HYPERKÄHLER MANIFOLDS WITH TORSION OBTAINED FROM HYPERHOLOMORPHIC BUNDLES

Misha Verbitsky

ABSTRACT. We construct examples of compact hyperkähler manifolds with torsion (HKT manifolds) which are not homogeneous and not locally conformal hyperkähler. Consider a total space T of a tangent bundle over a hyperkähler manifold M. The manifold T is hypercomplex, but it is never hyperkähler, unless M is flat. We show that T admits an HKT-structure. We also prove that a quotient of T by a \mathbb{Z} -action $v \longrightarrow q^n v$ is HKT, for any real number $q \in \mathbb{R}$, q > 1. This quotient is compact, if M is compact. A more general version of this construction holds for all hyperholomorphic bundles with holonomy in Sp(n).

1. Introduction

Hyperkähler manifolds with torsion (HKT-manifolds) were introduced by P. S. Howe and G. Papadopoulos ([HP]) and much discussed in physics literature since then. For an excellent survey of these works written from a mathematician's point of view, the reader is referred to the paper of G. Grantcharov and Y. S. Poon [GP]. In physics, HKT-manifolds appear as moduli of brane solitons in supergravity and M-theory ([GP2], [P]). HKT-manifolds also arise as moduli space of some special black holes in N=2 supergravity ([GP1], [GPS]).

The term "hyperkähler manifold with torsion" is actually quite misleading, because an HKT-manifold is not hyperkähler. This is why we prefer to use the abbreviation "HKT-manifold".

HKT-manifolds are hypercomplex manifolds equipped with a special kind of Riemannian metrics.

A hypercomplex manifold ([Bo]) is a C^{∞} -manifold M endowed with a triple of almost complex structures $I, J, K \in \operatorname{End}(TM)$ which are integrable and satisfy the quaternionic relations $I \circ J = -J \circ I = K$. If, in addition, M is equipped with a Riemannian structure g preserved by I, J, K, then M is called hypercomplex Hermitian. If (M, g) is Kähler with respect to I, J, K, then (M, g, I, J, K) is called hyperkähler.

An HKT-manifold is a hypercomplex Hermitian manifold which satisfies a similar, but weaker condition (1.1).

Received March 16, 2003.

The author is partially supported by CRDF Grant RM1-2354-MO02 and EPSRC Grant $\mathrm{GR/R77773/01}.$

Let (M, g, I, J, K) be a hypercomplex Hermitian manifold. Write the standard Hermitian forms on M as follows:

$$\omega_I := g(\cdot, I \cdot), \quad \omega_J := g(\cdot, J \cdot), \quad \omega_K := g(\cdot, K \cdot).$$

By definition, M is hyperkähler iff these forms are closed. The HKT condition is weaker:

(1.1)
$$\partial(\omega_J + \sqrt{-1}\,\omega_K) = 0.$$

Notice that $\Omega = \frac{1}{2}(\omega_J + \sqrt{-1}\omega_K)$ is a (2,0)-form, for any hypercomplex Hermitian manifold, as an elementary linear-algebraic calculation insures. This form is called the canonical (2,0)-form associated with the hypercomplex Hermitian structure. As we shall see (Proposition 3.2), the metric can be recovered from the hypercomplex structure and the form Ω .

Originally, the HKT-manifolds were defined in terms of a quaternionic invariant connection with totally antisymmetric torsion (see [HP], [GP]).

Many homogeneous examples of compact HKT-manifolds were obtained in [HP] and [GP]. In [I] it was shown that any locally conformally hyperkähler manifold also admits an HKT-structure (see [Or]). Converse result was obtained in [OPS]: it was found when an HKT-manifold is locally conformally hyperkähler manifold, in terms of symmetry conditions.

Locally, the HKT metrics can be studied using potential functions ([GP]) in the same fashion as one uses plurisubharmonic functions to study Kähler metrics. This way one obtains many examples of HKT-structures on a sufficiently small open hypercomplex manifolds.

If $\dim_{\mathbb{R}} M = 4$, every hypercomplex Hermitian metrics is also HKT (the condition (1.1) is satisfied vacuously because the left hand side of (1.1) is a (3,0)-form).

If $\dim_{\mathbb{R}} M > 4$, the HKT-condition becomes highly non-trivial. There are examples of hypercomplex manifolds not admitting an HKT-structure ([FG]). All known examples of compact HKT-manifolds are either homogeneous or locally conformally hyperkähler.

In the present paper, we construct HKT-structures on fibered spaces associated with hyperkähler manifolds. A typical example of our construction is the following

Theorem 1.1. Let M be a hyperkähler manifold and

$$T^{\circ}M = \text{Tot}(TM) \setminus \{zero \ section\}$$

the total space of non-zero vectors in TM. Given $q \in \mathbb{R}$, $|q| \neq 1$, let \sim_q be the equivalence relation generated by $x \sim_q qx$, $x \in TM$. Consider the quotient $T^{\circ}M/\sim_q$. Then $T^{\circ}M/\sim_q$ is equipped with a natural HKT-structure.

