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THE QUANTUM ORBIT METHOD FOR GENERALIZED
FLAG MANIFOLDS

Jasper V. Stokman

Abstract. Generalized flag manifolds endowed with the Bruhat-Poisson bracket
are compact Poisson homogeneous spaces, whose decompositions in symplectic
leaves coincide with their stratifications in Schubert cells. In this note it is proved
that the irreducible ∗-representations of the corresponding quantized flag mani-
folds are also parametrized by their Schubert cells. An important step is the de-
termination of suitable algebraic generators of the quantized flag manifolds. These
algebraic generators can be naturally expressed in terms of quantum Plücker coor-
dinates. This note complements the paper of the author and Dijkhuizen in Comm.
Math. Phys. 203 (1999), 297–324, in which these results were established for a
special subclass of generalized flag manifolds.

1. Introduction

The orbit principle of Kostant and Kirillov predicts a correspondence between
the irreducible unitary representations of Lie groups and the coadjoint orbits of
the underlying Lie algebra. As a natural generalization of this principle one
expects a correspondence between the irreducible ∗-representations of quantized
Poisson homogeneous spaces and their symplectic leaves. The key example is
due to Soibel’man [6], who showed that the irreducible ∗-representations of the
standard quantization Cq[U ] of the regular functions on a compact, connected,
simply connected, simple Lie group U are parametrized by the symplectic leaves
of U (with the underlying Poisson structure on U given by the Bruhat-Poisson
bracket). In this note the correspondence is further investigated for generalized
flag manifolds, which form a substantial subclass of Poisson U -homogeneous
spaces.

A generalized flag manifold G/P , with G the complexification of U and P ⊆
G a parabolic subgroup, can be viewed as a real U -homogeneous space U/K,
with K ⊆ U isomorphic to a compact real form of the Levi factor of P . The
flag manifold U/K is a Poisson U -homogeneous space with symplectic foliation
naturally parametrized by the Schubert cells of G/P . The quantization Cq[U/K]
of U/K can be realized as a subalgebra of Cq[U ], defined in terms of invariance
properties with respect to a suitable quantum subgroup Cq[K] ⊆ Cq[U ].

It is proved in [8] that the equivalence classes of the irreducible ∗-represent-
ations of Cq[U/K] are naturally parametrized by Schubert cells, provided that
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Cq[U/K] is algebraically generated by certain explicit products of quantum
Plücker coordinates. This algebraic assumption was verified case by case for
special examples of flag manifolds U/K, in particular when U/K is a Hermitean
symmetric space. In this note this algebraic assumption is proved for arbitrary
flag manifold U/K using an analogue of the Stone-Weierstrass Theorem for type
I C∗-algebras. At the end of the note we extend these results to Poisson U -
homogeneous spaces U/K0, where K0 is the semisimple part of K.

2. Plücker coordinates on quantized flag manifolds

In this section we compare several different quantized function algebras on
generalized flag manifolds. We start by introducing the necessary notations and
definitions.

2.1. Structure theory. Let g be a complex simple Lie algebra, h ⊂ g a Cartan
subalgebra and R ⊂ h∗ the corresponding root system. Let Σ = {α1, . . . , αr} be
a fixed choice of (ordered) simple roots and denote R+ ⊂ R for the corresponding
set of positive roots. Denote b± for the Borel subalgebras

b± = h⊕
⊕

α∈±R+

gα,

where gα is the root space corresponding to the root α. We denote
(·, ·) for the

inner product on h∗ dual to the Killing form on g, and W for the Weyl group of
R. We use the short hand notation si ∈ W for the reflection corresponding to
the simple root αi.

Let G be the connected, simply connected, real analytic Lie group with Lie
algebra g. Let B± ⊂ G be the Borel subgroups corresponding to the Lie algebras
b±. The standard parabolic subgroups PS of G containing B+ are naturally
parametrized by subsets S ⊆ Σ, or equivalently, by parabolic sub root systems
RS = R ∩ span{S} ⊆ R. The Levi factor of the Lie algebra pS = Lie(PS) is
given by

lS = h⊕
⊕

α∈RS

gα.

