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INTEGRALLY CLOSED IDEALS

IN TWO-DIMENSIONAL REGULAR LOCAL RINGS

ARE MULTIPLIER IDEALS

Joseph Lipman and Kei-ichi Watanabe

Abstract. Multiplier ideals in commutative rings are certain integrally closed
ideals with properties that lend themselves to highly interesting applications.
How special are they among integrally closed ideals in general? We show that in
a two-dimensional regular local ring with algebraically closed residue field there is
in fact no difference between “multiplier” and “integrally closed” (or “complete.”)
But among multiplier ideals arising from an integer multiplying constant (also
known as adjoint ideals), and primary for the maximal ideal, the only simple
complete ideals are those of order one.

Introduction

There has arisen in recent years a substantial body of work on multiplier ideals
in commutative rings (see [La]). Multiplier ideals are integrally closed ideals
with properties that lend themselves to highly interesting applications. One
is tempted then to ask just how special multiplier ideals are among integrally
closed ideals in general.

In this note we show that in a two-dimensional regular local ring R with
maximal ideal m such that the residue field R/m is algebraically closed1 there is
actually no difference between multiplier ideals and integrally closed ideals. In
fact it turns out more convenient to do this for fractionary R-ideals, i.e., nonzero
finitely-generated R-submodules of the fraction field L of R.

Main Result

Every integrally closed fractionary R-ideal is a multiplier ideal.

After this paper was first submitted, we learned that independently of us
C. Favre and M. Jonsson had found a related proof [FJ, §6]. Their argument is
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1It most likely suffices that R/m be infinite, but we want to avoid additional technicalities.
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given in the context of a novel treatment of valuations of R. Though we thought
initially that our proof applied only to m-primary ideals, Favre and Jonnson
had no such restriction. This prompted us to reexamine our proof, which we
then found could be made to apply to the general case as well.

Throughout, (R, m) and its fraction field L will be as above. “Ideal” will
mean “fractionary R-ideal.” An ideal is integral if it is contained in R; and of
finite colength if it is either (integral and) m-primary or the unit ideal. For
brevity we use the classical term “complete” instead of “integrally closed in L.”
Any complete ideal I is uniquely the product of a principal ideal and a finite-
colength complete ideal: I = (I−1)−1(II−1) where the inverse of an ideal J is
J−1 := {x ∈ L | xJ ⊂ R }.

1. Geometric formulation of the problem

The goal of this section is to develop the geometric criterion Corollary 1.4.2
for an ideal to be a multiplier ideal, while laying the groundwork for the proof
in the next section that every complete ideal satisfies that criterion.

We begin by recalling some preliminary definitions and known results. (For
some historical pointers to the development of the theory of complete ideals see
the second paragraph on the first page of [L3].)

For any complete ideal I there exists a log resolution, that is, a proper bira-
tional map f : X → Spec(R) where X is a regular scheme such that for any closed
point x ∈ X there exist t1, t2 generating the maximal ideal of S := OX,x such
that IS = ta1

1 ta2
2 S for some integers a1, a2. (In other words, IOX is invertible,

with normal-crossing support.) To see quickly that there is an f, composed of
maps obtained by blowing up closed points, and such that the OX -ideal IOX is at
least invertible—assuming, as one clearly may, that I is m-primary—one can use
the Hoskin-Deligne formula [L2, p. 222, Thm. 3.1], which shows that the length
of the “transform” of I can be successively lowered by suitable closed-point
blowups, until it vanishes, at which point I generates an invertible ideal sheaf.
Then well-known facts about embedded resolution of curves in two-dimensional
regular schemes ensure that with further closed-point blowups one can reach the
desired normal-crossing situation.

