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FINITE, CONNECTED, SEMISIMPLE, RIGID TENSOR

CATEGORIES ARE LINEAR

Greg Kuperberg

Abstract. Fusion categories are fundamental objects in quantum algebra, but
their de�nition is narrow in some respects. By de�nition a fusion category must be
k-linear for some �eld k, and every simple object V is strongly simple, meaning that
End(V ) = k. We prove that linearity follows automatically from semisimplicity:
Every connected, �nite, semisimple, rigid, monoidal category C is k-linear and
�nite-dimensional for some �eld k. Barring inseparable extensions, such a category
becomes a multifusion category after passing to an algebraic extension of k.

The proof depends on a result in Galois theory of independent interest, namely
a �niteness theorem for abstract composita.

1. Introduction

We take as prerequisites to this article the �rst two chapters of a survey of
Bakalov and Kirillov [1] and the introductions to articles by Etingof, Nikshych,
and Ostrik [2] and M�uger [4]. Following these three works, a fusion category is
a k-linear, �nite, strongly semisimple rigid tensor category. (Precise de�nitions
of these terms are given below.) The previous works also present the structure
theory and applications of fusion categories. But although fusion categories are
an important a fairly general class of objects, their de�nition is narrow in some
respects.

If C is any abelian, k-linear category for some �eld k, we say that an object
V 2 C is strongly simple if End(V ) = k. For example, if k is algebraically closed,
then Schur's Lemma says that every simple object is strongly simple. If C is
semisimple and every simple object is strongly simple, then we say that C is
strongly semisimple.

A fusion category C is endowed with a �eld k over which it must be linear and
strongly semisimple. It is also assumed that the identity object I is simple. But
as noted previously [2], it is reasonable to drop the condition that I is simple.
In this case C is a multifusion category, or a folded form of a fusion 2-category
in which each identity 1-morphism is simple. (To \fold" an abelian 2-category
means to combine �nitely many objects into one object whose 1-identity is non-
simple; see Section 2.)
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The aim of this article is to show that if C is semisimple and suitably �-
nite, then suitably �nite linearity appears automatically. We adopt the natural
generalization to 2-categories in the statement of the main result.

Theorem 1.1. Let C be a connected, semisimple, rigid 2-category with �nitely

many types of simple 1-morphisms. Then there exists a �eld k over which it is

linear and all Hom spaces between 1-morphisms are �nite-dimensional. Taking

ks to be the separable closure of k, ks 
 C is a folded form of a semisimple

2-category over ks with strongly simple 1-identities. If C has no inseparable

extensions of k, then ks 
 C is strongly semisimple.

To conclude this introduction we o�er two related examples, one in which
Theorem 1.1 applies, and one in which it does not.

First, consider the category A = C -modR-C of �nite-dimensional real vector
spaces with the extra structure of bimodules over the complex numbers. The
category A is semisimple, and it is monoidal with respect to tensoring in the
middle. It has two simple objects I and A, both of which have real dimension
2. But in I , left and right complex multiplication agree, while in A, they are
conjugate. The reader can check that A 
 A �= I , from which it follows that
A is rigid, and that End(I) = End(A) = C . Nonetheless, A is not C -linear.
It is R-linear, while C 
R A is a multifusion category which unfolds to a 2-

category ^C 
RA with two objects. Each endocategory of ^C 
RA is the category
of complex representations of Gal(C =R).

Second, let B be the �eld C (y) with a C (x)-bimodule structure de�ned as
follows: Left multiplication by x is de�ned as multiplication by y, while right
multiplication is de�ned as multiplication by y2. Let B� be B with left and right
switched, and let B be the abelian monoidal category of bimodules over C (x)
generated by B and B�. It is not hard to show that B is semisimple and that
the simple objects are I = C (x), B
n, and (B�)
n. In this case, the largest �eld
over which B is linear is C , which is already algebraically closed. No change of
base �eld of B renders it strongly semisimple.