Proof. See Theorem 8.1.
$$\Box$$

Theorem 1.1 is a special case of a much more general construction performed in Section 8.

2. The q-Dolbeault bicomplex

In this Section, we introduce some notions of quaternionic linear algebra which will be used further on. A reader well versed in quaternions can safely skip this section. We follow [V5].

Let M be a hypercomplex manifold, and

$$\Lambda^0 M \xrightarrow{d} \Lambda^1 M \xrightarrow{d} \Lambda^2 M \xrightarrow{d} \dots$$

its de Rham complex. Consider the natural action of SU(2) on Λ^*M . Clearly, SU(2) acts on Λ^iM , $i\leqslant \frac{1}{2}\dim_{\mathbb{R}}M$ with weights $i,i-2,i-4,\ldots$

We denote by Λ^i_+ the maximal SU(2)-subspace of Λ^i , on which SU(2) acts with weight i.

The following linear-algebraic lemma allows one to compute Λ^i_+ explicitly

Lemma 2.1. In the above assumptions, let I be an induced complex structure, and \mathbb{H}_I the quaternion space, considered as a 2-dimensional complex vector space with the complex structure induced by I. Denote by $\Lambda_I^{p,0}(M)$ the space of (p,0)-forms on (M,I). The space \mathbb{H}_I is equipped with a natural action of SU(2). Consider $\Lambda_I^{p,0}(M)$ as a representation of SU(2), with trivial group action. Then, there is a canonical isomorphism

(2.1)
$$\Lambda^p_+(M) \cong S^p_{\mathbb{C}} \mathbb{H}_I \otimes_{\mathbb{C}} \Lambda^{p,0}_I(M),$$

where $S^p_{\mathbb{C}}\mathbb{H}_I$ denotes a p-th symmetric power of \mathbb{H}_I . Moreover, the SU(2)-action on $\Lambda^p_+(M)$ is compatible with the isomorphism (2.1).

Consider an SU(2)-invariant decomposition

(2.2)
$$\Lambda^p(M) = \Lambda^p_{\perp}(M) \oplus V^p,$$

where V^p is the sum of all SU(2)-subspaces of $\Lambda^p(M)$ of weight less than p. Using the decomposition (2.2), we define the quaternionic Dolbeault differential $d_+: \Lambda_+^*(M) \longrightarrow \Lambda_+^*(M)$ as a composition of de Rham differential and projection of to $\Lambda_+^*(M) \subset \Lambda^*(M)$. Since the de Rham differential cannot increase the SU(2)-weight of a form more than by 1, d preserves the subspace $V^* \subset \Lambda^*(M)$. Therefore, d_+ is a differential in $\Lambda_+^*(M)$.

Let M be a hypercomplex manifold, and I an induced complex structure. Consider the operator $\mathcal{I}: \Lambda^*(M) \longrightarrow \Lambda^*(M)$ mapping a (p,q)-form η to $\sqrt{-1}(p-q)\eta$. By definition, \mathcal{I} belongs to the Lie algebra $\mathfrak{su}(2)$ acting on $\Lambda^*(M)$ in the standard way. Therefore, \mathcal{I} preserves the subspace $\Lambda^*_+(M) \subset \Lambda^*(M)$. We obtain the Hodge decomposition

$$\Lambda_+^*(M) = \oplus_{p,q} \Lambda_{+,I}^{p,q}(M).$$

Let M be a hypercomplex manifold, I an induced combex structure, and $I, J, K \in \mathbb{H}$ the standard triple of induced complex structures. Clearly, J acts

on the complexified co tangent space $\Lambda^1 M \otimes \mathbb{C}$ mapping $\Lambda_I^{0,1}(M)$ to $\Lambda_I^{1,0}(M)$. Consider a differential operator

$$\partial_J: C^{\infty}(M) \longrightarrow \Lambda_I^{1,0}(M),$$

mapping f to $J(\overline{\partial}f)$, where $\overline{\partial}: C^{\infty}(M) \longrightarrow \Lambda_I^{0,1}(M)$ is the standard Dolbeault differential on a Kähler manifold (M,I). We extend ∂_J to a differential

$$\partial_J: \Lambda_I^{p,0}(M) \longrightarrow \Lambda_I^{p+1,0}(M),$$

using the Leibniz rule.

Proposition 2.2. Let M be a hypercomplex manifold, I an induced complex structure, I, J, K the standard basis in quaternion algebra, and

$$\Lambda_+^*(M) = \bigoplus_{p,q} \Lambda_{I,+}^{p,q}(M)$$

the Hodge decomposition of the quaternionic Dolbeault complex. Then there exists a canonical isomorphism

(2.3)
$$\Lambda_{I,+}^{p,q}(M) \cong \Lambda_{I}^{p+q,0}(M).$$

Under this identification, the quaternionic Dolbeault differential

$$d_+: \Lambda^{p,q}_{I,+}(M) \longrightarrow \Lambda^{p+1,q}_{I,+}(M) \oplus \Lambda^{p,q+1}_{I,+}(M)$$

corresponds to a sum

$$\partial \oplus \partial_J: \ \Lambda_I^{p+q,0}(M) \longrightarrow \Lambda_I^{p+q+1,0}(M) \oplus \Lambda_I^{p+q+1,0}(M).$$

Proof. This is Proposition 8.13 of [V5].

