}| = (3, 3),
|1 ⊗ ε{2,3,4} ⊗ υ{1,2}| = (2, 3),

and the multidegrees of the two generators of T3 = Q⊗ V ∗ ⊗∧4U ⊗∧2V ∗ ∼= Q2

are

|1 ⊗ υ1 ⊗ e{1,2,3,4} ⊗ υ{1,2}| = (3, 3), and
|1 ⊗ υ2 ⊗ e{1,2,3,4} ⊗ υ{1,2}| = (3, 3).

Since φ is clearly of uniform rank (all 2 × 2 minors of C are non-zero), the
complex T•(φ) is a resolution of Coker(φ).

5. The Scarf complex of a multigraded map

In this section we introduce and study the notion of a generic multigraded
map and construct the minimal resolution of the cokernel of a minimal generic
multigraded map.

Definition 5.1. Let φ : E −→ G be a multigraded map.

1. The map φ is combinatorially generic if for every 1 ≤ i < j ≤ e the support
of |εi| − |εj | contains the supports of |εi| and |εj |.

2. The map φ is generic if it is combinatorially generic and of uniform rank.
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Remark 5.2.
(a) The notion of a combinatorially generic map is a translation to maps of the

notion of a generic monomial ideal [BaPeSt98]. When we deal with maps,
we need to consider also the underlying linear algebra structure, hence the
requirement that a generic map should be generic from both combinatorial
and linear algebra point of view.

(b) In [MiStYa00] a notion of generic monomial ideal is defined which is more
general than that of [BaPeSt98]. It is straightforward to use it to define a
more inclusive notion of generic multigraded map. However, since at this
point we do not know whether our main result, Theorem 5.6, holds with
this more general definition of generic, we have elected not to pursue this
line of investigation in this paper.

(c) By the deformation process of [BaPeSt98] every map of uniform rank can
be deformed to a generic map. We will see in the remaining sections that
several important homological properties of monomial ideals hold for maps
of uniform rank.

Our next goal is to define the Scarf complex of a multigraded map φ. This is
a complex of multigraded free modules that is contained in the Taylor complex
of φ. It is a minimal complex when φ is minimal. In particular, it is contained
in the minimal resolution of M = Coker(φ) when φ is minimal and of uniform
rank. The main result of this paper, Theorem 5.6, shows that the Scarf complex
of φ is actually the minimal free resolution of M when the map φ is minimal
and generic.

We begin by translating to multigraded maps the notions of Scarf simplicial
complex [BaPeSt98], and LCM-lattice [GaPeWe99].

Definition 5.3. Let φ : E −→ G be a multigraded map, and let ε1, . . . , εe be a
multihomogeneous basis of E.

1. The Scarf simplicial complex of φ is the subcomplex ∆S = ∆S(φ) of the
full simplex ∆ on the vertices {1, . . . , e} defined as:

∆S = {I ∈ ∆ | |εI | �= |εJ | for J �= I}.
2. The LCM-lattice Lφ of the map φ is the set of all elements of Nn that can

be obtained as joins of some of the elements |ε1|, . . . , |εe|. Thus

Lφ = {α | α = |εI | for some face I ∈ ∆}
is the set of those multidegrees that occur as multidegrees of faces of ∆.

Let φ : E −→ G be a muiltigraded map of rank r, let s : U −→ W be defined
as in Section 2, and let V = Im(s). Before we define the Scarf system for φ, we
need to introduce some notation.

We partition the LCM-lattice Lφ into two subsets: the subset LS containing
the multidegrees of the faces of ∆S , and its complement L0

S . If α is a multidegree,
we will denote by Iα the set of all indices i for which |εi| � α. Let I(α) be the
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intersection of all faces of ∆ of degree α, and set Iα = Iα � I(α). Finally, recall
from Section 2 that KIα is the kernel of the canonical surjection V ∗ −→ V ∗

Iα .

Definition 5.4. The Scarf system FS for the map φ is the collection {FI} of
vector spaces defined by:

FI =




0 if |I| ≤ r;
D|I|−r−1V

∗ if |I| ≥ r + 1 and I ∈ ∆S ;
D|I|−r−1KIα if |I| ≥ r + 1 and I = Iα for some α ∈ L0

S ;
0 otherwise.

By Proposition 5.7 the Scarf system is a BRT system, which allows for the
following definition.

Definition 5.5. We write S•(φ) for the BRT complex associated with the Scarf
system FS and call it the Scarf complex of φ.