Using the identification of h with its dual space h∗ via the Killing form, we
define Hα ∈ h to be the Cartan element associated to the coroot d−1

α α ∈ h∗

(α ∈ R), where dα =
(
α, α

)
/2. The real span of the Hα’s (α ∈ R) is a real form

h0 of the Cartan subalgebra h. A compact real form u of g can now be chosen
in such a way that kS := pS ∩ u = lS ∩ u is a compact real form of lS for any
subset S ⊆ Σ. Explicitly, u is defined by

u = ih0 ⊕
⊕

α∈R+

R(Eα − E−α)⊕
⊕

α∈R+

Ri
(
Eα + E−α

)
,

with Eα ∈ gα root vectors satisfying [Eα, E−α] = Hα, κ(Eα, E−α) = d−1
α and

[Eα, Eβ ] = cα,βEα+β with cα,β ∈ R whenever α + β ∈ R. Let U ⊂ G be the



THE QUANTUM ORBIT METHOD FOR GENERALIZED FLAG MANIFOLDS 471

connected Lie subgroup with Lie algebra u. The Lie subgroup U ⊂ G is closed,
compact and simply connected.

We now shortly recall the Bruhat-Poisson structure on U (see e.g. [4] and
references therein for basic facts on Poisson-Lie groups). Define a real Lie sub-
algebra b ⊂ g by

b = h0 ⊕
⊕

α∈R+

gα.

Then (g, u, b) is a Manin triple with respect to the imaginary part of the Killing
form. Thus u inherets the structure of a Lie bialgebra. The associated Poisson-
Lie group structure on U is called the Bruhat-Poisson structure. Poisson-Lie
subgroups of U with respect to the Bruhat-Poisson bracket on U can be classified
as follows. Denote k0S = [kS , kS ] for the semisimple part of the reductive Lie
algebra kS .

Proposition 2.1. Let K ⊆ U be a connected Lie subgroup with Lie algebra
k. Then K ⊆ U is a Poisson-Lie subgroup with respect to the Bruhat-Poisson
bracket on U if and only if k0S ⊆ k ⊆ kS for some subset S ⊆ Σ.

Proof. First observe that any real subspace k ⊆ u satisfying k0S ⊆ k ⊆ kS is a Lie
subalgebra of u since kS = k0S ⊕ Z(kS) with Z(kS) the center of the Lie algebra
kS .

A connected Lie subgroup K ⊆ U is a Poisson-Lie subgroup if and only if
the orthocomplement k⊥ ⊆ b of its Lie algebra k in b is an ideal (here the
orthocomplement is taken with respect to the imaginary part of the Killing
form). This class of Lie subalgebras k ⊆ u is in one-to-one correspondence with
real Lie subalgebras p ⊆ g containing b. The correspondence is given by k = p∩u

and p = k⊕ b. The real linear spaces

p = ξ ⊕
⊕

α∈R+∪RS

gα

with S ⊆ Σ and with real linear spaces ξ satisfying

ih0,S ⊕ h0 ⊆ ξ ⊆ h, h0,S = R− span{Hα |α ∈ RS},
are all the possible real Lie subalgebras p ⊆ g containing b (compare with the
classification of the complex parabolic Lie subalgebras of g). The proposition
follows by intersecting these Lie subalgebras p with the compact real form u.

For a given subset S ⊆ Σ we write KS ⊆ U (respectively K0
S ⊆ U) for the

connected Lie subgroup with Lie algebra kS (respectively k0S). Both KS ⊆ U and
K0

S ⊆ U are closed Poisson-Lie subgroups of U . The homogeneous spaces U/KS

and U/K0
S inheret a natural Poisson structure from U (which will also be called

the Bruhat-Poisson structure). In this note we study the quantization of the
Poisson U -homogeneous space U/KS in detail. In Section 4 we formulate the
main results for the quantization of the Poisson U -homogeneous space U/K0

S .
Observe that U/KS is isomorphic to the generalized flag manifold G/PS as a

real U -homogeneous space, since KS = PS ∩U and U acts transitively on G/PS .
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The symplectic foliation of U/KS � G/PS coincides with the Schubert cell
decomposition of G/PS . The Schubert cells of G/PS are parametrized by the
coset space W/WS , where WS ⊆W is the parabolic subgroup generated by the
simple reflections {si | i : αi ∈ S}. The minimal coset representatives

WS = {w ∈W | l(wsα) > l(w), ∀α ∈ S}
with l(w) the length of the Weyl group element w ∈ W , form a complete set of
representatives for W/WS . They satisfy

l(uv) = l(u) + l(v), ∀u ∈WS , ∀ v ∈WS .