2. Semisimple categories

We assume various relevant de�nitions from Mac Lane [3] and M�uger [4]:
additive, abelian, monoidal, k-linear, etc. An object in an abelian category is
simple if it has no subobjects. An abelian category is semisimple if every object
is a direct sum of �nitely many simple objects. As mentioned in the introduction,
if V is a simple object in an abelian, k-linear category, then it is strongly simple

if End(V ) = k. A semisimple, k-linear category is strongly semisimple if all
simple objects are strongly simple.

A (strict) monoidal category C can be reinterpreted as a 2-category C0 with one
object. This phenomenon is known as dimension shifting, because n-morphisms
in C become (n + 1)-morphisms in C0. In light of this relationship, we will
use V 
 W to denote the composition of 1-morphisms V 2 Hom1(A;B) and
W 2 Hom1(B;C), and f 
 g for the attendant \horizontal" composition of
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2-morphisms. We use fg or f Æ g to denote \vertical" composition of two 2-
morphisms f and g in the same category Hom1(A;B). A 2-category is also
additive, abelian, k-linear, semisimple, or strongly semisimple if each category
Hom1(A;B) has the same property. If additivity or linearity is part of the
structure, we also assume that f 
 g is biadditive or bilinear in f and g.

Remark. It is common to assume, at least intuitively, that categories are skeletal
(there is only one object of each isomorphism type), because every category can
be made skeletal. It is also common to assume that monoidal categories are
strict (
 is strictly associative), because every monoidal category can be made
strict. But most monoidal categories cannot be made simultaneously strict and
skeletal! This is the origin of the non-trivial structure of associators. On balance,
we prefer strictness and we will not assume that categories are skeletal. However,
we can assume that 2-categories are skeletal at the level of objects.

Let C be a semisimple monoidal category and suppose that the identity object
I is not simple. Then

I =
M
A2S

IA;

where S is some indexing set and each IA is simple. As previously noted [2], I is
necessarily multiplicity-free, i.e., IA 6�= IB when A 6= B, and C can be reorganized

as a 2-category eC whose objects are the elements of S. In eC, the identity of A is
IA, and the Hom space Hom1(A;B) consists of those objects V of C such that

IA 
 V 
 IB = V 2 C:

(Note that IA
V
IB is always a subobject of V .) Thus eC has simple 1-identities.
We call it the unfolded form of C.

The same construction applies if C is a semisimple 2-category such that not
all 1-identities are simple. If each 1-identity IA decomposes as

IA =
M
B2SA

IB ;

then S =
S
A SA is the set of objects of the unfolded category eC.

Lemma 2.1. If V 2 Hom1(A;B) is a simple 1-morphism in an abelian 2-

category C, then End2(V ) is a division ring.

Proof. The lemma is a form of Schur's Lemma. Suppose that V is simple and
that f 2 End2(V ). Then both ker f and im f are either 0 or V . If kerf = V
or if im f = 0, then f = 0. Otherwise, if ker f = 0 and im f = V , then f has
an inverse on each side and therefore a two-sided inverse. Thus every non-zero
f has a reciprocal and End2(V ) is a division ring. �

Lemma 2.2. The division ring End2(IA) is a �eld. If V 2 Hom1(A;B) is any

1-morphism, then End2(IA) and End2(IB) embed in the center Z(End2(V )).



414 GREG KUPERBERG

Proof. The identity V = IA 
 V induces a unital ring homomorphism
End2(IA)! End2(V ), which must be an inclusion since the domain is a division
ring. To show that End2(IA) lies in the center of End2(V ), let f 2 End2(IA)
and g 2 End2(V ). Then

fg = (f 
 1V )(1IA 
 g) = (1IA 
 g)(f 
 1V ) = gf:

In particular, if V = IA, then End2(IA) lies in the center of itself, so it is a
�eld. �

Remark. If A is an object in any 2-category C, then End2(IA) is commutative.
This fact is familiar in topology as the commutativity of the second homotopy
group �2(X) of a topological space X . Our proof is the usual one.

