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HYPERKAHLER MANIFOLDS WITH TORSION
OBTAINED FROM HYPERHOLOMORPHIC BUNDLES

MiSHA VERBITSKY

ABSTRACT. We construct examples of compact hyperkahler manifolds with tor-
sion (HKT manifolds) which are not homogeneous and not locally conformal hy-
perkéhler. Consider a total space T' of a tangent bundle over a hyperkdhler man-
ifold M. The manifold T is hypercomplex, but it is never hyperkéahler, unless M
is flat. We show that T" admits an HKT-structure. We also prove that a quotient
of T' by a Z-action v — ¢"v is HKT, for any real number ¢ € R, ¢ > 1. This
quotient is compact, if M is compact. A more general version of this construction
holds for all hyperholomorphic bundles with holonomy in Sp(n).

1. Introduction

Hyperkahler manifolds with torsion (HKT-manifolds) were introduced by P. S.
Howe and G. Papadopoulos ([HP]) and much discussed in physics literature since
then. For an excellent survey of these works written from a mathematician’s
point of view, the reader is referred to the paper of G. Grantcharov and Y.S.
Poon [GP]. In physics, HKT-manifolds appear as moduli of brane solitons in
supergravity and M-theory ([GP2|, [P]). HKT-manifolds also arise as moduli
space of some special black holes in N=2 supergravity ([GP1], [GPS]).

The term “hyperkahler manifold with torsion” is actually quite misleading,
because an HKT-manifold is not hyperkahler. This is why we prefer to use the
abbreviation “HKT-manifold”.

HKT-manifolds are hypercomplex manifolds equipped with a special kind of
Riemannian metrics.

A hypercomplex manifold ([Bo]) is a C°°-manifold M endowed with a triple of
almost complex structures I, J, K € End(T'M) which are integrable and satisfy
the quaternionic relations foJ = —Jol = K. If, in addition, M is equipped with
a Riemannian structure g preserved by I, J, K, then M is called hypercomplex
Hermitian. 1If (M,g) is Kéahler with respect to I,J, K, then (M, g,1I,J, K) is
called hyperkdhler.

An HKT-manifold is a hypercomplex Hermitian manifold which satisfies a
similar, but weaker condition (1.1).
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Let (M, g, 1, J, K) be a hypercomplex Hermitian manifold. Write the standard
Hermitian forms on M as follows:

wr 1= g("I’)v Wy = g(‘a‘]')7 WK = g(7K)

By definition, M is hyperkahler iff these forms are closed. The HKT condition
is weaker:

(1.1) 6(WJ+\/__1WK) =0.

Notice that Q = 3 (ws++v—1wk) is a (2,0)-form, for any hypercomplex Hermit-
ian manifold, as an elementary linear-algebraic calculation insures. This form
is called the canonical (2,0)-form associated with the hypercomplex Hermitian
structure. As we shall see (Proposition 3.2), the metric can be recovered from
the hypercomplex structure and the form €.

Originally, the HKT-manifolds were defined in terms of a quaternionic invari-
ant connection with totally antisymmetric torsion (see [HP], [GP]).

Many homogeneous examples of compact HKT-manifolds were obtained in
[HP] and [GP]. In [I] it was shown that any locally conformally hyperkéhler
manifold also admits an HKT-structure (see [Or]). Converse result was obtained
in [OPS]: it was found when an HKT-manifold is locally conformally hyperkahler
manifold, in terms of symmetry conditions.

Locally, the HKT metrics can be studied using potential functions ([GP]) in
the same fashion as one uses plurisubharmonic functions to study Kéhler metrics.
This way one obtains many examples of HKT-structures on a sufficiently small
open hypercomplex manifolds.

If dimg M = 4, every hypercomplex Hermitian metrics is also HKT (the
condition (1.1) is satisfied vacuously because the left hand side of (1.1) is a
(3,0)-form).

If dimg M > 4, the HKT-condition becomes highly non-trivial. There are ex-
amples of hypercomplex manifolds not admitting an HKT-structure ([FG]). All
known examples of compact HKT-manifolds are either homogeneous or locally
conformally hyperkahler.

In the present paper, we construct HKT-structures on fibered spaces associ-
ated with hyperkéahler manifolds. A typical example of our construction is the
following

Theorem 1.1. Let M be a hyperkahler manifold and
T°M = Tot(TM)\{zero section}

the total space of non-zero vectors in TM. Given q € R, |q| # 1, let ~4 be
the equivalence relation generated by x ~, qu, x € TM. Consider the quotient
T°M/ ~g. Then T°M/ ~, is equipped with a natural HKT-structure.