The group Div(X) of X-divisors is, by definition, the free abelian group on
the set of reduced irreducible one-dimensional subschemes of X. These sub-
schemes, also called prime divisors, are of two kinds, affine resp. exceptional
according as f maps their generic point to a non-closed resp. closed point of
Spec(R). A divisor D can be represented as a formal sum with integer coeffi-
cients, D =

∑
E dEE where E runs through all prime divisors and only finitely

many of the integers dE are nonzero; an E for which dE 	= 0 will be called an
irreducible component of D. One has then the decomposition D = Daff + Dexc

where Daff (resp. Dexc), the affine (resp. exceptional) part of D is obtained by
replacing all the dE where E is exceptional (resp. affine) by 0. We say D is affine
(resp. exceptional) if D = Daff (resp. D = Dexc). Exceptional divisors will also
be called f-divisors. They make up a subgroup Dive(X) ⊂ Div(X).
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Each prime divisor E gives rise to the discrete valuation vE whose valuation
ring is the local ring on X of the generic point of E (which may be assumed
to be a subring of L). The divisor (t) of a nonzero t ∈ L is defined to be
(t) :=

∑
E vE(t)E. One has t ∈ R ⇔ vE(t) ≥ 0 for all affine E ⇔ (t)aff ≥ 0.

For D =
∑

E dEE, the sheaf OX(D) is the invertible OX -module sending any
open U ⊂ X to

Γ
(
U, OX(D)

)
:= { t ∈ L | vE(t) ≥ −dE for all E meeting U }.

In particular, Γ
(
X, OX(−D)

)
:= { t ∈ L | (t) ≥ D}. This is a complete ideal,

integral iff dE ≥ 0 for all affine E, and of finite colength iff D is exceptional.
Every invertible OX -submodule of the constant sheaf L is OX(D) for a unique
D.

The abelian group Div(X) is ordered, the positive (or effective) divisors being
those D such that dE ≥ 0 for all E, or equivalently, OX(−D) ⊂ OX . An
effective D can be regarded as a one-dimensional subscheme of X, with structure
sheaf OD fitting in a natural exact sequence

0 → OX(−D) → OX → OD → 0.

If, moreover, D is exceptional, then this subscheme of X is projective over R/mn

for some n > 0. In particular, the exceptional prime divisors E1, E2, . . . , Es are
isomorphic to the projective line P

1
R/m

; and any two of them intersect transver-
sally. (This can easily be shown by induction on the number of blowups making
up f.)

For any invertible OX -module L the intersection number L · E of L with an
effective f-divisor E is the degree of the invertible OE-module LE := L ⊗OE :

L · E := χELE − χEOE

where with λ the length function on R-modules,

χEM := λH0(E,M) − λH1(E,M)

is the Euler characteristic of a coherent OE-module M.
For any X-divisor F set F ·E := OX(F ) ·E. This intersection number extends

uniquely to a Z-valued symmetric bilinear form on Dive(X) (see e.g., [L1, §13]).
If F ′ = (t) + F for some t ∈ L then OX(F ′) ∼= OX(F ), and hence F ′ ·E = F ·E.

An X-divisor F is said to be numerically effective, nef for short, if F · Ei ≥ 0
for all i = 1, 2, . . . , s (⇒ F ·E ≥ 0 for all effective E ∈ Dive(X)). F is said to be
antinef if −F is nef.

The following basic result is contained in [L1, p. 220, Thm. (12.1)].

Theorem 1.1. An X-divisor D is nef if and only if OX(D) is generated by its
global sections.
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Corollary 1.1.1. If D is antinef and Daff ≥ 0 then D is effective.

That’s because, as above, Γ
(
X,OX(−D)

)
⊂ R, and so by the Theorem,

OX(−D) = Γ
(
X,OX(−D)

)
OX ⊂ OX .

(A simpler proof, not using Theorem 1.1, can be found in [L1, p. 238].)

If I is a complete ideal and IOX is invertible then I = Γ(X, IOX), whence:

Corollary 1.1.2. (Cf. [L1, §18].) Sending E to Γ
(
X,OX(−E)

)
defines an iso-

morphism from the (additive) monoid of antinef X-divisors to the (multiplicative)
monoid of those complete ideals I such that IOX is invertible.2 Under this iso-
morphism antinef f-divisors correspond to finite-colength complete ideals.