The next theorem is the main result of this paper.

Theorem 5.6. Let φ : E −→ G be a minimal free multigraded presentation of
a Noetherian multigraded Q-module M . If φ is generic, then the Scarf complex
S•(φ) is a minimal free multigraded resolution of M over Q.

We postpone the proof till the next section. We conclude this section with
the proof that the Scarf system is a BRT system.

Proposition 5.7. The Scarf system is a BRT system.

Proof. We need to show that FS is s-compatible. In other words if I ∈ ∆ with
|I| = p ≥ r + 2 we need to show that

sp−r+1(FI ⊗ εI ⊗ ∧rV ∗) ⊆
⊕

|J| = p − 1
J⊂I

FJ ⊗ εJ ⊗ ∧rV ∗

This is clear in all cases except when I = Iα for some α ∈ L0
S , so we assume

this is the case. Thus FI = Dp−r−1KIα . Note that the component of sp−r+1 in
FJ ⊗ εJ ⊗∧rV ∗ is zero when |εJ | = α. Therefore, it will be enough to show that
we have an inclusion

Dp−r−2KIα ⊆ FJ

whenever J ⊂ I with J = p − 1, and |εJ | = β �= α. This is clear if J ∈ ∆S , so
we assume that J /∈ ∆S . Then J ⊆ Iβ � Iα = I, hence J = Iβ . Thus it will be
enough to show that KIα ⊆ KIβ .

Let L be a face of Iβ of degree β. Let {i} = Iα � Iβ . Since |εL| = β, we have
that |εL ∧ εi| = α. Thus L ∪ {i} contains I(α), hence I(α) ⊆ I(β) ∪ {i}. Since
Iβ = Iα � {i}, it follows that Iβ ⊆ Iα, and therefore KIα ⊆ KIβ , yielding the
desired conclusion.
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Example 5.8. Let φ be the multigraded map of Example 4.9.
For the LCM-lattice of φ and its parts LS and L0

S we have

Lφ = { (3, 0), (2, 1), (1, 2), (0, 3), (3, 1), (3, 2), (3, 3), (2, 2), (2, 3), (1, 3) };
LS = { (3, 0), (2, 1), (1, 2), (0, 3), (3, 1), (2, 2), (1, 3) };
L0

S = { (3, 2), (2, 3), (3, 3) }.
For the Scarf simplicial complex ∆S we have

∆S =
{{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}}

For α ∈ L0
S the faces Iα, I(α), and Iα are

I(3,2) = {1, 2, 3}, I(3, 2) = {1, 3}, I(3,2) = {2};
I(2,3) = {2, 3, 4}, I(2, 3) = {2, 4}, I(2,3) = {3};
I(3,3) = {1, 2, 3, 4}, I(3, 3) = {1, 4}, I(3,3) = {2, 3}.

For the spaces KIα with α ∈ L0
S we obtain

KI(3,2) = K{2} = Ker
(
V ∗ −→ V ∗

{2}
)

= k · (2υ1 − υ2);
KI(2,3) = K{3} = Ker

(
V ∗ −→ V ∗

{3}
)

= k · (3υ1 − υ3);
KI(3,3) = K{2,3} = Ker

(
V ∗ −→ V ∗

{2,3}
)

= 0.

For the spaces FI of the Scarf system for φ we obtain
F{1,2,3} = D0KI(3,2) = D0K{2} = k;
F{2,3,4} = D0KI(2,3) = D0K{3} = k;
F{1,2,3,4} = D1KI(3,3) = K{2,3} = 0;
FI = 0 otherwise.

Thus for the Scarf complex S•(φ) we obtain

0 −→ S2




y2 0
−2xy −3y2

x2 2xy
0 x2




−−−−−−−−−−−−−−→ E
Φ−−−−→ G −−−−→ 0

with S0 = G ∼= Q2, with S1 = E ∼= Q4, and with

S2 = Q ⊗ 1 ⊗ ε{1,2,3} ⊗ υ{1,2} ⊕ Q ⊗ 1 ⊗ ε{2,3,4} ⊗ υ{1,2} ∼= Q2.

Since the map φ is generic, the Scarf complex is the minimal free resolution of
M = Coker(φ).

6. The proof of Theorem 5.6

Theorem 5.6 is an immediate consequence of the following slightly stronger
statement.