Note that End2(V ) may not be commutative even if V is simple. For example,
if V is the de�ning representation of sl(2; C ) viewed as a 4-dimensional real
representation, then End2(V ) = H , the quaternions.

In light of Lemma 2.2, let kA = End2(IA), let kV be the compositum of
the inclusions kA and kB in Z(End(V )), and denote the restrictions of these
inclusions to kV by

kA
�A;V
�! kV

�V;B
 � kB

Thus kV is an abstract compositum of the �elds kA and kB .
Now let C be a semisimple 2-category with simple 1-identities. Then the �elds

kA are entirely unrelated on di�erent connected components of C. Even when
C is connected, the �elds kA may di�er for di�erent A 2 C, although they must
have the same characteristic since they are connected by abstract composita.

If A;B 2 C are objects and V;W 2 Hom1(A;B) are two 1-morphisms con-
necting them, then Hom2(V;W ) is a bimodule over the two �elds kA and kB . If
kA � kB , then the left and right module structures certainly di�er. But even
if C only has one object A, so that it is a dimension-shifted monoidal category,
the left and right kA-module structures may di�er; an example was given in
Section 1.

Example. Let A be a 2-category with two objects, R and C , and de�ne its Hom
categories by

Hom1(k1; k2) = k1-modR-k2

for every k1; k2 2 fR; C g. Then End2(Ik) = k, so the endomorphism �elds of
the 1-identities di�er.

3. Rigidity

A monoidal category is rigid if every object V has both a left dual �V and a
right dual V � together with morphisms

aV : I ! V 
 V � bV : V � 
 V ! I

cV : I ! �V 
 V dV : V 
 �V ! I
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that satisfy the compatibility conditions

(1V 
 bV )(aV 
 1V ) = 1V

(dV 
 1V )(1V 
 cV ) = 1V :

these de�nitions generalize readily to 2-categories. To be explicit, if V 2
Hom1(A;B), then V �; �V 2 Hom1(B;A), and

aV : IA ! V 
 V � bV : V � 
 V ! IB

cV : IB !
�V 
 V dV : V 
 �V ! IA;

and the compatibility conditions are the same. As explained by M�uger [4], duals
can also be called adjoints, with the signi�cant consequence that V 7! V � and
V 7! �V are contravariant endofunctors of the 2-category C. In fact they can be
made inverse to each other, so that V = �V �.

Note also that if C is semisimple, then V �= V �� [2], although unless C is
pivotal, these isomorphisms are not functorial. We will not need pivotal structure
in this article.

Henceforth let C be a semisimple, rigid 2-category with simple 1-identities.

Lemma 3.1. If V 2 Hom1(A;B), then there is an isomorphism �V : kV ! kV �

that makes the following diagram commute:

kA

kV

kV �

kA

�A;V

�V �;A

�V

�V;B

�B;V �

Proof. Since V 7! V � extends to an anti-automorphism of C, it produces �V . It
is only necessary to check that the anti-automorphism is the identity on kA =
End2(IA). �

Lemma 3.2. If V 2 Hom1(A;B) is a 1-morphism in C, then End2(V ) is �nite-
dimensional as a left kA-module and as a right kB-module.

Proof. If W 2 Hom1(A;A), then it has an invariant space de�ned as

Inv(W ) = Hom2(IA;W ):

Since C is semisimple, Inv(W ) is �nite-dimensional as a vector space over kA. If
W = V 
 �V , then

Inv(V 
 �V ) �= knA

with n > 0 by the existence of dV . Let �V be the composition of the maps

End2(V )! End2(V 

�V )! End(Inv(V 
 �V )) �= Matn(kA);
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where the �rst term is given by f 7! f 
 1�V and the second by isotypic de-
composition of V 
 �V . The map �V is both a unital ring homomorphism and
morphism of kA-linear spaces. Since the domain of � is a division ring and 1 6= 0
in the target, �V is injective. Since the target is a �nite-dimensional vector space
over kA, the domain End2(V ) is �nite-dimensional as well.