It is simple to show, by induction on the number of blowups making up f ,
that the intersection matrix (Ei · Ej) has determinant ±1. Hence for each i
there is a unique f -divisor Gi such that Gi · Ej = 0 unless j = i, in which
case Gi · Ej = −1; and for any f -divisor E it holds that −E =

∑s
i=1(E.Ei)Gi.

Thus the monoid of antinef f-divisors is freely generated by these Gi. In other
words, “unique factorization” holds in this monoid—and therefore in the monoid
of finite-colength complete ideals to which, by Corollary 1.1.2, it is isomorphic.

An integral ideal P 	= R is simple if whenever P = IJ (I, J integral ideals)
then either I or J is the unit ideal. For example, if Gi is as above then the
m-primary ideal Pi := Γ

(
X,OX(−Gi)

)
is simple, since if Pi is the product of I

and J then it is also the product of the integral closures of I and J.

Corollary 1.1.3. (Zariski, [ZS, p. 386, Thm. 3].) Every complete integral ideal
is, in a unique way, the product of simple complete ideals.

(As R is a unique factorization domain, one reduces at once to the finite-
colength case. Also, it helps to note that for any ideals I, J , if IJOX is invertible
then IOX and JOX are both invertible.)

Corollary 1.1.4. If I is a complete ideal with IOX invertible, IOX = OX(−E),
and Pi := Γ

(
X,OX(−Gi)

)
is the simple m-primary complete ideal corresponding

to the above Gi , then II−1 =
∏s

i=1 P−E.Ei

i . Thus Pi divides II−1 ⇔ E · Ei 	= 0.

Moreover, the valuations vEi associated to those Ei such that E · Ei 	= 0 are
precisely the Rees valuations of II−1 (i.e., those valuations whose valuation ring
is the local ring of the generic point of some reduced irreducible component of
the closed fiber of the normalized blowup of I). (See [L4, p. 300, Prop. (4.4)].)

The following Lemma3 will be needed.

2It is a theorem of Zariski that a product of two complete ideals is still complete [ZS, p. 385,
Thm. 2′], [L1, p. 209, Thm. (7.1)].

3related to Enriques’s “principle of discharge” [Z, p. 28],
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Lemma 1.2. Let E be an X-divisor and I the complete ideal Γ(X,OX(−E)).
Then IOX is invertible. Equivalently (see (1.1.2)), there is an antinef E− ≥ E,
such that I = Γ(X,OX(−E−)); this E− must be the least antinef divisor ≥ E.

Proof. Since R is a unique factorization domain, there exists a t ∈ L such that
(t)aff = Eaff , and one can replace (E, I) by (E − (t), t−1I); so one may assume
that E is exceptional, say E =

∑
aiE

i, and that I has finite colength. One may
also assume X 	= Spec(R). Then there exists an antinef F ≥ E: pick n such that
mn ⊂ I, and define F by mnOX = OX(−F ). Among all antinef F =

∑
biE

i ≥ E
choose one—call it FE—for which

∑
i(bi − ai) has minimal value, denoted σE .

Procede by induction on σE . Suppose σE > 0 (otherwise there is nothing to
prove), and that the Lemma holds for all E′ with σE′ < σE . With F := FE

as above, there is an i such that E · Ei > 0 ≥ F · Ei, and since Ej · Ei ≥ 0
when j 	= i (clearly) and Ei · Ei < 0,4 therefore bi > ai , whence F ≥ E + Ei.
So σE+Ei < σE , and therefore Γ(X, OX(−E − Ei))OX is invertible. It suffices
then to verify that Γ

(
X, OX(−E − Ei)

)
= I, by applying the left-exact functor

Γ(X,−) to the natural exact sequence

0 −→ OX(−E − Ei) −→ OX(−E) −→ OX(−E) ⊗OEi

and observing that since OX(−E) ⊗OEi has degree −E · Ei < 0, therefore

Γ
(
X, OX(−E) ⊗OEi

)
= Γ

(
Ei, OX(−E) ⊗OEi

)
= 0. �

1.3. (Canonical divisors.) Let Y
g→ X

f→ Spec(R) be proper birational maps
with Y and X regular schemes. By a theorem of Zariski and Abhyankar (see,
e.g., [L1, p. 204, Thm. (4.1)]) both f and g are compositions of point blowups.