Theorem 6.1. Let φ : E −→ G be a minimal multigraded presentation of a
Noetherian multigraded Q-module M . If φ is combinatorially generic and the
coefficient matrix Cα is of maximal rank for every multidegree α, then the Scarf
complex S•(φ) is the minimal free resolution of M .
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Proof. It is clear from the construction that the Scarf complex is minimal, hence
it suffices to show that it is exact. Also, by construction S• = S•(φ) is a
subcomplex of the Taylor complex T• = T•(φ), and T• is exact by Theorem 4.5.
Therefore it is enough to show that X• = T•/S• is an exact complex. We will
do this by showing that there is a filtration of X• whose ith quotient Y i

• is the
direct sum of exact complexes.

Note that the component of X• in homological degree m ≥ 2 is

Xm =
⊕

I /∈ ∆S|I|=m+r−1

Q ⊗ HI ⊗ εI ⊗ ∧rV ∗

where

HI =

{
Dm−2V

∗/Dm−2KIα if I = Iα for some α ∈ L0
S ;

Dm−2V
∗ otherwise;

and Xm = 0 for m ≤ 1.
We partition L0

S as follows. Let L1
S be the set of minimal multidegrees in

L0
S (with respect to the partial order ≺). Once the sets L1

S , . . . , Li
S have been

defined, we define Li+1
S to be the set of minimal elements in L0

S �(L1
S ∪ . . .∪Li

S).
We also define ULi

S = L1
S ∪ . . . ∪ Li

S . Now define Xi
m ⊆ Xm by

Xi
m =

⊕
I(α) ⊆ I ⊆ Iα

|I|=m+r−1; α∈ULi
S

Q ⊗ HI ⊗ εI ⊗ ∧rV ∗.

It is straightforward that Xi
• is a subcomplex of X• for each i, and that the

quotient complex Y i
• = Xi

•/Xi−1
• has as its component in homological degree

m ≥ 2 the module

Y i
m =

⊕
I(α) ⊆ I ⊆ Iα

|I|=m+r−1; α∈Li
S

Q ⊗ HI ⊗ εI ⊗ ∧rV ∗,

while Y i
m = 0 for m = 0, 1. Thus to show that S• is exact, it is enough to

show that the complex Y i
• is split exact for each i ≥ 1. Note however that the

complex Y i
• decomposes into the direct sum of subcomplexes

Y i
• =

⊕
α∈Li

S

Y i(α),

where the complex Y i(α) has as its component in homological degree m ≥ 2 the
module

Y i(α)m =
⊕

I(α) ⊆ I ⊆ Iα

|I|=m+r−1

Q ⊗ HI ⊗ εI ⊗ ∧rV ∗,

and Y i(α)m = 0 for m = 0, 1. Thus it suffices to show that each complex Y i(α)
is split exact. For the rest of this proof we fix i and α ∈ Li

S , and we write Z•
for the complex Y i(α).
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Since φ is combinatorially generic, if α ∈ L0
S , and I and J are such that

|εI | = |εJ | = α, then |εI∩J | = α as well. Therefore there exists a unique minimal
face I(α) of degree α. Furthermore, a face I has degree α if and only if we have
I(α) ⊆ I ⊆ Iα, while the containment I(α) ⊂ Iα is strict. So i ∈ Iα � I(α) if
and only if |εIα�i| = |εIα | = α, and it follows that Iα = Iα � I(α) = Iα′ where
α′ = α − (1, . . . , 1). Thus KIα = KIα′ = Kα′ , and the short exact sequence of
vector spaces

0 −→ Kα′ −→ V ∗ −→ V ∗
α′ −→ 0

induces for m ≥ 2 a canonical filtration

0 = Tm
−1 ⊆ Tm

0 ⊆ · · · ⊆ Tm
m−2 = Dm−2V

∗

on Dm−2V
∗ whose ith quotient Tm

i /Tm
i−1 is canonically isomorphic for i ≥ 0 to

Dm−2−iKα′ ⊗ DiV
∗
α′ . This way we obtain a filtration

0 = P−1
m (I) ⊆ P 0

m(I) ⊆ P 1
m(I) ⊆ · · · ⊆ P k

m(I) ⊆ . . .

on each HI , where for i ≥ 0 we set

P i
m(I) =

{
Tm

i if I �= Iα;
Tm

i /Tm
0 otherwise.

When i ≥ 0 it is clear that for the ith quotient of this filtration we have canon-
ically

P i
m(I)/P i−1

m (I) ∼=
{

0 if I = Iα and i = 0;
Dm−2−iKα′ ⊗ DiV

∗
α′ otherwise.