2.2. Quantum groups. Fix 0 < q < 1 and denote Uq(g) for the Drinfel’d-
Jimbo quantized universal enveloping algebra over C. The algebraic generators
are denoted by K±1

i and X±
i (i = 1, . . . , r), where the K±1

i correspond to
Cartan elements and the X+

i (respectively X−
i ) correspond to the root vectors

of g for the simple roots αi (respectively −αi). For the explicit commutation
relations we refer to [8, (3.2)]. We denote Uq(h) for the unital, commutative
subalgebra of Uq(g) generated by the K±1

i (i = 1, . . . , r). Recall that Uq(g) is a
Hopf-∗-algebra, with the usual formulas for the counit ε, comultiplication ∆ and
antipode S (see [8, (3.3)]). Our present choice of ∗-structure on Uq(g) reflects
the choice of compact real form u of g; on the generators of Uq(g) it is explicitly
defined by

(K±1
i )∗ = K±1

i , (X+
i )∗ = q−1

i X−
i Ki, (X−

i )∗ = qiK
−1
i X+

i

with qi = qdi and di = dαi = (αi, αi)/2.
Let P be the weight lattice of the root system R. Let P+ be the cone of

dominant weights and {#1, . . . , #r} the fundamental weights with respect to
the fixed choice of (ordered) simple roots Σ = {α1, . . . , αr}. Denote V (λ) for
the irreducible finite dimensional Uq(g)-module with highest weight λ ∈ P+.
The weight decomposition of V (λ) is written as

V (λ) =
⊕
µ≤λ

V (λ)µ,

V (λ)µ = {v ∈ V (λ) |Ki · v = q(µ,αi)v, ∀ i},
where ≤ is the dominance order on P with respect to the positive roots R+. We
fix a highest weight vector 0 �= vλ ∈ V (λ)λ for each λ ∈ P+ once and for all.

The quantized function algebra Cq[U ] is the Hopf-∗-subalgebra of the Hopf-∗-
algebra dual of Uq(g), spanned by the matrix coefficients of the finite dimensional
P -weighted Uq(g)-representations (see e.g. [8, (3.5)] for the definitions of the
Hopf-∗-algebra maps on Cq[U ]). The analogue of the Peter-Weyl Theorem is
the decomposition

Cq[U ] =
⊕

λ∈P+

W (λ),(2.1)
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with W (λ) the span of the matrix coefficients of V (λ). Note that Cq[U ] is an
Uq(g)-bimodule with respect to the left and right regular actions

(X · a)(Y ) = a(Y X), (a ·X)(Y ) = a(XY ),

where a ∈ Cq[U ] and X, Y ∈ Uq(g). The Peter-Weyl decomposition (2.1) then
coincides with the decomposition of Cq[U ] in simple Uq(g)-bimodules.

2.3. Quantized flag manifolds and Plücker coordinates. In the remainder
of this note we fix an arbitrary subset S ⊆ Σ of the simple roots. We identify the
fixed subset S = {αi1 , . . . , αil

} of Σ with the corresponding subset {i1, . . . , il}
of {1, . . . , r}. We furthermore fix a dominant weight Λ ∈ P+ which is supported
on Σ \ S, and regular dominant with respect to Σ \ S. In other words, Λ is of
the form Λ =

∑r
i=1 mi#i with mi = 0 for i ∈ S and mi > 0 for i ∈ Σ \ S.

Let Ṽ (Λ) be the finite dimensional irreducible G-representation with highest
weight Λ and fix a highest weight vector 0 �= ṽΛ ∈ Ṽ (Λ)Λ. Let C[G] be the
algebra of regular functions on G. Let FΛ be the G-orbit of the line CṽΛ in
the projective space P(Ṽ (Λ)). Then FΛ is naturally isomorphic to G/PS as a
complex projective variety. The algebra FΛ of regular functions on the affine cone
over FΛ is the unital subalgebra of C[G] generated by the matrix coefficients f̃Λ =
f(· ṽΛ), (f ∈ Ṽ (Λ)∗). In this note we regard FΛ as the algebra of holomorphic
polynomials on (the affine cone over) FΛ.

The algebra of antiholomorpic polynomials on FΛ is defined as follows. Let
0 �= ξΛ ∈

(
Ṽ (Λ)∗

)
−Λ

be a lowest weight vector of the G-representation Ṽ (Λ)∗

dual to Ṽ (Λ). Then the G-orbit of the line CξΛ in the projective space P(Ṽ (Λ)∗)
is naturally isomorphic to G/P opp

S , where P opp
S is the parabolic subgroup of G

associated to S ⊆ Σ which contains the opposite Borel subgroup B−. We call
the unital subalgebra FΛ of C[G] generated by the regular functions

G � g �→ ξΛ(g−1 · v), (v ∈ Ṽ (Λ)),

the algebra of antiholomorphic polynomials on FΛ.
We have the following natural quantum analogues, cf. Soibel’man [7]. Let

V (λ)∗ be the linear dual of V (λ). For f ∈ V (λ)∗ we denote fλ ∈W (λ) ⊂ Cq[U ]
for the matrix coefficient

fλ(X) = f
(
X · vλ

)
, ∀X ∈ Uq(g).