The same proof works on the other side, replacing �V with

End2(V )! End2(V
� 
 V )! End(Inv(V � 
 V )) �= Matn(kA);

which for later use we call �V . �

Remark. In fact, Inv(V 
�V ) and End2(V ) are isomorphic as kA-vector spaces.

Combining Lemmas 2.1 and 3.2, the abstract compositum kV associated to
a simple 1-morphism V 2 Hom1(A;B) is bi�nite: a �nite extension of both kA
and kB .

Remark. Theorem 1.1 postulates a common �nite-index sub�eld of all kA and
all kV on which every �A;V is the identity. Given that there are only �nitely
many simple V up to isomorphism, the fact that kV is a bi�nite compositum of
kA and kB suggests looking at their intersection in kV . Unfortunately, if k1 and
k2 are two �nite-index sub�elds of a �eld k3, it does not follow that k1 \ k3 is
�nite index in k3. For example, let

k3 = C (q) k1 = C (q
2 ) k2 = C ((q � 1)2):

The reader can check that k1 \ k2 = C . So it is not enough to know that bi�nite
abstract composita connect every pair kA and kB .

Lemma 3.3. Let V 2 Hom1(A;B) and W 2 Hom1(B;C). Then the map

�V;W : End2(V )
kB End2(W )! End2(V 
W )

is injective.

Proof. Consider the commutative diagram

End2(V )
 End2(W ) End2(V 
W )

End2(V
� 
 V 
W 
 �W )

End(Inv(V � 
 V ))



End(Inv(W 
 �W ))
End(Inv(V � 
 V 
W 
 �W ))

�V;W

�V 
 �W
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Since the maps �W and �V from Lemma 3.2 are both injective, the left arrow
is injective. The bottom arrow is trivially injective. Therefore the top arrow,
�V;W , is also injective. �

Lemma 3.4. If V 2 Hom1(A;B), then the abstract compositum kV is a sepa-

rable extension of both kA and kB.

Proof. By abuse of notation, we omit the embeddings �A;V and �V;B. (This
already arises in the statement of the lemma.) Applying Lemma 3.3 to V 
 �V ,
we know that kV 
kB kV embeds in End2(V 


�V ). Moreover, the subalgebra R
generated by both copies of kA in kV 
kB kV lies in the center of End2(V 


�V ),
since the latter is an algebra over kA on both the left and the right. It suÆces
to show that R has nilpotent elements when kV is inseparable over kB , because
this would violate the semisimplicity of V 
 �V .

Let p 6= 0 be the common characteristic of kA, kB , and kV . Suppose as a
special case that kV is a non-trivial purely inseparable extension of kB with
exponent e. Since kV is the compositum of kA and kB , kA contains an element
x which is not in kB . In this case

x
 1� 1
 x 6= 0 2 kV 
kB kV ;

while
(x 
 1� 1
 x)p

e

= 0:

Thus x
 1� 1
 x is the desired nilpotent element in R.
In this general case, kB has a maximal separable extension sV in kV . Then

kV 
kB kV surjects onto kV 
sV kV . Replacing kB by sV in the previous para-
graph, the image R0 of R in kV 
sV kV has a nilpotent element. At the same time,
kV 
kB kV is a �nite-dimensional algebra with respect to its left kA structure;

dimkA kV 
kB kV = (dimkA kV )(dimkB kV ) <1

by Lemma 3.2. Thus R is also a �nite-dimensional (commutative) algebra over
kA. Since its quotient R0 has a nilpotent element, R must have a nilpotent
element as well. �

Lemma 3.5. Let V 2 Hom1(A;B) and W 2 Hom1(B;C). Then any com-

positum of kA and kC which occurs as a subring of kV 
kB kW is kX for some

summand X � V 
W .