Proof. See Theorem 8.1. O

Theorem 1.1 is a special case of a much more general construction performed
in Section 8.
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2. The g-Dolbeault bicomplex

In this Section, we introduce some notions of quaternionic linear algebra which
will be used further on. A reader well versed in quaternions can safely skip this
section. We follow [V5].

Let M be a hypercomplex manifold, and
VALY VY ) VS
its de Rham complex. Consider the natural action of SU(2) on A*M. Clearly,
SU(2) acts on A™M, i < 3 dimg M with weights 4,7 — 2,i —4,...
We denote by A% the maximal SU(2)-subspace of A?, on which SU(2) acts

with weight 1.
The following linear-algebraic lemma allows one to compute Ai explicitly

Lemma 2.1. In the above assumptions, let I be an induced complex structure,
and Hj the quaternion space, considered as a 2-dimensional complex vector space
with the complex structure induced by I. Denote by A’I”O(M) the space of (p,0)-
forms on (M,I). The space Hj is equipped with a natural action of SU(2).
Consider A};’O(M) as a representation of SU(2), with trivial group action. Then,
there is a canonical isomorphism

(2.1) AL (M) = SEH; ®c AP (M),

where SCH; denotes a p-th symmetric power of Hy. Moreover, the SU(2)-action
on AL (M) is compatible with the isomorphism (2.1).

Proof. This is [V5], Lemma 8.1. O

Consider an SU(2)-invariant decomposition
(2.2) AP(M) = AL (M) @ VP,

where VP is the sum of all SU(2)-subspaces of AP(M) of weight less than p.
Using the decomposition (2.2), we define the quaternionic Dolbeault differential
dy : A3 (M) — A% (M) as a composition of de Rham differential and projection
of to A% (M) C A*(M). Since the de Rham differential cannot increase the
SU (2)-weight of a form more than by 1, d preserves the subspace V* C A*(M).
Therefore, d;. is a differential in A% (M).

Let M be a hypercomplex manifold, and I an induced complex structure.
Consider the operator Z : A*(M) — A*(M) mapping a (p, q)-form 1 to v/—1(p—
q)n. By definition, Z belongs to the Lie algebra su(2) acting on A*(M) in the
standard way. Therefore, 7 preserves the subspace A% (M) C A*(M). We obtain
the Hodge decomposition

AL(M) = @ gAY (M),

Let M be a hypercomplex manifold, I an induced comlex structure, and
I, J, K € H the standard triple of induced complex structures. Clearly, J acts



504 MISHA VERBITSKY

on the complexified co tangent space A'M ® C mapping A?’l(M ) to A}’O(M ).
Consider a differential operator

8y : C(M) — AYO(M),

mapping f to J(@f), where  : C>°(M) — AV (M) is the standard Dolbeault
differential on a Kéhler manifold (M, I). We extend 0 to a differential

0y A (M) — AT (M),
using the Leibniz rule.

Proposition 2.2. Let M be a hypercompler manifold, I an induced complex
structure, I, J, K the standard basis in quaternion algebra, and

Ajr (M) = @p,qAII):i(M)

the Hodge decomposition of the quaternionic Dolbeault complex. Then there ex-
ists a canonical isomorphism

(2.3) APT (M) = APF0(M).
Under this identification, the quaternionic Dolbeault differential
dy : AP (M) — AFFRU(M) @ AP (M)
corresponds to a sum
o® 8J . A;IIJJrq,O(M) _ AII7+Q+1,0(M) e AII)JqurLO(M).
Proof. This is Proposition 8.13 of [V5]. O

The statement of Proposition 2.2 can be represented by the following diagram

AG (M) AP0 (01)
d’y 5
(2.4) AL () A% () = AMOGn AR
’ dl ’ dlvi 9y 9y
d+ d+ o o)
Aon  aan o alen aRen aftan aPan

where dy = d/, 4 d!] is the Hodge decomposition of the quaternionic Dolbeault
differential.