Definition 2.2.
(a) The unital subalgebra Fq

Λ ⊆ Cq[U ] generated by fΛ (f ∈ V (Λ)∗) is the
quantum algebra of holomorphic polynomials on FΛ.

(b) The unital subalgebra Fq

Λ ⊆ Cq[U ] generated by f∗
Λ (f ∈ V (Λ)∗) is the

quantum algebra of antiholomorphic polynomials on FΛ.

Let B be a basis of V (Λ)∗ which is compatible with the weight decomposition
of V (Λ), in the sense that each b ∈ B is supported on only one weight space
V (Λ)µ, µ = µ(b) ∈ P . Then the matrix coefficients fΛ (f ∈ B) are called
holomorphic quantum Plücker coordinates on FΛ. They algebraically generate
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the algebra Fq
Λ. The corresponding images f∗

Λ under the ∗-involution are called
the antiholomorphic quantum Plücker coordinates on FΛ. They algebraically
generate the algebra Fq

Λ.
We next define two closely related ∗-algebras Cq[U/KS ] and AΛ. Let Uq(kS) ⊆

Uq(g) be the unital Hopf-∗-subalgebra algebraically generated by K±1
i (i =

1, . . . , r) and by X±
j (j ∈ S).

Definition 2.3.
(a) The ∗-algebra of quantized regular functions on the Poisson U -homogeneous

space U/KS is defined by

Cq[U/KS ] = {a ∈ Cq[U ] |X · a = ε(X)a, ∀X ∈ Uq(kS)}.
(b) Let AΛ be the unital ∗-subalgebra of Cq[U ] algebraically generated by the

elements fΛ · g∗Λ ∈ Cq[U ] for all f, g ∈ V (Λ)∗.

Remark 2.4. The elements fΛ · g∗Λ ∈ Cq[U ] (f, g ∈ V (Λ)∗) are explicitly given
by

(fΛ · g∗Λ)(X) =
∑

fΛ(X(1))gΛ(S(X(2))∗) =
∑

f(X(1) · vΛ)g(S(X(2))∗ · vΛ)

for X ∈ Uq(g), where ∆(X) =
∑

X(1) ⊗X(2).

The ∗-subalgebra Cq[U/KS ] ⊂ Cq[U ] can alternatively be defined in terms
of invariance properties with respect to a natural quantum subgroup Cq[KS ] ⊆
Cq[U ] (see [8, (4.4)]). Observe that both AΛ and Cq[U/KS ] are invariant under
the right regular Uq(g)-action.

We next discuss the connections between the algebras Fq, Fq, AΛ and
Cq[U/KS ]. It is instructive to consider the classical setup (q = 1) first. Let
χΛ (respectively χ∗

Λ) be the character of PS (respectively P opp
S ) defined by

p · ṽΛ = χΛ(p)ṽΛ, p′ · ξΛ = χ∗
Λ(p′)ξΛ

for p ∈ PS and p′ ∈ P opp
S . The classical analogues of the holomorphic (re-

spectively antiholomorphic) Plücker coordinates are in the space Γ(G×PS
CχΛ)

(respectively Γ(G×P opp
S

Cχ∗
Λ
)) of sections of the line bundle G×PS

CχΛ (respec-
tively G ×P opp

S
Cχ∗

Λ
). Observe that CχΛ ⊗ Cχ∗

Λ
, viewed as module of the Levi

factor LS = PS ∩ P opp
S , is the trivial LS-module. We thus obtain a well defined

map

Γ(G×PS
CχΛ)× Γ(G×P opp

S
Cχ∗

Λ
)→ Γ(G/LS)

(multiplication map), where Γ(G/LS) is the space of sections of the trivial line
bundle over G/LS . Hence the classical analogue of the algebra AΛ is contained
in the algebra of regular functions on G/LS . The corresponding statement in
the quantum setup is the inclusion AΛ ⊆ Cq[U/KS ], which follows from [8, Lem.
4.4]. In this note we prove the following stronger assertion.

Theorem 2.5. AΛ = Cq[U/KS ].
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In other words, a polynomial expression in the holomorphic and antiholo-
morphic quantum Plücker coordinates on FΛ is a quantum regular function on
U/KS if and only if it has zero weight with respect to the left regular Uq(h)-
action. Furthermore, any quantum regular function on U/KS can be written in
this form.