Let F 1, F 2, . . . , F t be the reduced irreducible components of (fg)−1{m}. As
before, the intersection matrix (F i · F j) has determinant ±1, and so there is a
unique fg-divisor Kg such that

(1.3.1) Kg · F i =
{ −F i ·F i − 2 if g(F i) is a point

0 otherwise.

This Kg is called the canonical divisor of g.5

For an X-divisor D, g∗D denotes the Y -divisor whose coefficient at any prime
divisor F on Y is vF (OX(−D)x), where x ∈ X is the g-image of the generic point
of F . There is a natural isomorphism g∗OX(D) −→∼ OY (g∗D).

1.3.2. The following easily-checked properties characterize Kg for all g :
• If g is the blowup of a closed point x ∈ X then Kg = g−1{x}.
• If Z

h→ Y
g→ X

f→ Spec(R) are proper birational maps with Z, Y and X
regular schemes, then

Kgh = h∗Kg + Kh.

4It is well-known, going back to Du Val, that the intersection matrix (Ei · Ej) is negative
definite, see e.g., [L1, p. 224, Lemma (14.1)].

5One has O(Kg) = H0(g!OX) with g! as in Grothendieck duality theory [LS, p. 206, (2.3)].
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1.4. (Multiplier ideals.) For D =
∑

E dEE ∈ Div(X) ⊗Z R set

[D] :=
∑
E

[dE ]E ∈ Div(X)

where [dE ] is the greatest integer ≤ dE .

Definition 1.4.1. Let I be a complete ideal, h : Y → Spec(R) a log resolution
of I, say IOY = OY (−G), and let c be a positive real number. The multiplier
ideal J (Ic) is defined to be

J (Ic) := Γ
(
Y,O(Kh − [cG])

)
.

Thus, by Lemma 1.2,
J (Ic)OY = OY

(
−F

)
where F :=

(
[cG] − Kh

)− is the least antinef h-divisor ≥ [cG] − Kh.

For the blowup h1 : Y1 → Y of a closed point y ∈ Y one finds via (1.3.2) that
the log resolution h can be replaced by the log resolution h ◦h1 without affect-
ing J (Ic). (When c is not an integer, the log-resolution hypothesis that G be
a “normal crossing divisor” is important.) As any two log resolutions are domi-
nated by a third, obtained from each of the two by a sequence of point blowups,6

it follows that J (Ic) does not depend on the choice of the log resolution h.

Corollary 1.4.2. A complete ideal J satisfies J = J (Ic) for some c, I iff for
some log resolution h : Y → Spec(R) of J, say JOY = OY (−F ), there is an
antinef h-divisor G and a real c > 0 such that

(1.4.2.1) F =
(
[cG] − Kh

)−
.

2. Proof of Main Result

Let J be a complete ideal. To show that J = J (Ic) for some c, I, we will
describe a log resolution h : Y → Spec(R) of J, and a G and c as in Corollary
1.4.2, such that if JOY = OY (−F ) then (1.4.2.1) holds. (The number of suitable
(h, G, c) will be enormous.)

Factor JJ−1 as JJ−1 =
∏u

�=1 P
e�

� (P� simple complete, e� > 0)—see Corol-
lary 1.1.3 and the paragraph preceding it. Let f : X → Spec(R) be any log
resolution of J , say JOX = OX(−F 0). As in Corollary 1.1.4, one has for each ),

(2.0) e� = −F 0 · E�.