Proof. Since the extensions kV and kW are separable over kB , kV 
kB kW is
semisimple and decomposes as a direct sum of �elds:

kV 
kB kW =
nM
i=1

ki:

Let Pi 2 kV 
kB kW be the projection onto the summand ki. Since kV 
kB kW
embeds in End2(V 
W ), we can view Pi as a non-zero idempotent in End2(V 

W ) as well. Then imPi 2 Hom1(A;C) and ki � End2(imPi). It follows that
the sub�eld of ki generated by �A;V (kA) and �W;C(kC) is also the �eld kX for
any simple summand X of imPi. �
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4. Galois theory

In this section we complete the proof of Theorem 1.1 using a result in Galois
theory which is of separate interest.

Section 3 constructs, from a suitable 2-category C, a �nite collection of �elds
fkAg and a �nite collection of bi�nite, biseparable abstract composita

kA
�A;V
�! kV

�V;B
 � kB

Moreover, kIA = kA and �A;IA is the identity. By Lemma 3.1, �A;V � = �V;A.
And by Lemma 3.5, given two abstract composita

kA
�A;V
�! kV

�V;B
 � kB

�B;W
�! kW

�W;C
 � kC ;

every compositum of kA and kC that appears in kV 
kB kW is kX for some
summand X � V 
W . We call this method of producing kX from kV and kW
amalgamation of composita.

Theorem 4.1. Let K = fkAg be a �nite set of �elds, and let E = fkV g be a

�nite set of biseparable, bi�nite composita with embeddings

kA
�A;V
�! kV

�V;B
 � kB :

Suppose that E contains identities, is closed with respect to duality and amalga-

mation, and connects every pair of elements of K. Then there is a �eld k and

�nite-index embeddings f�Ag and f�V g that form commutative triangles:

k

kA

kV

�A

�V

�A;V

Theorem 4.1 can also be reformulated as the following corollary.

Corollary 4.2. Let K = fkAg be a �nite set of �elds, let K-Mod-K be the 2-

category of bimodules over elements of K, and let D be a full, connected, rigid,

semisimple sub-2-category of K-Mod-K with �nitely many simple 1-morphisms

and without inseparable extensions. Then D admits a forgetful functor to the

category k-mod of �nite-dimensional vector spaces over a �eld k which embeds

in every kA.

By Lemma 3.4, the semisimplicity of the 2-category D eliminates the possi-
bility of inseparable extensions. Although D satis�es the hypotheses of Theo-
rem 1.1, and although it is constructed from the more general 2-category C, we
do not know a natural functor from C to D.
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Proof. Since the �elds kA 2 K are all connected by composita, they all have
isomorphic separable closures. Let 
 be a �eld in this isomorphism class, and
realize each kA arbitrarily as a sub�eld of 
. Let GA = Gal(
=kA) be the
absolute Galois group of kA. Finally let F be the characteristic �eld of 
, either
Fp or C .

If kV 2 E is an extension of kA, we can position kV so that kA � kV �

; the embedding �A;V is then the inclusion map. But having chosen this
position for kV , we cannot require that the other embedding �V;B is the inclusion
map. Rather kV only contains a sub�eld isomorphic to kB and �V;B is the
isomorphism. Let �V 2 Gal(
=F) be an extension to all of 
 of the map �V;B ,
so that

(1) GV
def
= Gal(
=kV ) = GA \ �VGB�

�1

V :

Note that, having �xed kA; kB � 
, the connecting automorphism �V can be
replaced by any other element of the double coset GA�VGB . The double coset
determines the mutual extension kV up to its position in 
.