Remark 2.6. In [8] an (a priori) larger ∗-algebra AS ⊇ AΛ was studied, called
the factorized ∗-algebra. By definition, AS is the span of the matrix coefficients
fλ · g∗λ (f, g ∈ V (λ)∗) for all dominant weights λ ∈ P+ supported on Σ \ S. It
was shown in [8, Lem. 4.4] that AS ⊆ Cq[U/KS ]. Thus Theorem 2.5 implies
AS = Cq[U/KS ], which was conjectured in [8, Conj. 4.6]. For a special class of
flag manifolds U/KS the equality AS = Cq[U/KS ] has been proved by a detailed
analysis of the branching rules for certain finite dimensional g-representations
(see [8, Thm. 4.10]). This class consists of flag manifolds U/KS for which
pS ⊂ g is maximally parabolic and (U, KS) is a so-called Gel’fand pair (the
most important examples are the compact Hermitean symmetric spaces, see [8,
Prop. 4.7]).

The strategy for the proof of Theorem 2.5 is as follows. We first show that if
suitable C∗-algebra completions of AΛ and Cq[U/KS ] are the same, then auto-
matically AΛ = Cq[U/KS ]. Their C∗-algebra completions are shown to coincide
by invoking a version of the Stone-Weierstrass Theorem for type I C∗-algebras.
For the application of the Stone-Weierstrass type Theorem a detailed analysis of
the irreducible ∗-representations of the two C∗-algebras is necessary, for which
we can resort to (slight modifications of) the results in [8].

2.4. Towards a proof of Theorem 2.5. The normalized Haar functional on
Cq[U ] is the linear functional h : Cq[U ]→ C satisfying h(1) = 1 (normalization)
and satisfying h ≡ 0 on W (λ) when λ ∈ P+ \ {0}. Equivalently, h is the unique
normalized linear functional on Cq[U ] satisfying the biinvariance properties

(h⊗ id)∆(a) = h(a)1 = (id⊗ h)∆(a), ∀ a ∈ Cq[U ].

A detailed study of Haar functionals in the algebraic framework was undertaken
by Dijkhuizen and Koornwinder [1]. They consider a special class of Hopf-∗-
algebras called compact quantum group algebras, a class containing Cq[U ] as
main example. In particular, application of [1, Thm. 3.7] to Cq[U ] implies that

〈a, b〉h = h(b∗a), ∀ a, b ∈ Cq[U ]

defines a pre-Hilbert structure on Cq[U ]. Let ‖ · ‖h be the corresponding norm
on Cq[U ].

Lemma 2.7. Let A ⊆ B ⊆ Cq[U ] be subspaces invariant under the right regular
Uq(g)-action. If A is dense in B with respect to the norm ‖ · ‖h, then A = B.

Proof. Let A and B be as in the lemma, and suppose that A ⊆ B is dense but
A �= B. The Peter-Weyl decomposition (2.1) is the isotypical decomposition of
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Cq[U ] under the right regular Uq(g)-action, hence

A =
⊕

λ∈P+

A(λ), B =
⊕

λ∈P+

B(λ),

with A(λ) = A ∩W (λ) and B(λ) = B ∩W (λ). The subspaces A(λ) and B(λ)
(λ ∈ P+) are finite dimensional. Hence, for some dominant weight µ ∈ P+,
there exists a nonzero vector b ∈ B(µ) which is orthogonal to A(µ). We now
use [1, Prop. 3.4], which asserts that the Peter-Weyl decomposition (2.1) is a
decomposition in orthogonal subspaces. This implies that b is orthogonal to A,
contradicting the assumption that A ⊆ B is dense.

Let A be a unital ∗-algebra. Let L(H) be the C∗-algebra of bounded linear
operators on the Hilbert space H. A unit preserving ∗-algebra homomorphism
π : A → L(H) is called a ∗-representation of A. We say that a ∗-representation
(π, H) of A is irreducible if H and {0} are the only π(A)-invariant closed sub-
spaces of H. Two ∗-representations (π, H) and (π′, H ′) of A are said to be
equivalent if there exists an isomorphism U : H → H ′ of Hilbert spaces inter-
twining the two actions of A.

By e.g. [1, §4], we can now define a C∗-seminorm on the ∗-algebra Cq[U ] by

‖a‖∞ = sup
π

(‖π(a)‖), a ∈ Cq[U ],(2.2)

with π running through a complete set of representatives of the irreducible ∗-
representations of Cq[U ]. The supremum in (2.2) may as well be taken over all
∗-representations π of Cq[U ].

It turns out that ‖·‖∞ is a C∗-norm on Cq[U ]. For this it suffices to construct
a faithful ∗-representation of Cq[U ]. Such a faithful ∗-representation can be
realized on the Hilbert space completion Hh of the pre-Hilbert space (Cq[U ],
〈·, ·〉h) by continuous extension of the regular Cq[U ]-representation

πh(a)b = ab, ∀ a, b ∈ Cq[U ],

see [1, Lem. 4.2 & Thm. 4.4].