Using the SU(2)-action, we may identify the bundles A% (M) with AP0 (A1)
= APTO(M) explicitly, as follows.
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Let J,K be the Lie algebra operators acting on differential forms and asso-
ciated with J, K in the same way as 7 is associated with I. Consider the map
R: A*(M)— A" (M),

—+v—-1K
as) R JoVIK

It is easy to check that the Lie algebra elements R,Z, R form an SL(2)-triple
in the complexification of the standard SU(2) C End(A*(M)). Therefore, R
maps AZY(M) to A1 (M). Since A(M) is a representation of weight m,
R induces an isomorphism

R AL () — AT ),

for all ¢ > 0.
Together with (2.4), this observation implies the following.

Claim 2.3. Let M be a hypercomplex manifold, I an induced complex struc-
ture, and n € A}’l(M) a (1,1)-form. Then 7 is SU(2)-invariant if and only if
R(n) = 0. Moreover, for all functions 1) on M, we have

R(90()) = 00;(¥).

Assume now that the manifold M is hypercomplex Hermitian. Consider the
3-dimensional space generated by the 2-forms wy, w; and wg. This is a weight
2 representationn of SU(2). Moreover, that

(2.6) R(wr) =,
where Q = J(w; + v/—1wg) is the canonical (2,0)-form.

3. The g-positive forms

Let M be a hypercomplex manifold, and A}?(M) the bundle of (p, g)-forms
n (M, I). Consider the map J: A*(M) — A*(M),

J(dil?l A dxg N ) = J(dl‘l) VAN J(dﬂ?g) A ...

Clearly, on 2-forms we have J? = 1; more generally,

(3.1) <J revencan )2 ~1.

Since J and I anticommute, we have J(AD9(M)) = AY?(M). By (3.1), the map
n — J(7) defines a real structure on A%"(M).

Definition 3.1. Let 7 € A7°(M) be a (2,0)-form on a hypercomplex manifold
M. We say that 7 is g-real if n = J(77). We say that 7 is g-positive if 7 is g-real,
and

(3.2) n(v, J(0)) =0

for any v € T}’O(M). We say that 7 is strictly g-positive if the inequality (3.2)
is strict, for all v # 0.
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The g-positive forms were introduced and studied at some length in [V4], un-
der the name “K-positive forms”. These forms were used to study the stability
of certain coherent sheaves. Some properties of ¢-positive forms are remark-
ably close to that of the usual positive forms, studied in algebraic geometry in
connection with Vanishing Theorems.

Proposition 3.2. Let M be a hypercomplex manifold, and h a hypercomplex
Hermitian metric. Consider the form

Qi=wyj+vV-1wg
(see (1.1)). Then §Q is strictly q-positive. Conversely, every strictly q-positive

(2,0)-form is obtained from a unique hypercomplex Hermitian metric on M.

Proof. The form Q := wjy 4+ /—1 wg is g-positive as an elementary calculation
insures. Indeed, write the orthonormal basis &1, s, .82, € AL?(M) in such a
way that

(3.3) J(E2i-1) = g J(E21) = o1
Then
(3.4) Q=G AE+E A+ ...

This form is clearly g-real and strictly ¢-positive.
Conversely, let Q be a ¢-real and strictly g-positive form on a hypercomplex
manifold M. We can write () is coordinates as
Q= Ollfl /\52 + 04363 /\54 + ...

where «; are positive real numbers, and §; satisfy (3.3).
Write a hypercomplex Hermitian form h as

h=a1((Re&r)? + (Im&)? + (Re&y)” + (Im&y)?)
+az((Re&s)® + (Im&)? + (Re&a)? + (Im&y)?) + ...

Clearly, the corresponding canonical (2,0)-form is equal €2.
The Hermitian metric (3.5) can be reconstructed from 2 directly as follows:

h(z,y) = Uz"0, J(y™)),

for all x,y € TgM, where 2%, 3%! denotes the (1,0) and (0, 1)-parts of x, y.
We proved that the hypercomplex Hermitian structure is uniquely determined
by the strictly g-positive form €. O

(3.5)

The following Corollary gives an interpretation of HKT-structures in terms
of the canonical (2, 0)-form.

Corollary 3.3. Let M be a hypercomplex manifold, and Q € A2°(M) a 0-closed
strictly q-positive (2,0)-form. Then M is an HKT-manifold, and ) is obtained as
a canonical (2,0)-form of an HKT-metric h. Moreover, h is uniquely determined

by 2.

