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SOLUTION OF THE ∂̄-NEUMANN PROBLEM ON A BI-DISC

Dariush Ehsani

Abstract. In this paper we study the behavior of the solution to the ∂̄-Neumann
problem for (0, 1)-forms on a bi-disc in C

2. We show singularities which arise at
the distinguished boundary are of logarithmic and arctangent type.

1. Introduction

Let Ω ⊂ Cn be a bounded, pseudoconvex domain, equipped with the standard
Hermitian metric. The ∂̄-Neumann problem, on domains with a C2 defining
function, takes the form of the boundary value problem

�u = f in Ω,

for f in L2
p,q(Ω), and

u�∂̄ρ = 0,(1.1)

∂̄u�∂̄ρ = 0,(1.2)

on ∂Ω, where � is the complex Laplacian, ∂̄∂̄∗ + ∂̄∂̄∗.
In the past decade, considerable attention has been given to the study of

the ∂̄-Neumann problem on non-smooth domains. We point to the papers of
Henkin and Iordan [4], Henkin, Iordan, and Kohn [5], Michel and Shaw [7, 8],
and Straube [9], in which properties, compactness and subelliptic estimates, hold
for the Neumann operator, N, the inverse to the ∂̄-Neumann problem, on certain
non-smooth domains.

In [2], the author studied the ∂̄-Neumann problem for (0, 1)-forms on a model
domain, the product of two half-planes in C2. We continue here the study of
the problem for (0, 1)-forms on model domains, focusing on the bi-disc, Ω =
D1 × D2 ∈ C2, where D1 ⊂ C and D2 ⊂ C are defined by the equations r1 < 1
and r2 < 1, respectively, where rj = |zj |, j = 1, 2. The existence of a solution in
L2(Ω) is given by Hörmander [6]. We shall see singularities only occur on the
distinguished boundary, ∂D1 × ∂D2. Our main result is the

Theorem 1.1. Let Ω ∈ C2 be the bi-disc, D1 × D2, where Dj is the disc {zj :
|zj | < 1} for j = 1, 2. Let f = f1dz̄1 + f2dz̄2 be a (0, 1)-form such that f ∈
C∞

(0,1)(Ω), the family of (0, 1)-forms whose coefficients are in C∞(Ω), and u =
u1dz̄1 +u2dz̄2 the (0, 1)-form which solves the ∂̄-Neumann problem with data the
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(0, 1)-form f on Ω. Then, with zj = rje
iθj , near r1 = r2 = 1, uj can be written

as

uj = αj log
(
(log r1)2 + (log r2)2

)
+ βj + γj arctan

(
log r1

log r2

)
j = 1, 2,

where αj, βj, γj are smooth functions of r1, r2, θ1, θ2.

We point out the interesting phenomenon that, although the Neumann op-
erator on (0, 1)-forms, N(0,1), is not regular, ∂̄∗N(0,1) is. Regularity of ∂̄∗N(0,1)

follows from regularity of the Bergman projection on the bi-disc and the formula
for the Bergman projection, P,

Pg = g − ∂̄∗N(0,1)∂̄g

for g ∈ L2(Ω).

2. Setup

We set up the ∂̄-Neumann problem for (0, 1)-forms on the bi-disc, Ω = D1 ×
D2 ∈ C2 and prove regularity results away from the distinguished boundary.

∂̄∂̄∗u + ∂̄∗∂̄u = f

gives equations for u1 and u2 based on the Laplacian:

∆u1 = −2f1,(2.1)
∆u2 = −2f2,

which, in polar coordinates (r1, θ1), (r2, θ2), are

∂2uj

∂r2
1

+
1
r1

∂uj

∂r1
+

1
r2
1

∂2uj

∂θ2
1

+(2.2)

∂2uj

∂r2
2

+
1
r2

∂uj

∂r2
+

1
r2
2

∂2uj

∂θ2
2

= −2fj .