The statement of Proposition 2.2 can be represented by the following diagram

where $d_+ = d'_+ + d''_+$ is the Hodge decomposition of the quaternionic Dolbeault differential.

Using the SU(2)-action, we may identify the bundles $\Lambda_+^{p,q}(M)$ with $\Lambda_+^{p+q,0}(M) = \Lambda_I^{p+q,0}(M)$ explicitly, as follows.

Let \mathcal{J}, \mathcal{K} be the Lie algebra operators acting on differential forms and associated with J, K in the same way as \mathcal{I} is associated with I. Consider the map $\mathcal{R}: \Lambda^*(M) \longrightarrow \Lambda^*(M)$,

(2.5)
$$\mathcal{R} := \frac{\mathcal{J} - \sqrt{-1} \,\mathcal{K}}{2}.$$

It is easy to check that the Lie algebra elements $\mathcal{R}, \mathcal{I}, \overline{\mathcal{R}}$ form an SL(2)-triple in the complexification of the standard $SU(2) \subset \operatorname{End}(\Lambda^*(M))$. Therefore, \mathcal{R} maps $\Lambda^{p,q}_+(M)$ to $\Lambda^{p+1,q-1}_+(M)$. Since $\Lambda^m_+(M)$ is a representation of weight m, \mathcal{R} induces an isomorphism

$$\mathcal{R}: \ \Lambda^{p,q}_{+,I}(M) \longrightarrow \Lambda^{p+1,q-1}_{+,I}(M),$$

for all q > 0.

Together with (2.4), this observation implies the following.

Claim 2.3. Let M be a hypercomplex manifold, I an induced complex structure, and $\eta \in \Lambda_I^{1,1}(M)$ a (1,1)-form. Then η is SU(2)-invariant if and only if $\mathcal{R}(\eta) = 0$. Moreover, for all functions ψ on M, we have

$$\mathcal{R}(\partial \overline{\partial}(\psi)) = \partial \partial_J(\psi).$$

Assume now that the manifold M is hypercomplex Hermitian. Consider the 3-dimensional space generated by the 2-forms ω_I , ω_J and ω_K . This is a weight 2 representation of SU(2). Moreover, that

$$\mathcal{R}(\omega_I) = \Omega,$$

where $\Omega = \frac{1}{2}(\omega_J + \sqrt{-1} \omega_K)$ is the canonical (2,0)-form.

3. The *q*-positive forms

Let M be a hypercomplex manifold, and $\Lambda_I^{p,q}(M)$ the bundle of (p,q)-forms on (M,I). Consider the map $J: \Lambda^*(M) \longrightarrow \Lambda^*(M)$,

$$J(dx_1 \wedge dx_2 \wedge \ldots) = J(dx_1) \wedge J(dx_2) \wedge \ldots$$

Clearly, on 2-forms we have $J^2 = 1$; more generally,

$$(3.1) \left(J\Big|_{\Lambda^{\text{even}}(M)}\right)^2 = 1.$$

Since J and I anticommute, we have $J(\Lambda_I^{p,q}(M)) = \Lambda_I^{q,p}(M)$. By (3.1), the map $\eta \longrightarrow J(\overline{\eta})$ defines a real structure on $\Lambda_I^{2,0}(M)$.

Definition 3.1. Let $\eta \in \Lambda_I^{2,0}(M)$ be a (2,0)-form on a hypercomplex manifold M. We say that η is q-real if $\eta = J(\overline{\eta})$. We say that η is q-positive if η is q-real, and

$$(3.2) \eta(v, J(\overline{v})) \geqslant 0$$

for any $v \in T_I^{1,0}(M)$. We say that η is *strictly q-positive* if the inequality (3.2) is strict, for all $v \neq 0$.

The q-positive forms were introduced and studied at some length in [V4], under the name "K-positive forms". These forms were used to study the stability of certain coherent sheaves. Some properties of q-positive forms are remarkably close to that of the usual positive forms, studied in algebraic geometry in connection with Vanishing Theorems.

Proposition 3.2. Let M be a hypercomplex manifold, and h a hypercomplex Hermitian metric. Consider the form

$$\Omega := \omega_J + \sqrt{-1} \,\omega_K$$

(see (1.1)). Then Ω is strictly q-positive. Conversely, every strictly q-positive (2,0)-form is obtained from a unique hypercomplex Hermitian metric on M.