Proof. By Proposition 3.2, Q = wj++/—1Qk, for some hypercomplex Hermitian
metric h. Since 02 = 0, (M, h) is an HKT-manifold. O
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4. Hyperholomorphic bundles

Hyperholomorphic bundles were introduced and studied at some length in
[V1]. Let B be a holomorphic vector bundle over a complex manifold X, V a
connection in B and © € A?®End(B) be its curvature. This connection is called
compatible with the holomorphic structure if V. ({) = 0 for any holomorphic
section ¢ and any antiholomorphic tangent vector field v € T%1(X). If there
exists a holomorphic structure compatible with the given Hermitian connection
then this connection is called integrable.

Theorem 4.1. Let V be a Hermitian connection in a complex vector bundle
B over a complex manifold X. Then V is integrable if and only if © € Ab!
(X,End(B)), where AY1(X,End(B)) denotes the forms of Hodge type (1,1).
Also, the holomorphic structure compatible with V is unique.

Proof. This is Proposition 4.17 of [Kob], Chapter I. O

This proposition is a version of Newlander-Nirenberg theorem. For vector
bundles, it was proven by M. Atiyah and R. Bott.

Definition 4.2. Let B be a Hermitian vector bundle with a connection V over a
hypercomplex manifold M. Then V is called hyperholomorphic if V is integrable
with respect to each of the complex structures induced by the hypercomplex
structure.

As follows from Theorem 4.1, V is hyperholomorphic if and only if its cur-
vature © is of Hodge type (1,1) with respect to any of the complex structures
induced by a hypercomplex structure.

An easy calculation shows that V is hyperholomorphic if and only if © is an
SU (2)-invariant differential form.

Hyperholomorphic bundles are quite ubiquitous. Clearly, the tangent bundle
to a hyperkahler manifold and all its tensor powers are hyperholomorphic. There
are many other examples

Example 4.3. Let M be a compact hyperkahler manifold, B a holomorphic
bundle. Then B admits a unique hyperholomorphic connection, if B is stable
and the cohomology classes ¢;(B) and co(B) are SU(2)-invariant. Moreover, if
M is generic in its deformation class, then all stable bundles admit a hyperholo-
morphic connection.

5. H-hyperholomorphic bundles

Definition 5.1. Let M be a hypercomplex manifold, and (B, V) a hyperholo-
morphic bundle on M, dim¢c B = 2n. The bundle B is called H-hyperholomorphic
if V preserves a C-linear symplectic structure on B. In other words, B is H-
hyperholomorphic if the holonomy of V is contained in Sp(n).

The following examples are obvious.
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Example 5.2. Let F' be a hyperholomorphic bundle on M. Then F & F* is
H-hyperholomorphic.

Example 5.3. Consider the tangent bundle TM on M. Assume that M is
hyperkéahler. Then T'M is H-hyperholomorphic.

The main property of H-hyperholomorphic bundles is the following.

Claim 5.4. Let M be a hypercomplex manifold, and B an H-hyperholomor-
phic bundle. Denote by Tot B the total space of B. Then Tot B is equipped
with a natural hypercomplex structure. In particular, the total space of T'M is
hypercomplex.

Proof. Since the holonomy of B is contained in Sp(n), there is a natural parallel
action of H on B. Given a quaternion L € H, L? = —1, consider B as a complex
vector bundle with the complex structure defined by L. Denote this complex
vector bundle as (B, L). Since the curvature of B is SU(2)-invariant, the bundle
(B, L) is hyperholomorphic. Consider (B, L) as a holomorphic vector bundle
on (M, L). Denote the corresponding complex structure on Tot B by L. We
obtained an integrable complex structure on Tot B for each quaternion L € H,
L? = —1. Tt is easy to check that these complex structures satisfy quaternionic
relations, inducing a hypercomplex structure on Tot B. O

6. The Obata connection on Tot B.

Let M be a hyperkahler manifold, and B an H-hyperholomorphic bundle. By
Claim 5.4, the total space Tot B is hypercomplex. One can ask whether this
hypercomplex structure is hyperkahler. The answer is - never (unless B is flat).

Given a hypercomplex manifold, one can easily establish whether M admits
a hyperkéahler structure. This is done most easily using the so-called Obata
connection.

Theorem 6.1 (Obata). Let M be a hypercomplex manifold. Then M admits a
unique torsion-free connection which preserves the hypercomplex structure.*

Proof. Well known (see [Ob]). O

If M is hyperkéhler, then the Levi-Civita connection preserves the hypercom-
plex structure. In this case, the Levi-Civita connection coincides with the Obata
connection.