The boundary conditions (1.2), which were defined for C2 domains, may be
adapted to our case of the bi-disc to yield the conditions

u1 = 0 when r1 = 1,(2.3)
u2 = 0 when r2 = 1,

and
∂u2

∂z̄1
− ∂u1

∂z̄2
= 0(2.4)

when r1 = 1 or r2 = 1. However, since u1 = 0 when r1 = 1, we must have
∂u1
∂z̄2

= 0, and on the boundary r1 = 1, (2.4) is

∂u2

∂z̄1
= 0.
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Similarly, for r2 = 1, (2.4) is

∂u1

∂z̄2
= 0.(2.5)

Lemma 2.1. Let u be a solution to the ∂̄-Neumann problem on Ω = D1 × D2.
Then u is smooth in any neighborhood, V ⊂ Ω not intersecting ∂D1 × ∂D2.

Proof. We consider u1, the solution to equation (2.1) with the boundary condi-
tions given by (2.3) and (2.5).

Interior regularity follows from the strong ellipticity of the Laplacian.
Also, general regularity at the boundary arguments for the Dirichlet problem

can be applied to the case in which V is a neighborhood such that V
⋂

∂Ω =
V

⋂
∂D1 	= ∅ (see [3]).

Lastly, suppose V is a neighborhood such that V
⋂

∂Ω = V
⋂

∂D2 	= ∅. Define
v = ∂u1

∂z̄2
and consider the related problem

�v = −2
∂f1

∂z̄2

on Ω, with the conditions

v = 0 on r1 = 0,

v = 0 on r2 = 0.

We know, from above, that v is smooth on all neighborhoods not intersecting
∂D1

⋂
∂D2, hence in V . Let z′ = (z′1, z

′
2) ∈ V

⋂
∂D2. We will work in the

neighborhood D1 × V2, where V2 is a bounded neighborhood of z′2 in D2 such
that V2

⋂
D2 has smooth boundary. Let χ ∈ C∞

0 (V2) such that χ ≡ 1 near z′2.
Define

u′ =
1

2πi

∫
V2

χ(ζ2)v(z1, ζ2)
ζ2 − z2

dζ2 ∧ dζ̄2.

u′ has the properties ∂u′
∂z̄2

= v near z′ and u′ ∈ C∞(D1 × V2) [1].

We define the operators �j to be ∂2

∂x2
j
+ ∂2

∂y2
j
. Then, computing �u′ in D1×V2,

we find

�u′ = − 1
πi

∫
V2

χ(ζ2)∂f1
∂ζ̄2

ζ2 − z2
dζ2 ∧ dζ̄2 + φ(z1, z2),

which is in C∞(D1 × V2), where, with ρ = |ζ2|,

φ(z1, z2) =
1

2πi

∫
V2

(�2χ)v(z1, ζ2)
ζ2 − z2

dζ2 ∧ dζ̄2 +
2
πi

∫
V2

∂χ
∂ζ2

∂v
∂ζ̄2

+ ∂χ
∂ζ̄2

∂v
∂ζ2

ζ2 − z2
dζ2 ∧ dζ̄2

− 1
2πi

∫
∂V2

⋂
∂D2

χ(ζ2)
∂v(z1,ζ2)

∂ρ

ζ2 − z2
dζ2.
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We set w = u1 − u′ and show w ∈ C∞(D1 × V2). For z2 near z′2,
∂w
∂z̄2

= 0, in
which case

�1w = �w = −2f1 −�u′ = −2f1 +
1
πi

∫
V2

χ(ζ2)∂f1
∂ζ̄2

(z1, ζ2)

ζ2 − z2
dζ2 ∧ dζ̄2 − φ(z1, z2).

(2.6)

We also have the boundary condition w = 0 when r1 = 0. Hence w is the
solution to a Dirichlet problem on the unit disc,

w =
∫

D1

G1(z1, ζ1)Φ(ζ1, z2)dζ1 ∧ dζ̄1,

where G1 is the Green’s function for D1,

G1 =
1
2π

log |z1 − ζ1| − 1
2π

log
∣∣|z1|−1z1 − |ζ1|−1ζ1

∣∣ ,

and Φ is defined to be the right hand side of equation 2.6. Because Φ ∈ C∞(D1×
V2), so is w, and u1 ∈ C∞(D1×V2) follows from the fact that u′ ∈ C∞(D1×V2).