Proof. The form $\Omega := \omega_J + \sqrt{-1} \,\omega_K$ is q-positive as an elementary calculation insures. Indeed, write the orthonormal basis $\xi_1, \xi_2, ... \xi_{2n} \in \Lambda^{1,0}(M)$ in such a way that

(3.3)
$$J(\xi_{2i-1}) = \overline{\xi}_{2i}, \quad J(\xi_{2i}) = -\overline{\xi}_{2i-1}.$$

Then

$$(3.4) \qquad \Omega = \xi_1 \wedge \xi_2 + \xi_3 \wedge \xi_4 + \dots$$

This form is clearly q-real and strictly q-positive.

Conversely, let Ω be a q-real and strictly q-positive form on a hypercomplex manifold M. We can write Ω is coordinates as

$$\Omega = \alpha_1 \xi_1 \wedge \xi_2 + \alpha_3 \xi_3 \wedge \xi_4 + \dots$$

where α_i are positive real numbers, and ξ_i satisfy (3.3).

Write a hypercomplex Hermitian form h as

(3.5)
$$h = \alpha_1 ((\operatorname{Re} \xi_1)^2 + (\operatorname{Im} \xi_1)^2 + (\operatorname{Re} \xi_2)^2 + (\operatorname{Im} \xi_2)^2) + \alpha_3 ((\operatorname{Re} \xi_3)^2 + (\operatorname{Im} \xi_3)^2 + (\operatorname{Re} \xi_4)^2 + (\operatorname{Im} \xi_4)^2) + \dots$$

Clearly, the corresponding canonical (2,0)-form is equal Ω .

The Hermitian metric (3.5) can be reconstructed from Ω directly as follows:

$$h(x,y) = \Omega(x^{1,0}, J(y^{0,1})),$$

for all $x, y \in T_{\mathbb{R}}M$, where $x^{1,0}$, $y^{0,1}$ denotes the (1,0) and (0,1)-parts of x, y. We proved that the hypercomplex Hermitian structure is uniquely determined by the strictly q-positive form Ω .

The following Corollary gives an interpretation of HKT-structures in terms of the canonical (2,0)-form.

Corollary 3.3. Let M be a hypercomplex manifold, and $\Omega \in \Lambda^{2,0}(M)$ a ∂ -closed strictly q-positive (2,0)-form. Then M is an HKT-manifold, and Ω is obtained as a canonical (2,0)-form of an HKT-metric h. Moreover, h is uniquely determined by Ω .

Proof. By Proposition 3.2, $\Omega = \omega_J + \sqrt{-1}\Omega_K$, for some hypercomplex Hermitian metric h. Since $\partial\Omega = 0$, (M, h) is an HKT-manifold.

4. Hyperholomorphic bundles

Hyperholomorphic bundles were introduced and studied at some length in [V1]. Let B be a holomorphic vector bundle over a complex manifold X, ∇ a connection in B and $\Theta \in \Lambda^2 \otimes \operatorname{End}(B)$ be its curvature. This connection is called compatible with the holomorphic structure if $\nabla_{\gamma}(\zeta) = 0$ for any holomorphic section ζ and any antiholomorphic tangent vector field $\gamma \in T^{0,1}(X)$. If there exists a holomorphic structure compatible with the given Hermitian connection then this connection is called *integrable*.

Theorem 4.1. Let ∇ be a Hermitian connection in a complex vector bundle B over a complex manifold X. Then ∇ is integrable if and only if $\Theta \in \Lambda^{1,1}(X,\operatorname{End}(B))$, where $\Lambda^{1,1}(X,\operatorname{End}(B))$ denotes the forms of Hodge type (1,1). Also, the holomorphic structure compatible with ∇ is unique.

Proof. This is Proposition 4.17 of [Kob], Chapter I.

This proposition is a version of Newlander-Nirenberg theorem. For vector bundles, it was proven by M. Atiyah and R. Bott.

Definition 4.2. Let B be a Hermitian vector bundle with a connection ∇ over a hypercomplex manifold M. Then ∇ is called *hyperholomorphic* if ∇ is integrable with respect to each of the complex structures induced by the hypercomplex structure.

As follows from Theorem 4.1, ∇ is hyperholomorphic if and only if its curvature Θ is of Hodge type (1,1) with respect to any of the complex structures induced by a hypercomplex structure.

An easy calculation shows that ∇ is hyperholomorphic if and only if Θ is an SU(2)-invariant differential form.

Hyperholomorphic bundles are quite ubiquitous. Clearly, the tangent bundle to a hyperkähler manifold and all its tensor powers are hyperholomorphic. There are many other examples

Example 4.3. Let M be a compact hyperkähler manifold, B a holomorphic bundle. Then B admits a unique hyperholomorphic connection, if B is stable and the cohomology classes $c_1(B)$ and $c_2(B)$ are SU(2)-invariant. Moreover, if M is generic in its deformation class, then all stable bundles admit a hyperholomorphic connection.