Let t = |Iα|. Set Z−1
m = 0, and for k ≥ 0 define Zk

m ⊆ Zm as

Zk
m =

⊕
I(α) ⊆ I ⊆ Iα

|I|=m+r−1

Q ⊗ Pm+r+k−t
m (I) ⊗ εI ⊗ ∧rV ∗,

It is straightforward from these definitions that Zk
• is a subcomplex of Z• for each

k ≥ −1. Note that if k ≥ 0 and I = Iα then m+r+k− t = k+1 ≥ 1. Therefore
for each k ≥ 0 the quotient complex Zk• = Zk

• /Zk−1
• has as its component in

homological degree m ≥ 2 the module

Zk
m =

⊕
I(α) ⊆ I ⊆ Iα

|I|=m+r−1

Q ⊗ Dt−r−k−2Kα′ ⊗ Dm+r+k−tV
∗
α′ ⊗ εI ⊗ ∧rV ∗,

and is 0 in homological degrees m = 0, 1. Thus to complete the proof of the
theorem it suffices to show that Zk• is split exact.

Let q = |I(α)|. We examine the differential of Zk• .
When k > t − q − 1 it is clear that we have a canonical isomorphism of

complexes

Zk• ∼= Q ⊗ Dt−r−k−2Kα′ ⊗ Aq+k+1−t, 0
• (sα′)[−q + r − 1] ⊗ εI(α) ⊗ ∧rV ∗.
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By Proposition 3.1 the complex Aq+k+1−t, 0
• (sα′) is split exact, therefore Zk• is

split exact as well.
Similarly when k ≤ t − q − 1 we have a canonical isomorphism of complexes

Zk• ∼= Q ⊗ Dt−r−k−2Kα′ ⊗ A0, t−q−k−1
• (sα′)[−p] ⊗ εI(α) ⊗ ∧rV ∗,

where the shift p is computed as p = max
(
q − r + 1, 2

)
.

Next, recall that by assumption the rank rα′ of sα′ is equal to min(r, |Iα′ |).
If |Iα′ | = rα′ ≤ r then t− q − k − 1 = |Iα′ | − k − 1 < rα′ ; thus A0, t−q−k−1

• (sα′)
(hence also Zk• ) is split exact by Corollary 3.2.

Finally, assume |Iα′ | > r. Then rank sα′ = r, hence Kα′ = 0. If t−r−k−2 �= 0
then Dt−r−k−2Kα′ = 0, therefore Zk• = 0 is split exact. If t− r− k− 2 = 0 then

t − q − k − 1 = r + 2 − q − 1 = r + 1 − |I(α)| < r = rα′ ,

where the last inequality follows by Lemma 6.2. Therefore A0, t−q−k−1
• (sα′)

(hence also Zk• ) is split exact by Corollary 3.2

Lemma 6.2. With the assumptions of Theorem 6.1, if |Iα′ | > r then |I(α)| ≥ 2.

Proof. Suppose that |I(α)| = 1. Thus I(α) = {l} and |el| = α. Since by
asumption Cα′ is of maximal rank, we can choose I ′ ⊂ Iα′ such that |I ′| = r and
rank sI′ = r. Let I = I ′ ∪{l}. Then φ2

(
1⊗ εI ⊗υ[r]

)
is a minimal free generator

of E, and is a syzygy of φ. This contradicts the assumption that φ is a minimal
presentation of the multigraded module M .

7. The LCM-Lattice

The importance of the LCM-lattice in determining the minimal resolutions
of monomial ideals was exhibited in [GaPeWe99]. In the setting of multigraded
maps one has to take into account also the underlying linear algebra structure.
Our goal is to show that for maps of uniform rank, if the linear algebra structure
is essentially the same then the structure of the minimal resolution is determined,
subject to a certain compatibility condition, by the isomorphism class of the
LCM-lattice.

Let φ : E −→ G be a multigraded map of finite free Q-modules, let s : U −→ W
be the associated map of vector spaces (see Section 2), let V be the image of s,
and let Lφ be the LCM-lattice. Similarly, let Q′ be another polynomial ring, let
φ′ : E′ −→ G′ be a multigraded map of finite free Q′-modules, and consider the
corresponding objects s′, V ′, and Lφ′ . Let e be the rank of E, and let e′ be the
rank of E′.