6By the above-mentioned theorem of Zariski and Abhyankar, it suffices to principalize
some ideal sheaf on one of the log resolutions by a sequence of point blowups (“elimination of
indeterminacies”), which can be done e.g., via the Hoskin-Deligne formula, as before.
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We will first construct, for each u-tuple N := (n1, n2, . . . , nu) of non-negative
integers, a proper birational map gN : YN → X, to be realized as a composition
of closed point blowups, so that hN := f ◦gN will be a log resolution of J.

For ease of expression we say “blow up a closed point x ∈ X generically,
n times” to mean “blow up x0 := x to get g1 : X1 → X, then blow up a closed
point x1 on g−1

1 x0 but not on any other irreducible component of g∗1F 0 to get
g2 : X2 → X1, then blow up a closed point x2 on g−1

2 x1 but not on . . . then blow
up a closed point xn−1 on g−1

n−1xn−2 but not on any other irreducible component
of (g1 ◦g2 ◦ · · · ◦gn−1)∗F 0 to get gn : Xn → Xn−1.”

Then with g := g1 ◦g2 ◦ · · · ◦gn it holds that:

2.1. g−1x is a chain of n integral curves D1, D2, . . . , Dn such that for 0 < i < n,
Di · Di+1 = 1 and Di · Di = −2, while Dn · Dn = −1; and if |j − i| > 1 then
Di · Dj = 0.

(For the proof one can use, e.g., [L1, p. 229, middle, and p. 227, α) and β)].
Here, and subsequently, the reader may find it useful to do some rough sketches.)

As in Corollary 1.1.4, there corresponds to each Di an m-primary simple
complete ideal Qi ; and, we claim, these Qi form a strictly decreasing sequence
Q1 > Q2 > · · · > Qn , with Q1 strictly contained in each of the simple ideals
corresponding to the (one or two) prime f -divisors Ej passing through x.

Indeed, let Gj be the f -divisor such that Gj ·Ej = −1 and Gj ·E = 0 for every
other prime f -divisor E, and let Q̃j := Γ(X,OX(−Gj)) be the corresponding
simple complete ideal. It follows from, e.g., [L1, p. 227, α) and β)] that g∗1Gj is
antinef; and the corresponding simple complete ideal is

Γ
(
X1 ,OX1(−g∗1Gj)

)
= Γ

(
X,OX(−Gj)

)
= Q̃j .

Further, with E′ := g−1
1 x, let G′ be the fg1-divisor such that G′ · E′ = −1

and G′ · E′′ = 0 for every other prime fg1-divisor E′′. Since g∗1Gj + E′ has
intersection number −1 with E′ and ≥ 0 with each E′′, therefore G′−g∗1Gj −E′

is antinef, hence effective (Corollary 1.1.1); and consequently G′ > g∗1Gj . Thus
the simple complete ideal Γ

(
X1 ,OX1(−G′)

)
is strictly contained in Q̃j .

Continuing in this way we establish the claim.

Now for each ) = 1, 2, . . . , u, pick e� distinct closed points x1, . . . , xe�
which

lie on E� but on no E 	= E� and blow up all of these points generically, n� times.
Then YN is the resulting surface, and gN is the composition of all the blowups.
It is easily seen that (YN , gN ) does not depend (up to isomorphism) on the order
in which the chosen points are blown up—though that won’t be important.7

7The initial
∑

� e� points might be taken to be the intersection of the closed fiber on X with

a sufficiently generic curve C in the linear system |−F 0| (i.e., a divisor—having no component
in the closed fiber—of the form (j) − F 0 with j a sufficiently generic element of J). Then at
each stage the point to be blown up could be taken to be a specialization of some nonclosed
point of C.
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To simplify notation, fix N and set (Y, g) := (YN , gN ) and F := g∗F 0, so that
JOY = OY (−F ). Also, set h := fg : Y → Spec(R).