5. H-hyperholomorphic bundles

Definition 5.1. Let M be a hypercomplex manifold, and (B, ∇) a hyperholomorphic bundle on M, $\dim_{\mathbb{C}} B = 2n$. The bundle B is called \mathbb{H} -hyperholomorphic if ∇ preserves a \mathbb{C} -linear symplectic structure on B. In other words, B is \mathbb{H} -hyperholomorphic if the holonomy of ∇ is contained in Sp(n).

The following examples are obvious.

Example 5.2. Let F be a hyperholomorphic bundle on M. Then $F \oplus F^*$ is \mathbb{H} -hyperholomorphic.

Example 5.3. Consider the tangent bundle TM on M. Assume that M is hyperkähler. Then TM is \mathbb{H} -hyperholomorphic.

The main property of H-hyperholomorphic bundles is the following.

Claim 5.4. Let M be a hypercomplex manifold, and B an \mathbb{H} -hyperholomorphic bundle. Denote by Tot B the total space of B. Then Tot B is equipped with a natural hypercomplex structure. In particular, the total space of TM is hypercomplex.

Proof. Since the holonomy of B is contained in Sp(n), there is a natural parallel action of \mathbb{H} on B. Given a quaternion $L \in \mathbb{H}$, $L^2 = -1$, consider B as a complex vector bundle with the complex structure defined by L. Denote this complex vector bundle as (B, L). Since the curvature of B is SU(2)-invariant, the bundle (B, L) is hyperholomorphic. Consider (B, L) as a holomorphic vector bundle on (M, L). Denote the corresponding complex structure on Tot B by L. We obtained an integrable complex structure on Tot B for each quaternion $L \in \mathbb{H}$, $L^2 = -1$. It is easy to check that these complex structures satisfy quaternionic relations, inducing a hypercomplex structure on Tot B.

6. The Obata connection on Tot B.

Let M be a hyperkähler manifold, and B an \mathbb{H} -hyperholomorphic bundle. By Claim 5.4, the total space Tot B is hypercomplex. One can ask whether this hypercomplex structure is hyperkähler. The answer is - never (unless B is flat).

Given a hypercomplex manifold, one can easily establish whether M admits a hyperkähler structure. This is done most easily using the so-called Obata connection.

Theorem 6.1 (Obata). Let M be a hypercomplex manifold. Then M admits a unique torsion-free connection which preserves the hypercomplex structure.¹

Proof. Well know	n (see [Ob]).		
rooj. Well illiow	1 (BCC [OB]).	-	_

If M is hyperkähler, then the Levi-Civita connection preserves the hypercomplex structure. In this case, the Levi-Civita connection coincides with the Obata connection.

To determine whether a hypercomplex manifold M admits a hyperkähler structure, one needs to compute the holonomy of the Obata connection. The manifold is hyperkähler if and only if the holonomy Hol preserves a metric; that is, M is hyperkähler if and only if Hol is contained in Sp(n).

Proposition 6.2. Let M be a hyperkähler manifold, B an \mathbb{H} -hyperholomorphic bundle, and Tot B its total space considered as a hypercomplex manifold (see

¹This connection is called the Obata connection.

Claim 5.4). Assume that the curvature of B is non-zero. Then Tot B does not admit a hyperkähler structure.

Proof. One could compute the holonomy group of the Obata connection of $\operatorname{Tot} B$, and show that it is non-compact. To avoid excessive computations, we use a less straightforward argument.

Suppose that Tot B is hyperkähler. Given $m \in M$, let $B_m \subset \text{Tot } B$ be the fiber of B in m. By construction, B_m is a hypercomplex submanifold in Tot B. Such submanifolds are called *trianalytic* (see [V2], [V3] for a study of trianalytic cycles on hyperkähler manifolds). In [V3], it was shown that trianalytic submanifolds are completely geodesic. In other words, for any trianalytic submanifold $Z \subset X$, the Levi-Civita connection on $TX|_Z$ preserves the orthogonal decomposition

$$(6.1) TX\big|_{Z} = TZ \oplus TZ^{\perp}$$

If we have a hypercomplex fibration $X \longrightarrow Y$, the decomposition (6.1) gives a connection for this fibration. In [V3] it was shown that this connection is flat, for any hyperkähler fibration.

We obtain a flat connection ∇ in the fibration $\operatorname{Tot} B \longrightarrow M$. This connection is clearly compatible with the additive structure on the bundle B. Therefore, ∇ is an affine connection on B. By construction, ∇ is compatible with the hypercomplex structure on $\operatorname{Tot} B$. Therefore, ∇ coincides with the hyperholomorphic connection on B. We proved that B is flat. \square

7. HKT-structure on Tot B.

Let M be a smooth manifold. Given a bundle with connection on M, we have a decomposition

(7.1)
$$T \operatorname{Tot} B = T_{\operatorname{ver}} \oplus T_{\operatorname{hor}}$$

of the tangent space to Tot B into horizontal and vertical components. Clearly, the bundle T_{ver} is identified with π^*B , and T_{hor} with π^*TM , where π : Tot $B \longrightarrow M$ is the standard projection.