Lemma 2.8. For all a ∈ Cq[U ], we have ‖a‖h ≤ ‖a‖∞.

Proof. Observe that ‖1‖h = 1 since the Haar functional h is normalized, and
that ‖πh(a)‖ ≤ ‖a‖∞ for all a ∈ Cq[U ]. It follows that

‖a‖h = ‖πh(a)1‖h ≤ ‖πh(a)‖ ≤ ‖a‖∞
for all a ∈ Cq[U ].

The following corollary is a direct consequence of Lemma 2.7 and Lemma 2.8.

Corollary 2.9. Let A ⊆ B ⊆ Cq[U ] be subspaces invariant under the right
regular Uq(g)-action. If A is dense in B with respect to the C∗-norm ‖·‖∞, then
A = B.
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The completion Cq(U) of Cq[U ] with respect to the C∗-norm ‖ · ‖∞ is a
unital C∗-algebra. The C∗-subalgebras AΛ ⊆ Cq(U) and Cq(U/KS) ⊆ Cq(U)
are defined to be the closures of AΛ and Cq[U/KS ] in Cq(U), respectively. Since
AΛ ⊆ Cq[U/KS ], we have the inclusion AΛ ⊆ Cq(U/KS). The previous corollary
implies:

Corollary 2.10. If AΛ = Cq(U/KS), then AΛ = Cq[U/KS ].

By Corollary 2.10 we can resort to the theory of C∗-algebras for the proof of
Theorem 2.5. We first recall some general definitions and facts on C∗-algebras,
starting with the notion of richness, cf. [2, Def. 11.1.1].

Definition 2.11. Let B be a C∗-algebra. An C∗-subalgebra A ⊆ B is called
rich in B if the following two conditions are satisfied:

– If π is an irreducible ∗-representation of B, then its restriction π|A is an
irreducible ∗-representation of A.

– If π and π′ are two inequivalent irreducible ∗-representations of B, then
π|A and π′|A are inequivalent.

If A ⊆ B is an inclusion of ∗-algebras, then we denote the restriction π|A :
A → L(H) of a ∗-representation π : B → L(H) again by π if no confusion is
possible.

We need the following analogue of the Stone-Weierstrass Theorem (see [2,
Prop. 11.1.6]).

Theorem 2.12. Let B be a type I C∗-algebra. The only rich C∗-subalgebra of
B is B itself.

We apply this theorem to the inclusion AΛ ⊆ Cq(U/KS) of C∗-algebras. We
start with the following elementary lemma.

Lemma 2.13. The C∗-algebra Cq(U/KS) is of type I.

Proof. By [6, Rem. 5.5], Cq(U) is of type I. Now use that a C∗-subalgebra of a
type I C∗-algebra is again of type I, see [2].

Lemma 2.14. The C∗-algebra AΛ is rich in Cq(U/KS).

Observe that Theorem 2.5 is a direct consequence of Lemma 2.14. Indeed,
Theorem 2.12, Lemma 2.13 and Lemma 2.14 imply AΛ = Cq(U/KS), whence
AΛ = Cq[U/KS ] by Corollary 2.10.

The proof of Lemma 2.14, which requires a detailed study of the irreducible
∗-representations of both the C∗-algebras AΛ and Cq(U/KS), is given in the
next section.

3. Irreducible ∗-representations

In this section we discuss the representation theory of the ∗-algebras Cq[U ],
AΛ, Cq[U/KS ] and their completions.
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3.1. The fundamental ∗-representation of Cq[SU(2)]. Let V (= V (#1)) be
the vector representation of Uq(sl(2, C)). Choose an inner product

(·, ·) on V

such that
(
X ·v, w

)
=

(
v, X∗·w)

for all X ∈ Uq(sl(2, C)) and all v, w ∈ V . Choose
an orthonormal basis {e+, e−} of V such that e+ (respectively e−) is a highest
(respectively lowest) weight vector of V . Then the four matrix coefficients

Lεξ =
(· eξ, eε

)
, ε, ξ = ±

are algebraic generators of Cq[SU(2)]. The Hopf-∗-algebra structure of Cq[SU(2)]
can be completely characterized in terms of these generators (see e.g. [8, §3]).