Next consider the tensor product kV 
kB kW , which, as in the proof of
Lemma 3.5, is a direct sum of �elds:

kV 
kB kW =

nM
i=1

ki:

Any summand ki contains a copy of the �eld embeddings

kA
�A;V
�! kV

�V;B
 � kB

�B;W
�! kW

�W;C
 � kC :

As discussed above, the relative position of kA and kB in kV is described by
an element of the double coset GA�VGB . Likewise the relative position of kB
and kC is described by an element of the double coset GB�WGC . Therefore the
relative position of kA and kC in the summand k is given by an element � of
their product

GA�VGB�WGC :

By hypothesis, the compositum kX of kA and kC in ki which is in E and is
represented by its own double coset GA�XGC . Thus

� 2 GA�XGC � GA�V GB�WGC :

At the same time, universality of tensor products implies that if � is any ele-
ment of GA�VGB�WGC , the corresponding relative position of kV and kW is
represented by some summand k � kV 
kB kW .

Thus the decomposition of kV 
kB kW yields a decomposition of double cosets

(2) GA�VGB�WGC =
[

X2EV

GA�XGC

for some subset EV � E. In addition, the duality hypothesis implies that we
can take we can take �V � = ��1V for some V � 2 E, while the identity hypothesis
implies that we can take �IA = 1 for some IA 2 E. Combining all of these facts,
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if EA;B is the set of all mutual extensions of kA and kB in E, then the union of
double cosets

HA =
[

V 2EA;A

GA�VGA

is a group: It is closed under multiplication and inversion and contains the group
GA (and therefore 1).

We claim that GA is a �nite-index subgroup of HA. By equation (1), the
number of right cosets of GA in the double coset GA�V GA is the same as the
index [GA : GV ] of GV in GA, which by hypothesis is �nite. Moreover, HA

is a �nite union of such double cosets, since E is �nite. This establishes the
claim. As the remaining arguments indicate, the claim is the heart of the proof
of Theorem 4.1.

Let fA be the �xed �eld of HA � Gal(
=F). Then kA is a �nite, separable
extension of fA, because its Galois group GA is a �nite-index subgroup of HA.
Moreover, fA and fB are canonically isomorphic. Any �V 2 Gal(
=F) is an
isomorphism between them. By equation (2), any two choices for �V (allowing
V to vary as well) di�er by an element of HA on the left, and therefore all agree
after restriction to fA. Equation (2) also shows that the isomorphisms between
fA, fB , and fC form a commutative triangle. Thus we can let k be a �eld
isomorphic to all of them by maps

�A : k ! fA;

the same map �A can also be taken as an embedding of k in kA. By construction
these �eld embeddings also extend to commutative triangles

k

kA

kV

�A

�V

�A;V ;

as desired. �

5. Questions

Question 5.1. If C is k-linear over a separably closed �eld k and every 1-identity

is strongly simple, can some End2(V ) be a non-trivial inseparable extension of

k?

It is noteworthy that if f is an inseparable �nite extension of k, then f
k f is
not semisimple; this is a weak form of Lemma 3.4. If a 2-category C did satisfy
Question 5.1, then the result of base change k 
k C would not be multifusion
because it would not be semisimple. This could be taken as a loophole in the
structure theory of fusion categories in characteristic p: such a category C would
be \morally" but not \technically" fusion.
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If C is a semisimple 2-category with simple 1-identities, then it may be
weakly right-rigid in the sense that for every V 2 Hom(A;B), there exists
V � 2 Hom(B;A) such that

Inv(V 
 V �) 6= 0:

If C is weakly right-rigid, then the structure of V 
 V � 
 V �� induces a map

sV : End2(V )
kB Inv(V � 
 V ��)! Inv(V 
 V �)
kA End2(V
��):

We can always take V � and V �� to be simple. If V is also simple, then either
sV vanishes, or V �� �= V and V � is (up to isomorphisms) both a left dual and a
right dual of V .

Conjecture 5.2. Every �nite, weakly rigid, semisimple 2-category with simple

1-identities is rigid.

Example. The representation category of Uq(sl(2)) becomes weakly rigid but
not rigid in the crystal limit q ! 0. However, it has in�nitely many simple
objects.
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