Assume now that M is a Riemannian manifold, and B a vector bundle, equipped with a Euclidean metric. Then Tot B is equipped with a Riemannian metric g defined by the following conditions.

- (i) The decomposition T Tot $B = T_{\text{ver}} \oplus T_{\text{hor}}$ is orthogonal with respect to g.
- (ii) Under the natural identification $T_{\text{ver}} \cong \pi^* B$, the metric g restricted to T_{ver} becomes the metric on B.
- (iii) The metric g restricted $T_{\text{hor}} \cong \pi^*TM$ is equal to the metric induced on π^*TM from the Riemannian structure on M.

Definition 7.1. In the above assumptions, the metric g is called the natural metric on Tot B induced by the connection and the metrics on M and B.

Notice that the metric g depends from the metrics on B and M and from the connection in B. Different connections induce different metrics on Tot B.

Theorem 7.2. Let M be an HKT-manifold, and B an \mathbb{H} -hyperholomorphic vector bundle on M. Consider the metric g on Tot B defined as in Definition 7.1. Then g is an HKT-metric.

Proof. Consider the decomposition $g = \pi^* g_M + \pi^* g_B$ of the metric g onto the horizontal and vertical components. Since the decomposition T Tot $B = T_{\text{ver}} \oplus T_{\text{hor}}$ is compatible with the hypercomplex structure, the 2-forms $g_{\text{hor}} := \pi^* g_M$ and $g_{\text{ver}} := \pi^* g_B$ are SU(2)-invariant. Consider the corresponding (2,0)-forms Ω_{hor} and Ω_{ver} obtained as in (1.1);

$$\Omega_{\rm hor} = \omega_{J \rm hor} + \sqrt{-1} \, \omega_{K \rm hor}$$

where $\omega_{J\text{hor}} = g_{\text{hor}}(J\cdot,\cdot)$, $\omega_{K\text{hor}} = g_{\text{hor}}(K\cdot,\cdot)$ are differential forms associated with g_{hor} and J, K as in (1.1).

Then Ω_{hor} and Ω_{ver} are horizontal and vertical components of the standard (2,0)-form of Tot B:

(7.2)
$$\Omega = \Omega_{\text{hor}} + \Omega_{\text{ver}}$$

The HKT condition can be written as $\partial\Omega = 0$ (1.1). Let Ω_M be the standard (2,0)-form of M. Since M is an HKT manifold, (1.1) holds on M and the form Ω_{hor} satisfies

$$\partial \Omega_{\text{hor}} = \partial \pi^* \Omega_M = 0.$$

To prove Theorem 7.2, it remains to show

$$\partial\Omega_{\rm ver} = 0$$

Consider a function

(7.4)
$$\Psi: \operatorname{Tot} B \longrightarrow \mathbb{R}, \quad \Psi(v) = |v|^2,$$

mapping a vector $v \in TM$ to the square of its norm. Let

$$0 \longrightarrow \Omega^{1,0} \stackrel{\partial,\partial_J}{\longrightarrow} \Omega^{2,0} \stackrel{\partial,\partial_J}{\longrightarrow} \Omega^{3,0} \stackrel{\partial,\partial_J}{\longrightarrow} \dots$$

be the bicomplex defined in (2.4). To prove (7.3), and hence Theorem 7.2, it suffices to prove

(7.5)
$$\partial \partial_J \Psi = \Omega_{\text{ver}}.$$

By Claim 2.3, we have

$$\partial \partial_J \Psi = \mathcal{R}(\partial \overline{\partial} \Psi),$$

where $R: \Lambda^{1,1}(\operatorname{Tot} B) \longrightarrow \Lambda^{2,0}(\operatorname{Tot} B)$ is the operator

$$\mathcal{R} = \frac{\mathcal{J} - \sqrt{-1}\,\mathcal{K}}{2}$$

(see (2.5)). However, the 2-form $\partial \overline{\partial} \Psi$ is quite easy to compute. From [Bes], (15.19), we obtain:

(7.6)
$$\partial \overline{\partial} \Psi = \omega_{\text{ver}} + \xi,$$

where $\omega_{\text{ver}} = g_{\text{ver}}(\cdot, I_{\cdot})$ is the Hermitian form of g_{ver} , and ξ is defined as following. Using the decomposition (7.1), we consider $\Lambda^2 T_{\text{hor}}$ as a subbundle in Λ^2 Tot B. Then $\xi \in \Lambda^2 T_{\text{hor}} \subset \Lambda^2$ Tot B is a 2-form on T_{hor} mapping a pair of vectors (x, y)

$$x, y \in T_{\text{hor}}\Big|_{(m,b)} \subset T_{(m,b)} \text{ Tot } B,$$

$$T_{\text{hor}}\Big|_{(m,b)} = T_m M,$$

$$(m,b) \in \text{Tot } B, m \in M, b \in B\Big|_m$$

to $(R(x, y, b)\overline{b})$, where $R \in \Lambda^2 M \otimes \operatorname{End} B$ is the curvature of B. The form ξ is SU(2)-invariant because the curvature of B is SU(2)-invariant. Therefore, $\mathcal{R}(\xi) = 0$ (Claim 2.3), and