The same reasoning applies to u2, and this proves the lemma.

We may simplify our calculations if we consider the equations

�vi = gi

with boundary conditions

vi = 0 on ∂Ω

for i = 1, 2, where vi = ∂ui

∂z̄j
and gi = −2 ∂fi

∂z̄j
(j 	= i).

We expand v1 and g1 into Fourier series:

v1 =
∞∑

m1,m2=−∞
am1m2(r1, r2)eim1θ1eim2θ2(2.7)

g1 =
∞∑

m1,m2=−∞
cm1m2(r1, r2)eim1θ1eim2θ2 .

Using these expansions in (2.2), (2.3), and (2.5), we see the family of equations

∂2am1m2

∂r2
1

+
1
r1

∂am1m2

∂r1
− m2

1

r2
1

am1m2 +

∂2am1m2

∂r2
2

+
1
r2

∂am1m2

∂r2
− m2

2

r2
2

am1m2 = cm1m2 m1, m2 = 0,±1, . . .

are satisfied with the boundary conditions

am1m2(1, r2) = 0,

am1m2(r1, 1) = 0.

We have analogous equations for v2.
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3. Solution

We are then led to study the equations

(3.1)
∂2am1m2

∂r2
1

+
1
r1

∂am1m2

∂r1
− m2

1

r2
1

am1m2 +

∂2am1m2

∂r2
2

+
1
r2

∂am1m2

∂r2
− m2

2

r2
2

am1m2 = cm1m2

in the space r1 < 1, r2 < 1. Here am1m2 = am1m2(r1, r2) and cm1m2 =
cm1m2(r1, r2), and the boundary conditions

am1m2(1, r2) = 0,

am1m2(r1, 1) = 0

hold.
We make the transformation yj = − log rj for j = 1, 2 in (3.1), and multiply

the resulting equation by e2y1e2y2 . Then with Am1m2 = am1m2(e
−y1 , e−y2) and

Cm1m2 = e−2y1e−2y2cm1m2(e
−y1 , e−y2), (3.1) becomes

e−2y2(D2
1 − m2

1)Am1m2 + e−2y1(D2
2 − m2

2)Am1m2 = Cm1m2

on the first quadrant in R2, where Dj stands for the differential operator ∂
∂yj

,
and the boundary conditions are

Am1m2(0, y2) = 0,

Am1m2(y1, 0) = 0.

We extend Am1m2 and Cm1m2 by odd reflections in the variables y1 and y2,
labelling the extended functions Ãm1m2 and C̃m1m2 , respectively, and we look
to solve

e−2|y2|(D2
1 − m2

1)Ãm1m2 + e−2|y1|(D2
2 − m2

2)Ãm1m2 = C̃m1m2 .

Let χ be a smooth compactly supported cutoff function in R2, symmetric about
the origin, such that χ ≡ 1 in a neighborhood of the origin. Then χÃm1m2

satisfies

e−2|y2|(D2
1 − m2

1)χÃm1m2 + e−2|y1|(D2
2 − m2

2)χÃm1m2 = h,(3.2)

where h is a compactly supported, odd function of y1 and y2, which, when re-
stricted to the first quadrant, is C∞ up to the boundary, and, in a neighborhood
of the origin, is equivalent to C̃m1m2 .

In what follows we use the notation )̂ to denote the Fourier transform of
that which is enclosed by the parentheses and )̌ to denote the inverse Fourier
transform. Upon taking Fourier transforms of (3.2) we obtain(

(η2
1 + m2

1)e
−2|Dη2 | + (η2

2 + m2
2)e

−2|Dη1 |
) (

χÃm1m2

)̂
= −ĥ,(3.3)
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where |Dηj | is the positive square root of − ∂2

∂η2
j

for j = 1, 2. We intend to invert
the operator

(η2
1 + m2

1)e
−2|Dη2 | + (η2

2 + m2
2)e

−2|Dη1 |.