The presentation of Cq[SU(2)] in terms of the generators Lεξ can be used to
define explicit ∗-representations of Cq[SU(2)]. In particular, if we write {ej}∞j=0

for the standard orthonormal basis of the Hilbert space l2(Z+), then it follows
that

πq(L++)ej =
√

(1− q2j) ej−1, πq(L+−)ej = −qj+1ej ,

πq(L−+)ej = qjej , πq(L−−)ej =
√

(1− q2(j+1)) ej+1

(with the convention that πq(L++)e0 = 0) defines an irreducible ∗-representation
πq of Cq[SU(2)] on l2(Z+) (see e.g. [6] and references therein). Up to tensor-
ing with one-dimensional ∗-representations, πq is the only infinite dimensional
irreducible ∗-representation of Cq[SU(2)], cf. Section 3.2.

3.2. Representations of Cq[U ]. For i = 1, . . . , r let φi : Uqi(sl(2, C))→ Uq(g)
be the Hopf-∗-algebra embedding defined on the generators by φi(K±1

1 ) = K±1
i

and φi(X±
1 ) = X±

i . The dual map induces a surjective Hopf-∗-algebra homo-
morphism φ∗

i : Cq[U ]→ Cqi
[SU(2)]. We write πi = πqi

◦φ∗
i for the corresponding

lift of πqi : Cqi [SU(2)]→ L(l2(Z+)) to an irreducible ∗-representation of Cq[U ].
One-dimensional ∗-representations of Cq[U ] can be explicitly constructed as

follows. Let T = T
×r be the standard r-dimensional compact torus, where T =

{z ∈ C | |z| = 1} is the unit circle in the complex plane. Denote tµ = tm1
1 · · · tmr

r

for µ =
∑r

i=1 mi#i ∈ P and t = (t1, . . . , tr) ∈ T . Then an one-dimensional ∗-
representation τt : Cq[U ]→ C (t ∈ T ) can uniquely be defined by requiring that
τt(a) = a(1)tµ when the quantum regular function a ∈ Cq[U ] has left regular
Uq(h)-weight µ ∈ P (i.e. Ki · a = q(µ,αi)a for all i).

Let ∆(k) : Cq[U ]→ Cq[U ]⊗(k+1) for k ∈ Z+ be the iterated coproduct, defined
recursively by ∆(0) = id and ∆(k+1) = (∆⊗ id⊗k) ◦∆(k).

Theorem 3.1 (Soibel’man [6]). Let w = si1si2 · · · sil
be a reduced expression

for the Weyl group element w ∈ W , so that l = l(w) is the length of w. Then
the ∗-representation

πw = (πi1 ⊗ πi2 ⊗ · · · ⊗ πil
) ◦∆(l−1) : Cq[U ]→ L(

l2(Z+)⊗l
)

is independent of the reduced expression (up to equivalence), and

{πw,t = (πw ⊗ τt) ◦∆ |w ∈W, t ∈ T}
is a complete set of mutually inequivalent irreducible ∗-representations of Cq[U ].
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Remark 3.2. An important role in the proof of Theorem 3.1 is played by [6,
Thm. 3.1], which states that Cq[U ] is algebraically generated by the quantum
regular functions fλ and g∗λ for all f, g ∈ V (λ) and all λ ∈ P+. The proof of
[6, Thm. 3.1] uses properties of the branching rules for tensor products of finite
dimensional irreducible g-modules when the highest weights become large, see
e.g. [3, Prop. 9.2.2]. Theorem 2.5 should be viewed as the analogue of [6, Thm.
3.1] for the generalized flag manifold U/KS . The analogous statement for the
Poisson homogeneous space U/K0

S is formulated in Theorem 4.1(a).

3.3. Representations of AΛ. The ∗-algebra AΛ has the convenient property
that it is defined in terms of explicit algebraic generators involving quantum
Plücker coordinates. This property enables one to analyze the ∗-representations
of AΛ in a similar manner as for Cq[U ], cf. Remark 3.2. This analysis was
carried out in [8, §6], but then for the a priori larger ∗-algebra AS (see Remark
2.6). Straightforward adjustments of the proof of [8, Thm 6.13] though show
that {(πw, l2(Z+)⊗l(w)

) | w ∈ WS} is a complete set of mutually inequivalent
irreducible ∗-representations of AΛ.

The irreducible ∗-representation πw (w ∈WS) of AΛ is the restriction to AΛ

of an ∗-representation of Cq[U ]. Hence it extends by continuity to an irreducible
∗-representation of AΛ, which we again denote by πw. On the other hand, any
irreducible ∗-representation of AΛ restricts to an irreducible ∗-representation of
AΛ. We conclude that:

Corollary 3.3. {πw | w ∈WS} is a complete set of mutually inequivalent irre-
ducible ∗-representations of the C∗-algebra AΛ.