(7.7)
$$\partial \partial_J \Psi = \mathcal{R}(\partial \overline{\partial} \Psi) = \mathcal{R}(\omega_{\text{ver}}) = \Omega_{\text{ver}}$$

(the last equation holds by (2.6)). This proves (7.5). Theorem 7.2 is proven. \Box

8. New examples of compact HKT-manifolds

Let M be a compact HKT-manifold, e.g. a hyperkähler manifold, and B an \mathbb{H} -hyperholomorphic vector bundle on M (for examples of \mathbb{H} -hyperholomorphic vector bundles see Examples 5.2 and 5.3). Denote by $\text{Tot}^{\circ} B$ be the space of non-zero vectors in B. Fix a real number q > 1. Consider the map

$$\rho_q: \operatorname{Tot}^{\circ} B \longrightarrow \operatorname{Tot}^{\circ} B, \quad \rho_q(b) = qb, \quad b \in \operatorname{Tot}^{\circ} B,$$

and let $\mathcal{M} = \operatorname{Tot}^{\circ} B/\rho_q$ be the corresponding quotient space. Since the map $b \longrightarrow qb$ is compatible with the hypercomplex structure, the space \mathcal{M} is hypercomplex. It is fibered over a compact manifold M, with fibers Hopf manifolds which are homeomorphic to $S^1 \times S^{2m-1}$, $m = \dim_{\mathbb{R}} B$, hence it is compact.

Theorem 8.1. In the above assumptions, \mathcal{M} admits a natural HKT-structure.

Proof. By Corollary 3.3, we need to construct a q-positive ∂ -closed (2,0)-form on \mathcal{M} . Let $\widetilde{\Omega}$ be a (2,0)-form on $\operatorname{Tot}^{\circ} B$,

$$\widetilde{\Omega} = \pi^* \Omega_M + \partial \partial_J \log \Psi,$$

where $\pi^*\Omega_M$ is the canonical (2,0)-form on M lifted to $\operatorname{Tot}^{\circ} B$, and Ψ : $\operatorname{Tot} B \longrightarrow \mathbb{R}$ the square norm function (7.4). The map $v \xrightarrow{\rho_q} qv$ satisfies $\rho_q^* \log \Psi = \log \Psi + \log q^2$, and therefore

$$\rho_q^* \partial \partial_J \log \Psi = \partial \partial_J \log \Psi.$$

This implies that $\widetilde{\Omega} = \pi^* \Omega_M + \partial \partial_J \log \Psi$ is ρ_q -invariant, hence defines a form Ω on $\mathcal{M} = \text{Tot}^{\circ} B/\rho_q$.

By construction, the form Ω is ∂ -closed. To prove Theorem 8.1, it remains to show that $\widetilde{\Omega}$ is strictly q-positive. We use the same argument as used to show that a locally conformal hyperkähler manifold is HKT.

We have

(8.1)
$$\partial \partial_J \log \Psi = \frac{\partial \partial_J \Psi}{\Psi} - \frac{\partial \Psi \wedge \partial_J \Psi}{\Psi^2}.$$

In all directions orthogonal to $\partial \Psi$, $\partial_J \Psi$, the form $\partial \partial_J \log \Psi$ is proportional to $\partial \partial_J \Psi$, hence q-positive by (7.7). Moreover, (8.1) implies that

$$\widetilde{\Omega} = \Omega_{\rm hor} + \frac{\Omega_{\rm ver}}{\Psi} - \frac{\partial \Psi \wedge \partial_J \Psi}{\Psi^2},$$

(we use the notation introduced in Section 7). The form $\Omega_{\text{hor}} + \frac{\Omega_{\text{ver}}}{\Psi}$ is strictly q-positive (Theorem 7.2). The vertical and the horizontal tangent vectors are orthogonal with respect to $\widetilde{\Omega}$. Since $\frac{\partial \Psi \wedge \partial_J \Psi}{\Psi^2}$ vanishes on all horizontal tangent vectors, it remains to prove that $\widetilde{\Omega}(x, J\overline{x}) > 0$, where x is vertical.