For an X-divisor D, we denote by D# the proper transform of D on Y ,
obtained from g∗D =:

∑
E aEE (where E runs through all prime divisors on Y )

by replacing aE by 0 whenever E is g-exceptional, i.e., g(E) is a closed point.
For each ) = 1, 2, . . . , u and xj�

∈ E� (j� = 1, 2, . . . , e�) let

{E�
j�k�

| k� = 1, 2, . . . , n� }

be the family of prime Y -divisors whose g-image is xj�
, the ordering of these

curves by the index k� conforming to the ordering of the D’s in (2.1). These
curves are all isomorphic to the projective line P

1
R/m

.
If a� is the E�-coefficient of the divisor F 0, and b� of the divisor Kf , then one

finds (using (1.3.2)) that

F = g∗F 0 = F 0# +
∑

�

∑
j�,k�

a�E
�
j�k�

,

g∗Kf = K#
f +

∑
�

∑
j�,k�

b�E
�
j�k�

,

Kg =
∑

�

∑
j�,k�

k�E
�
j�k�

.

Set G := F +Kg. Noting that F ·E�
j�k�

= g∗F 0 ·E�
j�k�

= 0 [L1, p. 227, β)], and
using (2.1) together with the preceding expansion of Kg (or together with (1.3.1)
and (1.3.2)), one finds that for every g-exceptional prime divisor E, G · E = 0
unless E is one of the curves E�

j�n�
at the end of the chains emanating from the∑

� e� originally chosen points (i.e., g(E) is a point and E ·E = −1), in which case
G·E = −1. Moreover, for any f -exceptional prime divisor D, g∗F 0 ·D# = F 0 ·D
[L1, p. 227, α)], and E�

j�k�
· D# = 0 if k� > 1 (since then E�

j�k�
∩ D# is empty),

so using (2.0) one finds that G · D# = 0. Thus G is an antinef Y-divisor.
By Corollary 1.1.4, if I is the corresponding complete ideal Γ

(
Y,OY (−G)

)
then II−1 is the product of the simple complete ideals corresponding to the∑

� e� curves E�
j�n�

having self-intersection −1.

Here is a key technical point:

Lemma 2.2. For all sufficiently small ε > 0 there exists N such that

(2.2.1) (1 + ε)G − Kh = F + A
(
[A] ≤ 0

)
where the coefficient of [A] at each E�

j�n�
and at each affine prime Y-divisor is 0.

Proof. Using (1.3.2), one transforms (2.2.1) into the equality

ε(F + Kg) − g∗Kf = A.
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More explicitly (see above)

ε
(
F 0# +

∑
�

∑
j�,k�

(
a� + k�

)
E�

j�k�

)
−

(
K#

f +
∑

�

∑
j�,k�

b�E
�
j�k�

)
= A.

So to get (2.2.1) we can choose any ε > 0 such that the coefficients of the
X-divisor εF 0−Kf are all < 1, and then look for n� such that ε(a� +k�)−b� < 1
for all ) and for all k� ≤ n� , while ε(a� + n�) − b� ≥ 0. These conditions mean
precisely that n� satisfies the inequalities

1/ε + b�/ε − a� > n� ≥ b�/ε − a� () = 1, 2, . . . , u).

Clearly, such integers n� can be found if ε < 1. �
For c = 1 + ε and N satisfying Lemma 2.2, and with h : Y → Spec(R) and

F , G, as before, we have

F ′ :=
(
[cG] − Kh

)− ≤ F,

so that
J ′ := Γ

(
Y ,O(−F ′)

)
⊃ Γ

(
Y ,O(−F )

)
= J.

Let us verify that J ′ = J
(
= (J−1)−1JJ−1

)
, thereby proving the main result.

Since G = F + Kg and F have the same affine part, the affine part of [A]
must be 0, and hence F ′ and F have the same affine part. This means that
(J ′−1)−1 = (J−1)−1. So J ′J ′−1 ⊃ JJ−1, and we need only show that these two
m-primary ideals are equal.