Definition 7.1.
(a) The maps φ and φ′ are called quasi-equivalent if there exists a choice of

homogeneous bases for E and E′, and a choice of bases for V and V ′ such
that the matrices of the induced by s and s′ maps U −→ V and U ′ −→ V ′

are the same.



FREE RESOLUTIONS FOR MULTIGRADED MODULES 549

(b) A choice of bases of E, E′, V , and V ′ as in (a) is called a QE-structure for
the pair (φ, φ′).

(c) Assume φ and φ′ are quasi-equivalent. A function of sets f : Lφ −→ Lφ′ is
called QE-compatible if there exist multihomogeneous bases ε1, . . . , εe of E
and ε′1, . . . , ε

′
e of E′ that are part of a QE-structure and satisfy f(|εi|) = |ε′i|

for all i.

To state our theorem, we need to introduce a slight generalization of the
relabeling procedure of [GaPeWe99]. Let T• be an extension of φ to a finite free
multigraded complex of the form

0 −→ Tp
φp−→Tp−1 −→ . . . −→ T2

φ2−→T1
φ−→T0 −→ 0

where T0 = G and T1 = E; such that the free modules Tm for m ≥ 1 have
generators with multidegrees in Lφ. Let f : Lφ −→ Lφ′ be a QE-compatible
map which preserves joins that appear as multidegrees of minimal generators of
the free modules Tm for m ≥ 1.

Using the map f we relabel T• in the spirit of [GaPeWe99], Construction 3.2.
First, we replace T0 with G′, and φ with φ′. Next, if a free copy of Q in Tm for
some m ≥ 1 has multidegree α then after relabeling we get a free copy of Q′

with multidegree f(α). Finally, we relabel the maps φi for i ≥ 2 to φ′
i = f(φi)

by homogenizing the images of φi. We write f(T•) for the resulting complex.
We are now ready to state the generalization of [GaPeWe99], Theorem 3.3.

Theorem 7.2. Let φ and φ′ be two quasi-equivalent multigraded maps of uni-
form rank r. Let f : Lφ −→ Lφ′ be a QE-compatible map which preserves joins
of any s atoms, where s ≥ r + 1. Let F•(φ) be the minimal resolution of the
cokernel of the map φ. Then f(F•(φ)) is a free resolution of the cokernel of φ′.

Proof. By Corollary 4.7, the Taylor complexes T•(φ) and T•(φ′) resolve the
cokernels of φ and φ′. Since f(T•(φ)) = T•(φ′), the zeroth homology of f(T•(φ))
is equal to the cokernel of φ′. Because T•(φ) = F•(φ) ⊕ P• where P• is a direct
sum of split exact complexes of the form 0 −→ Q −→ Q −→ 0, it follows
that f(T•(φ)) = f(F•(φ)) ⊕ f(P•) where f(P•) is the direct sum of split exact
complexes of the form 0 −→ Q′ −→ Q′ −→ 0.

The remarks made in [GaPeWe99], Example 3.4, hold for the obvious gener-
alizations for multigraded maps. We finish this section with an example where
we apply Theorem 7.2.

Example 7.3. Let Q′ = k[u, v, w], and let φ′ : (Q′)4 −→ (Q′)2 be the multi-
graded homomorphism with standard matrix:

Φ′ =
(

u2v uvw u2w u2w2

uv 2vw 3uw 0

)
.

The coefficient matrix of φ′ equals the coefficient matrix of φ of Examples 4.9
and 5.8, hence the maps φ and φ′ are quasi-equivalent. Note that φ′ is not a
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generic map. Define f : Lφ −→ Lφ′ by

f(3, 0) = (2, 1, 0), f(2, 1) = (1, 1, 1), f(1, 2) = (2, 0, 1),
f(0, 3) = (2, 0, 2), f(3, 1) = (2, 1, 1), f(3, 2) = (2, 1, 1),
f(3, 3) = (2, 1, 2), f(2, 2) = (2, 1, 1), f(2, 3) = (2, 1, 2),

f(1, 3) = (2, 0, 2).
Then f satisfies the conditions of Theorem 7.2, but is not an isomorphism of
LCM-lattices. Thus a free resolution of the cokernel of φ′ can be obtained by
applying Theorem 7.2 to the minimal resolution of Example 5.8:

0 −→ (Q′)2




w 0
−2u −3uw
v 2vw
0 v




−−−−−−−−−−−−−−→ (Q′)4 Ψ−−−−→ (Q′)2 −−−−→ M ′ −−−−→ 0.
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