(3.4)
(
(η2

1 + m2
1)e

−2|Dη2 | + (η2
2 + m2

2)e
−2|Dη1 |

) (
χÃm1m2

)̂
=

(η2 + m2)
(
χÃm1m2

)̂
+(

(η2
1 + m2

1)
(
(e−2|y2| − 1)χÃm1m2

)̂
+ (η2

2 + m2
2)

(
(e−2|y1| − 1)χÃm1m2

)̂)
=

(η2 + m2)(I − K)
(
χÃm1m2

)̂
,

where η2 = η2
1 + η2

2 and m2 = m2
1 + m2

2, I is the identity operator, and K is the
operator defined by

Kφ̂ =
η2
1 + m2

1

η2 + m2

(
(1 − e−2|y2|)φ

)̂
+

η2
2 + m2

2

η2 + m2

(
(1 − e−2|y1|)φ

)̂
for φ ∈ L2

0(R
2).

Now let χ1 = χ, and define cutoff functions, χj , which are symmetric about
the origin, for j = 1, 2 . . . , such that χj = 1 on suppχj−1. Also, define T0 = I

and Tjφ =
(

K(χjTj−1φ)̂
)̌

for φ ∈ L2
0 for j = 1, 2, . . . . We may assume, after

restricting the supports of the χj if necessary, that the following relations hold

‖Tjφ‖2 < ‖φ‖2 ∀φ ∈ L2 and ∀j ∈ N;

‖TjAm1m2‖2 → 0 as j → ∞.

From (3.3) and (3.4) we have

(I − K)
(
χÃm1m2

)̂
= Φ̂,(3.5)

where Φ̂ = − ĥ
η2+m2 , and from (3.5) we obtain,

χn+1TnAm1m2 − χn+2Tn+1Am1m2 = χn+1TnΦ + sn,(3.6)

where sn = (χn+1 − χn+2)Tn+1Am1m2 + χn+1

(
Kŝn−1

)̌
and s0 = (χ2 − χ1)Φ.

Equation 3.6 gives terms of a telescoping series which converges in L2 since
‖χn+2Tn+1Am1m2‖2 → 0 as n → ∞. For any ε > 0 we may also choose the χj

so that ‖χn+1 − χn‖2 < ε
2n+1‖Am1m2‖2

for n ≥ 2 and ‖χ2 − χ1‖2 < ε
2‖Φ‖2

which
implies ‖∑∞

n=0 sn‖2 < ε. Hence, we conclude

χÃm1m2

L2

=
∞∑

n=0

χn+1TnΦ.(3.7)



SOLUTION OF THE ∂̄-NEUMANN PROBLEM ON A BI-DISC 529

Remark 3.1. To proceed formally, we may take (3.7) as a starting point, using
(3.7) to define a function am1m2(r1, r2) from the transformations above. Then
it is easy to show, working backwards, that v1, as defined in (2.7), gives rise to
a function u1 which solves (2.1), (2.3), and (2.5). In fact, using Lemma 2.1, we
can show the boundary conditions are satisfied in the classical sense.

4. Behavior at the distinguished boundary

Here we find the singular functions which are in the expansion, (3.7). We
show, in particular,

Proposition 4.1. ∀N ∈ N, ∃ polynomials of degree N , AN , BN , and CN , such
that, near the origin, modulo terms which are in CN (R+ × R+),

Am1m2 = AN log(y2
1 + y2

2) + BN + CN arctan
y1

y2
.

In the proof of the proposition we shall make use of functions constructed in
[2]. Let

Φ1(y1, y2) = − i

2
log(y2

1 + y2
2)

and define Φl+1 to be the unique solution of the form

p1(y1, y2) log(y2
1 + y2

2) + p2(y1, y2),

where p1 and p2 are homogeneous polynomials of degree 2l−2 in y1 and y2 such
that p2(y1, 0) = 0, to the equation

∂Φl+1

∂y2
=

1
2l

y2Φl

for l ≥ 1. Then with Φl defined for l ≥ 1, define (Φl)0 = Φl for y2 ≥ 0, and, for
j ≥ 1, (Φl)j to be the unique solution of the form

p1 log(y2
1 + y2

2) + p2 + p3 arctan
(

y1

y2

)
on the half-plane {(y1, y2) : y2 ≥ 0}, where p1, p2, and p3 are polynomials in y1

and y2 such that p2(0, y2) = 0, to the equation
∂(Φl)j

∂y1
= (Φl)j−1.