Recall that the valuations v� := vE� are just the Rees valuations of JJ−1. (See
the remark following Corollary 1.1.4). So

JJ−1 = { ρ ∈ R | v�(ρ) ≥ v�(JJ−1) for all ) = 1, 2, . . . , u }.
Thus we need only show that for each ), the E�#-coefficient a′

� of F ′ is the
same as that of F (namely a�). Let us say that ) is “good” if a′

� = a� and “bad”
if a′

� < a�.
If ) is good then since F ′ ≤ F therefore

F ′ · E�# ≤ F · E�# = F 0 · E� (2.0)
= −e� .

Corollary 1.1.4 shows then that J ′J ′−1 is divisible by P
e�

� .
Suppose ) is bad. For j ∈ [1, e� ] and with a′

jk the E�
jk-coefficient of F ′ it is

easily seen that a′
� =: a′

j0 ≤ a′
j1 ≤ a′

j2 ≤ · · · ≤ a′
jn�

= a�.
8 So there is a k ∈ [1, n� ]

such that a′
j,k−1 < a′

jk = a′
j,k+1 = · · · = a�. Then

F ′ · E�
jk =

{
a′

j,k−1 − 2a′
jk + a′

j,k+1 < 0 if k < n� ,

a′
j,n�−1 − a′

jn�
< 0 if k = n� .

8With v := vE�
j,k+1

and S ⊃ R the regular local ring blown up to give E�
j,k+1, one finds:

a′
j,k+1 = v(J ′S) = v

(
((J ′S)−1)−1

)
+ v

(
J ′S(J ′S)−1

)
= a′

jk + v
(
J ′S(J ′S)−1

)
.
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From Corollary 1.1.4 and the remarks after 2.1, one deduces that J ′J ′−1 is
divisible by a simple complete ideal P ′

�j < P�. This being so for all j, and the
P ′

�j being distinct (Corollary 1.1.2), it follows from Corollary 1.1.3 that J ′J ′−1 is
divisible by P ′

�1P
′
�2 · · ·P ′

�e�
< P

e�

� . Thus (by Corollary 1.1.3 again) the existence
of a bad ) leads to a factorization of J ′J ′−1 which contradicts J ′J ′−1 ⊃ JJ−1.

So every ) is good, and J ′J ′−1 = JJ−1. �
Remarks.

1. By the choice of ε, the E�-coefficient of εF 0−Kf is <1, i.e., εa�−b� < 1,
i.e., b�/ε − a� > −1/ε. It could happen that b�/ε − a� < 0 for all ). In
this case one can take N = (0, 0, . . . , 0), and then J = J ((1 + ε)J).

2. The proof shows that if J is a simple complete m-primary ideal then
there is a simple complete m-primary ideal P ⊂ J and a c > 0 such that
J = J (cP ).

3. By way of illustration of our method, let J be a simple m-primary ideal
of order 16, whose successive transforms have orders (8, 8, 4, 4, 2, 2, 1,
1, 0, 0 . . . ). (For the existence of such a J see e.g., [L4, p. 298, Cor. (3.1)].)
Here ) = 1, and one calculates that a1 = 426, b1 = 46. Then any
ε ∈ (0, 5/48) will do. Since 46/(5/48)−426 > 15, the least possible value
of N is 16, which is attained, e.g., when ε = 23/221. One has then that
J = J (P 244/221), where P ⊂ J is a simple complete ideal of order 16
with successive transforms of orders (8, 8, 4, 4, 2, 2, 1, 1, ..., 1, 0, 0 . . . ) (18
ones).

A simpler permissible choice of ε would be 1/12. But one would need
N = 126 blowups to unearth a simple P ⊂ J such that J = J (P 13/12).

There might be other methods of finding a representation J = J (Ic)
with I “closer” to J than here. But I = J can never occur, because
the inequality b1 < εa1 of example 1 could then be deduced. (Exercise.)
On the other hand, this inequality does hold for any of the successive
transforms of the present J .