To determine whether a hypercomplex manifold M admits a hyperkahler
structure, one needs to compute the holonomy of the Obata connection. The
manifold is hyperkéahler if and only if the holonomy Hol preserves a metric; that
is, M is hyperkéhler if and only if Hol is contained in Sp(n).

Proposition 6.2. Let M be a hyperkdahler manifold, B an H-hyperholomorphic
bundle, and Tot B its total space considered as a hypercomplex manifold (see

IThis connection is called the Obata connection.
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Claim 5.4). Assume that the curvature of B is non-zero. Then Tot B does not
admit a hyperkahler structure.

Proof. One could compute the holonomy group of the Obata connection of Tot B,
and show that it is non-compact. To avoid excessive computations, we use a less
straightforward argument.

Suppose that Tot B is hyperkédhler. Given m € M, let B,, C Tot B be the
fiber of B in m. By construction, B,, is a hypercomplex submanifold in Tot B.
Such submanifolds are called trianalytic (see [V2], [V3] for a study of triana-
lytic cycles on hyperkdhler manifolds). In [V3], it was shown that trianalytic
submanifolds are completely geodesic. In other words, for any trianalytic sub-
manifold Z C X, the Levi-Civita connection on T'X ‘Z preserves the orthogonal
decomposition

(6.1) TX|, =TZaTZ"

If we have a hypercomplex fibration X — Y, the decomposition (6.1) gives a
connection for this fibration. In [V3] it was shown that this connection is flat,
for any hyperkahler fibration.

We obtain a flat connection V in the fibration Tot B — M. This connection
is clearly compatible with the additive structure on the bundle B. Therefore, V
is an affine connection on B. By construction, V is compatible with the hyper-
complex structure on Tot B. Therefore, V coincides with the hyperholomorphic
connection on B. We proved that B is flat. UJ

7. HKT-structure on Tot B.

Let M be a smooth manifold. Given a bundle with connection on M, we have
a decomposition

(7.1) T Tot B = Tyer ® Thor

of the tangent space to Tot B into horizontal and vertical components. Clearly,
the bundle Ty, is identified with 7* B, and Ty, with #*T' M, where 7 : Tot B —
M is the standard projection.

Assume now that M is a Riemannian manifold, and B a vector bundle,
equipped with a Euclidean metric. Then Tot B is equipped with a Riemann-
ian metric g defined by the following conditions.

(i) The decomposition T' Tot B = Tyer @ Thor is orthogonal with respect to g.
(ii) Under the natural identification Tye, = 7* B, the metric g restricted to Tyer
becomes the metric on B.
(iii) The metric g restricted Thor = 7T M is equal to the metric induced on
7*TM from the Riemannian structure on M.

Definition 7.1. In the above assumptions, the metric g is called the natural
metric on Tot B induced by the connection and the metrics on M and B.

Notice that the metric g depends from the metrics on B and M and from the
connection in B. Different connections induce different metrics on Tot B.
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Theorem 7.2. Let M be an HKT-manifold, and B an H-hyperholomorphic vec-
tor bundle on M. Consider the metric g on Tot B defined as in Definition 7.1.
Then g is an HKT-metric.

Proof. Consider the decomposition g = 7*gys + 7*gp of the metric g onto the
horizontal and vertical components. Since the decomposition T'Tot B = Tyer B
Thor 18 compatible with the hypercomplex structure, the 2-forms gnor 1= 7 gp
and gyer = m*gp are SU(2)-invariant. Consider the corresponding (2,0)-forms
Opor and Qe obtained as in (1.1);

Qhor = WJhor TV -1 WK hor

where winor = Ghor(J*, ), WKkhor = ghor(K+,-) are differential forms associated
with gnor and J, K as in (1.1).

Then Qo and Qe are horizontal and vertical components of the standard
(2,0)-form of Tot B:

(72) Q= Qhor + Qver

The HKT condition can be written as 02 = 0 (1.1). Let Qjs be the standard
(2,0)-form of M. Since M is an HKT manifold, (1.1) holds on M and the form
Qpor satisfies

Ohor = O Qpr = 0.