Also, define recursively for k ≥ 1, on y2 ≥ 0,

(Φl)jk =
∫ y2

0

· · ·
∫ t2

0

∫ t1

0

(Φl)j(y1, t)dtdt1 · · · dtk−1.

Proof of the proposition. We shall prove that with Tn defined as above, ∀ N ∈ N,
and ∀ n ≥ 0, on R+ × R+, in a neighborhood of (0, 0),

TnΦ =
N∑

a+b+2l−2+j+k=2
l,j,k≥1

cabljkya
1yb

2(Φl)jk + s,(4.1)
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where cabljk depend on θ1, θ2, m1, and m2, and s is used to denote the Fourier
transform of any function which, when restricted to R+×R+, is in CN (R+ × R+)
(plus terms which may be singular either along all of y1 = 0 or along all of
y2 = 0). The proof is by induction. (4.1) holds true when n = 0, as shown in
[2]. We use the Taylor expansion with remainder formula,

(4.2) 1 − e−2yk = 2yk − (2yk)2

2!
+ · · · + (−1)N (2yk)N

(N + 1)!

+
(−2)N+1

(N + 1)!

∫ yk

0

(yk − t)N+1e−2tdt,

for k = 1, 2, in the integrands of the formula

(4.3) T̂nΦ =

(−2i)2
η2
1 + m2

1

η2 + m2

∫ ∞

0

∫ ∞

0

(1 − e−2y2)χn−1(Tn−1Φ) sin(η1y1) sin(η2y2)dy1dy2

+ (−2i)2
η2
2 + m2

2

η2 + m2

∫ ∞

0

∫ ∞

0

(1− e−2y1)χn−1(Tn−1Φ) sin(η1y1) sin(η2y2)dy1dy2.

Now for y2 ≥ 0,

(Φl)jk = p1 log(y2
1 + y2

2) + p2 + p3 arctan
(

y1

y2

)
+ p4 log |y1|,(4.4)

where the pm are homogeneous polynomials of degree (2l − 2) + j + k in y1

and y2 for m = 1, 2, 3, 4, and we shall also denote by (Φl)jk its extension to
R2 \ {y1 = 0, y2 = 0}, where we use the branch from 0 to −∞ to extend the
arctan function.

We show, writing rNk for the remainder term in (4.2),

η2
i + m2

i

η2 + m2

∫ ∞

0

∫ ∞

0

rNkχn−1(Tn−1Φ) sin(η1y1) sin(η2y2)dy1dy2,(4.5)

for i = 1, 2, is the Fourier transform of a function which may be included in
a function s. We now use the induction hypothesis so that we may utilize
the properties of the particular functions comprising Tn−1Φ. rNk(ya

1yb
2(Φl)jk)

vanishes to (N + 2)nd order along yk hence its odd reflection about the yk−axis
will still be CN+1 on the appropriate half-plane. Then the regularity of the
operator D2

1 + D2
2 − m2

1 − m2
2 shows

η2
i + m2

i

η2 + m2

∫ ∞

0

∫ ∞

0

rNkχn−1(ya
1yb

2(Φl)jk) sin(η1y1) sin(η2y2)dy1dy2

is in CN (R+ × R+). Again, using the regularity of D2
1 +D2

2−m2
1−m2

2, when the
remaining terms of Tn−1Φ are considered in the integral in (4.5), we can show
that (4.5) may be included in a function s.
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After using the induction hypothesis in (4.3), we consider

Ψ̂ =
η2

i + m2
i

η2 + m2

∫ ∞

0

∫ ∞

0

χn−1y
p
1yq

2(Φl)jk sin(η1y1) sin(η1y1)dy1dy2.

Instead of looking at the odd function, Ψ, of both variables, we extend Ψ|R+×R+ ,
denoting the extended function Ψ̃, in such a way that

̂̃Ψ =
η2

i + m2
i

η2 + m2

(
χn−1y

p
1yq

2(Φl)jk

)̂
.