4. Since the c = 1 + ε we have considered can be arbitrarily close to 1, one
may ask if it is possible for c actually to be 1. (This would be the case
studied in [L5], where J (I) is called the adjoint ideal of I.)

For simple complete m-primary J, the answer is given by:

Proposition 2.3. A simple complete m-primary ideal J is of the form J (I) for
some I ⇐⇒ J 	⊂ m2 ⇐⇒ J = (a, bn)R for some integer n > 0 and a, b ∈ R
such that (a, b)R = m.

Proof. The last ⇐⇒ holds because J 	⊂ m2 means that J contains an element a
such that R/aR is a discrete valuation ring. Moreover, if (a, b)R = m and z ∈ R
is integral over J = (a, bn)R then the canonical image of z in R/aR is integral
over—and hence is a multiple of—that of bn, whence z ∈ J, and thus J is
complete (and clearly simple). It is an easy exercise to show that for such a J,
J = J (J2). (One could use [L5, p. 749, Prop. (3.1.2)].)
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For a simple complete m-primary J, let f : X → Spec(R) be a log resolution
obtained by successively blowing up base points of J—closed points at which
J does not generate an invertible ideal—for as long as such points are available.
(As noted before, the Hoskin-Deligne formula guarantees that this process ter-
minates.) From [L1, p. 199, Prop. 1.2 and p. 203, Prop. 3.1] it follows that this f
is the minimal desingularization of the blowup of J : for any log resolution h of J
there exists a map g : Y → X composed of point blowups such that h = fg.

We have seen before that there is a unique exceptional prime X-divisor E
such that JOX · E 	= 0. This E satisfies E · E = −1: for, there is at least one
exceptional prime X-divisor E′ such that E′ · E′ = −1, namely the closed fibre
f ′−1{x′} for the blowup f ′ : X → X ′ of x′ ∈ X ′ coming last in the sequence
of blowups composing to f (see [L1, middle of p. 229]); and J ′ := JOX′,x′ is not
invertible, from which one sees, with m′ the maximal ideal of R′ := OX′,x′ , that
J ′ = dm′s for some d ∈ R′ and s > 0, whence JOX · E′ = s, so that E′ = E.

We claim that if F · F = −2 for all exceptional prime divisors F 	= E then
J 	⊂ m2. (The converse is part of the exercise at the end of the first paragraph.)
Indeed, this condition on the F ’s means that among the base points of J no two
are “proximate” to the same one, and the conclusion follows from [L4, p. 301, (3)].

Assume now that J = J (I). From J being m-primary it follows easily that
so is I. (I and J (I) have the same gcd.) Let h : Y → Spec(R) be a log
resolution of I, obtained as above by blowing up base points of I, and say
IOY = OY (−G). Let F be an exceptional prime Y -divisor. As above, we
find that F · F = −1 ⇒ G · F < 0. (We may assume that F is the closed
fiber for the last blowup in some sequence of blowups composing to g, because
if g is the blowup of a point lying on an exceptional prime divisor F1 then
0 > F1 · F1 = g∗F1 · F#

1 = F#
1 · F#

1 + 1.) Since Kh · F = −F · F − 2 and G is
antinef, we see that G − Kh is antinef, and hence OY (Kh − G) = JOY .

So JOY is invertible, i.e., h is a log resolution of J , and as above there
exists a g : Y → X composed of point blowups such that h = fg. Let
F 1#, F 2#, . . . , Fn# be the proper transforms on Y of the prime X-divisors
F 1, F 2, . . . , Fn other than the above E. Then F i# · F i# ≤ F i · F i ≤ −2 and so
Kh · F i# ≥ 0. But by [L1, p. 227, β)],

Kh · F i# ≤ (Kh − G) · F i# = JOY · F i# = JOX · F i = 0,

and thus Kh · F i# = 0, i.e., F i# · F i# = −2, whence, finally, F i · F i = −2. The
above claim shows then that J 	⊂ m2. �
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