3.4. Representations of Cq[U/KS ]. In this section we first establish the ana-
logue of Corollary 3.3 for Cq(U/KS). Since we (a priori) do not have a complete
set of algebraic generators of the ∗-algebra Cq[U/KS ], we cannot analyze its
∗-representations in the same manner as for AΛ. The alternative approach is by
analyzing the ireducible ∗-representations of the C∗-algebra Cq(U/KS) directly.
For this, we first observe that the inclusion AΛ ⊆ Cq[U/KS ] and the results in
Section 3.3 imply that πw (w ∈ WS) are mutually inequivalent irreducible ∗-
representations of Cq[U/KS ] and of Cq(U/KS). Furthermore, by [8, Prop. 5.7]
we have

πw,t(a) = πu(a)⊗ id⊗l(v), ∀ a ∈ Cq(U/KS)

for t ∈ T and w = uv ∈ W with u ∈ WS and v ∈ WS . Since every irreducible
∗-representation of Cq(U/KS) appears as irreducible component of π|Cq(U/KS)

for some irreducible ∗-representation π of Cq(U) (see e.g. [2, Prop. 2.10.2]), we
conclude (cf. [8, Thm. 5.9]):

Corollary 3.4. {πw | w ∈WS} is a complete set of mutually inequivalent irre-
ducible ∗-representations of the C∗-algebra Cq(U/KS).

Corollary 3.3 and Corollary 3.4 show that AΛ is rich in Cq(U/KS). Thus
Lemma 2.14 is proved, which in turn implies the validity of Theorem 2.5 (see
Section 2.4).
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In particular, the classification of the irreducible ∗-representations of AΛ (see
Section 3.3) gives the following theorem.

Theorem 3.5. The set

{(πw, l2(Z+)⊗l(w)
) | w ∈WS}

is a complete set of mutually inequivalent irreducible ∗-representations of the
quantized function algebra Cq[U/KS ].

Remark 3.6.
(a) Theorem 3.5 is not a direct consequence of Corollary 3.4, since it is a

priori not clear that every irreducible ∗-representation of Cq[U/KS ] can be
continuously extended to a ∗-representation of Cq(U/KS).

(b) Theorem 3.5 fits nicely in the philosophy of the Kostant-Kirillov orbit
method. Indeed, the irreducible ∗-representations of Cq[U/KS ] are parame-
trized by the coset representatives W/WS , which in turn also parame-
trize the symplectic leaves of the underlying Poisson U -homogeneous space
U/KS , see Section 2.1 and [8, §2].

4. The Poisson U-homogeneous space U/K0
S.

In this section we apply the methods of the present note to the Poisson U -
homogeneous space U/K0

S .
Denote Uq(k0S) for the unital Hopf-∗-subalgebra of Uq(g) generated by K±1

i , X±
i

(i ∈ S). We call

Cq[U/K0
S ] = {a ∈ Cq[U ] | X · a = ε(X)a, ∀X ∈ Uq(k0S)} ⊆ Cq[U ]

the ∗-algebra of quantized regular functions on the Poisson U -homogeneous space
U/K0

S . Note that Cq[U/K0
S ] is invariant under the right regular Uq(g)-action and

under the left regular Uq(h)-action. Observe furthermore that

Cq[U/KS ] = {a ∈ Cq[U/K0
S ] | X · a = ε(X)a ∀X ∈ Uq(h)}.

Theorem 4.1.
(a) Cq[U/K0

S ] is algebraically generated by the matrix coefficients f"k
and g∗"l

for all f ∈ V (#k)∗, g ∈ V (#l)∗ and all k, l ∈ Σ \ S.
(b) A complete set of mutually inequivalent irreducible ∗-representations of the

∗-algebra Cq[U/K0
S ] is given by

{(πw,t, l2(Z+)⊗l(w)
) |w ∈WS , t ∈ TΣ\S},

with TΣ\S ⊆ T the sub-torus

TΣ\S = {t = (t1, . . . , tr) ∈ T | ti = 1when i ∈ S}.
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Remark 4.2.
(a) The special case S = ∅ of Theorem 4.1 recovers Soibel’man’s [6] results for

Cq[U ]. The irreducible ∗-representations for the special case that U/K0
S

is the Stiefel manifold SU(n)/SU(l) (l < n) were described before by
Podkolzin and Vainerman [5].

(b) The unital ∗-algebra A
0
Λ algebraically generated by the holomorphic and

antiholomorphic quantum Plücker coordinates fΛ and g∗Λ (f, g ∈ B) is in
general properly contained in Cq[U/K0

S ]. This can for instance be verified
by comparing the weights occurring in A

0
Λ and in Cq[U/K0

S ] under the left
regular Uq(h)-action.
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