Then using the relations
∂

∂y1
(Φl)jk = (Φl)(j−1)k,

∂

∂y2
(Φl)jk = (Φl)j(k−1),

∂

∂y1
Φl = y1Φl−1,

∂

∂y2
Φl = y2Φl−1,

̂χn−1(Φl)jk =
1
ηj
1

1
ηk
2

1
(η2

1 + η2
2)l

+ s,

where

Φ0 =
1

y2
1 + y2

2

,

we may write ̂̃Ψ as a sum of terms of the form(
ϕyα

1 yβ
2 (Φl)jk

)̂
+ s,

where ϕ ∈ C∞
0 is equivalent to 1 in a neighborhood of the origin, α and β are

non-negative integers and l, j, and k are positive integers.
Once (4.1) is proved, another induction argument shows

TnΦ
∣∣
R+×R+

∈ Cn(R+ × R+)

(modulo a function to be included within s), and thus we may prove the propo-
sition by looking at only the first N terms in (3.7), using Lemma 2.1 to argue
the vanishing of singular terms along all of y1 = 0 or y2 = 0 arising from (4.1)
or (4.4).

After using the decay of cm1m2 with respect to m1 and m2 to sum over m1

and m2, and then transforming back to the variables z1 and z2, we deduce that,
∀n ∈ N v1 may be written

v1 = an log
(
log r1)2 + (log r2)2

)
+ bn + cn arctan

(
log r1

log r2

)
,



532 DARIUSH EHSANI

where an, bn, and cn are polynomials of degree n in log r1 and log r2 whose
coefficients are smooth functions of θ1 and θ2.

We now obtain the singularities of u1 from those of v1. If

u1 = 2
∞∑

m1,m2=−∞
bm1m2(r1, r2)eim1θ1eim2θ2 ,

then u1 and v1 are related by

∂

∂r2
bm1m2 − m2

bm1m2

r2
= am1(m2+1).(4.6)

We assume without loss of generality that, ∀ m1, m2 ≥ 0, bm1m2 and am1m2 are
supported in some neighborhood of r1 = r2 = 1. The solution to (4.6) is given
by

bm1m2 = rm2
2

∫ r2

0

t−m2am1(m2+1)(r1, t)dt.

We make the substitution u = − log t in the above integral to get

bm1m2 = rm2
2

∫ ∞

− log r2

eu(m2+1)am1(m2+1)(r1, e
−u)du.(4.7)

The integral in (4.7) was considered in [2] and gives, after summing over m1

and m2, and using a theorem of Borel, with similar results on the form of u2,
Theorem 1.1.

We note that there are f ∈ C∞(Ω), for example those f whose components,
f1 and f2, are equivalently equal to 1 in a neighborhood of ∂D1 × ∂D2, which
make Theorem 1.1 non-trivial, i.e. αj and γj are not necessarily 0.

We may also determine a sufficient condition under which the solution exhibits
any desired degree of regularity up to the boundary of the bi-disc.

Proposition 4.2. If

∂2j

∂r2j
1

∂2k

∂r2k
2

(
∂f1

∂z̄2

)∣∣∣∣∣
r1=r2=0

= 0(4.8)

∀ j, k ≥ 0 such that j + k ≤ n + 2, then u1 ∈ Cn(Ω).

Proof. If (4.8) holds, then ∀ m1, m2

∂2j

∂y2j
1

∂2k

∂y2k
2

Cm1m2

∣∣∣∣∣
y1=y2=0

= 0,

∀ j, k ≥ 0 such that j + k ≤ n + 2, which implies Am1m2 ∈ Cn(R+ × R+) (see
[2]), Am1m2 and Cm1m2 defined as above, and thus v1 = ∂u1

∂z̄2
∈ Cn(Ω). Then,

we can see u1 is in Cn(Ω) by considering integrals as in (4.7), where now the
integrands are in Cn(Ω).
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dans un domaine strictement pseudoconvexe à frontière lisse par morceaux, C. R. Acad.
Sci. Paris Sér. I Math. 323 (1996), 17–22.
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