To prove Theorem 7.2, it remains to show

(73) agver =0
Consider a function
(7.4) U: Tot B—R, ¥(v)=|v]?

mapping a vector v € T'M to the square of its norm. Let
0— l0 2% 20 294 g30 %9

be the bicomplex defined in (2.4). To prove (7.3), and hence Theorem 7.2, it
suffices to prove

(7.5) 00;¥ = Qyer.
By Claim 2.3, we have

00,V = R(00W),
where R : Ab!(Tot B) — A*%(Tot B) is the operator

R_j—g——uc

(see (2.5)). However, the 2-form 09V is quite easy to compute. From [Bes],
(15.19), we obtain:

(7.6) OOV = wyer + €,
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where wyer = Gyer(+, I+) is the Hermitian form of gyer, and £ is defined as following.
Using the decomposition (7.1), we consider AT}, as a subbundle in A2 Tot B.
Then & € ATy C A2 Tot B is a 2-form on Tj,; mapping a pair of vectors (x, )

T,y € Thor C T(m,b) Tot Bu

(m,b)

Thor ) = Tm M7

(m,b

(m,b) € Tot B,m € M,b e B|

to (R(z,y,b)b), where R € A2M ® End B is the curvature of B. The form ¢
is SU(2)-invariant because the curvature of B is SU(2)-invariant. Therefore,
R(§) = 0 (Claim 2.3), and

(7.7) 99,0 = R(ITV) = R(wyer) = Dver
(the last equation holds by (2.6)). This proves (7.5). Theorem 7.2 is proven. [

8. New examples of compact HKT-manifolds

Let M be a compact HKT-manifold, e.g. a hyperkéhler manifold, and B an
H-hyperholomorphic vector bundle on M (for examples of H-hyperholomorphic
vector bundles see Examples 5.2 and 5.3). Denote by Tot® B be the space of
non-zero vectors in B. Fix a real number ¢ > 1. Consider the map

pq: Tot® B— Tot° B, py(b) =qb, be Tot° B,

and let M = Tot® B/p, be the corresponding quotient space. Since the map
b — qb is compatible with the hypercomplex structure, the space M is hyper-
complex. It is fibered over a compact manifold M, with fibers Hopf manifolds
which are homeomorphic to S* x $?™~! m = dimg B, hence it is compact.

Theorem 8.1. In the above assumptions, M admits a natural HKT-structure.

Proof. By Corollary 3.3, we need to construct a g-positive d-closed (2,0)-form
on M. Let © be a (2,0)-form on Tot° B,

Q=7"Qp + 005 log ¥,

where 7€ is the canonical (2,0)-form on M lifted to Tot® B, and ¥ : Tot B —

R the square norm function (7.4). The map v Le, qu satisfies p;log¥ =
log ¥ + log ¢?, and therefore

pg00log ¥ = 00 log V.

This implies that Q = 7"y + 00, log ¥ is p4-invariant, hence defines a form
on M = Tot® B/p,.

By construction, the form € is d-closed. To prove Theorem 8.1, it remains to
show that € is strictly g-positive. We use the same argument as used to show
that a locally conformal hyperkahler manifold is HKT.
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We have
00;9 OV AI;U
7 P
In all directions orthogonal to 0V, 0;V, the form 00 log V¥ is proportional to
005V, hence g-positive by (7.7). Moreover, (8.1) implies that

~ Qver OV NIV
Q == Q or - 9
hor T T 2
Qver

(we use the notation introduced in Section 7). The form Qo + == is strictly

g-positive (Theorem 7.2). The vertical and the horizontal tangent vectors are
8\11/\2_]\1‘
T

(8.1) 00y logV¥ =

orthogonal with respect to Q. Since vanishes on all horizontal tangent

vectors, it remains to prove that ﬁ(x, JZ) > 0, where x is vertical.
Let & € THO(Tot® B) be the vertical tangent vector to Tot® B which is dual
d¥ " Clearly, OV is the (1,0)-part of £. For all z € TH0(Tot® B), we have

to ﬁ
OV N0y _
PP (@) = €0
where (-,-)g denotes the Riemannian form. Similarly,
Qyer(z, J(T)) = 2(x, 2) 1

(this can be checked by writing Qye, is coordinates as in (3.4)). Using Cauchy
inequality and |¢| = 1, we obtain (z,z)g > (§,7)%. Then

Qz, J(T)) = Q\L (a: J(f)) — % (a: J(f))

:2(‘7371')11 (5733)%{

o (fL’, x)H
v LG LG
for all vertical tangent vectors x # 0. This proves Theorem 8.1. U

WV

>0
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