Let $\xi \in T^{1,0}(\operatorname{Tot}^{\circ} B)$ be the vertical tangent vector to $\operatorname{Tot}^{\circ} B$ which is dual to $\frac{d\Psi}{d\sqrt{M}}$. Clearly, $\partial \Psi$ is the (1,0)-part of ξ . For all $x \in T^{1,0}(\operatorname{Tot}^{\circ} B)$, we have

$$\frac{\partial \Psi \wedge \partial_J \Psi}{\Psi^2} \left(x, J(\overline{x}) \right) = (\xi, x)_H^2,$$

where $(\cdot,\cdot)_H$ denotes the Riemannian form. Similarly,

$$\Omega_{\rm ver}(x,J(\overline{x})) = 2(x,x)_H$$

(this can be checked by writing Ω_{ver} is coordinates as in (3.4)). Using Cauchy inequality and $|\xi| = 1$, we obtain $(x, x)_H \ge (\xi, x)_H^2$. Then

$$\widetilde{\Omega}(x, J(\overline{x})) = \frac{\Omega_{\text{ver}}}{\Psi} \left(x, J(\overline{x}) \right) - \frac{\partial \Psi \wedge \partial_J \Psi}{\Psi^2} \left(x, J(\overline{x}) \right)$$
$$= 2 \frac{(x, x)_H}{\Psi} - \frac{(\xi, x)_H^2}{\Psi} \geqslant \frac{(x, x)_H}{\Psi} > 0$$

for all vertical tangent vectors $x \neq 0$. This proves Theorem 8.1.

Acknowledgements

I am grateful to G. Grantcharov, D. Kaledin and Y.S. Poon for interesting discussions.

References

- [Bes] A. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10. Springer-Verlag, Berlin, 1987.
- [Bo] C. P. Boyer, A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc. 102 (1988), 157–164.
- [Ca] E. Calabi, *Métriques kählériennes et fibrés holomorphes*, Ann. Sci. École Norm. Sup. (4) **12** (1979), 269–294.
- [FG] A. Fino, G. Grantcharov, On some properties of the manifolds with skew-symmetric torsion and holonomy SU(n) and Sp(n), preprint: math.DG/0302358
- [GP] G. Grantcharov, Y.S. Poon, Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys. 213 (2000), 19–37.
- [GH] P. Griffiths, J. Harris, *Principles of algebraic geometry*, Wiley-Intersience, New York, 1978.

- [GP1] J. Gutowski, G. Papadopoulos, The dynamics of very special black holes, Phys. Lett. B 472 (2000), 45–53.
- [GP2] _____, The moduli spaces of worldvolume brane solitons, Phys. Lett. B **432** (1998), 97–102.
- [GPS] G. W. Gibbons, G. Papadopoulos, K.S. Stelle, HKT and OKT geometries on soliton black hole moduli spaces, Nuclear Phys. B 508 (1997), 623–658.
- [HP] P.S. Howe, G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion, Phys. Lett. B **379** (1996), 80–86.
- S. Ivanov, Geometry of quaternionic Kähler connections with torsion, J. Geom. Phys. 41 (2002), 235–257; math.DG/0003214
- [J] D. Joyce, Compact hypercomplex and quaternionic manifolds, J. Differential Geom. 35 (1992), 743-761.
- [Kob] S. Kobayashi, Differential geometry of complex vector bundles, Princeton University Press, Princeton, NJ, 1987.
- [Ob] M. Obata, Affine connections on manifolds with almost complex, quaternion or Hermitian structure, Jap. J. Math. 26 (1956), 43–77.
- [Or] L. Ornea, Weyl structures on quaternionic manifolds. A state of the art, preprint: math.DG/0105041
- [OPS] L. Ornea, Y.S. Poon, A. Swann, Potential one-forms for hyperkähler structures with torsion, preprint: math.DG/0211427
- [P] G. Papadopoulos, Brane Solitons and Hypercomplex Structures, Quaternionic structures in mathematics and physics (Rome, 1999), 299–312; math.DG/0003024
- [PP] H. Pedersen, Y. S. Poon, Inhomogeneous hypercomplex structures on homogeneous manifolds, J. Reine Angew. Math. 516 (1999), 159–181.
- [V1] M. Verbitsky, Hyperholomorphic bundles over a hyper-Kähler manifold, J. Algebraic Geom. 5 (1996), 633–669; alg-geom/9307008
- [V2] _____, Tri-analytic subvarieties of hyper-Kaehler manifolds, Geom. Funct. Anal. 5 (1995), 92–104; Also available as Hyperkähler embeddings and holomorphic symplectic geometry. II: alg-geom/9403006
- [V3] _____, Deformations of trianalytic subvarieties of hyper-Kähler manifolds, Selecta Math. (N.S.) 4 (1998), 447–490; alg-geom/9610010
- [V4] _____, Hyperholomorpic connections on coherent sheaves and stability, preprint: math.AG/0107182
- [V5] _____, Projective bundles over hyperkähler manifolds and stability of Fourier-Mukai transform, preprint: math.AG/0107196
- [V6] _____, HyperKähler manifolds with torsion, supersymmetry and Hodge theory, Asian J. Math. 6 (2002), 679-712; math.AG/0112215

Independent University of Moscow, Bolshoi Vlasevsky Pereulok, 11, Moscow, 119002, Russia.

E-mail address: verbit@mccme.ru

Glasgow University, Deptartment of Mathematics, 15 University gardens, Glasgow, G12 8QW, Scotland.

E-mail address: verbit@maths.gla.ac.uk