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ON THE POLYNOMIAL MOMENT PROBLEM

F. Pakovich

1. Introduction

In this paper we treat the following “polynomial moment problem”: for
complex polynomials P (z), Q(z) =

∫
q(z)d z and distinct a, b ∈ C such that

P (a) = P (b), Q(a) = Q(b) to find conditions under which
∫ b

a

P i(z)q(z)d z = 0 (∗)

for all integer non-negative i.
The polynomial moment problem was proposed in the series of papers of

M. Briskin, J.-P. Francoise and Y. Yomdin [1]-[5] as an infinitesimal version of
the center problem for the polynomial Abel equation in the complex domain in
the frame of a programme concerning the classical Poincaré center-focus problem
for the polynomial vector field on the plane. It was suggested that the follow-
ing “composition condition” imposed on P (z) and Q(z) =

∫
q(z)d z is neces-

sary and sufficient for the pair P (z), q(z) to satisfy (*): there exist polynomials
P̃ (z), Q̃(z), W (z) such that

(∗∗) P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)), and W (a) = W (b).

It is easy to see that the composition condition is sufficient: since after the
change of variable z → W (z) the way of integration becomes closed, the suffi-
cientness follows from the Cauchy theorem. The necessity of the composition
condition in the case when a, b are not critical points of P (z) was proved by C.
Christopher in [6] (see also the paper of N. Roytvarf [12] for a similar result)
and in some other special cases by M. Briskin, J.-P. Francoise and Y. Yomdin
in the papers cited above.

Nevertheless, in general the composition conjecture fails to be true. Namely,
in the paper [9] a class of counterexamples to the composition conjecture was
constructed. These counterexamples exploit polynomials P (z) which admit dou-
ble decompositions: P (z) = A(B(z)) = C(D(z)), where A(z), B(z), C(z),
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D(z) are non-linear polynomials. If P (z) is such a polynomial and, in addi-
tion, B(a) = B(b), D(a) = D(b) then for any polynomial Q(z) which can be
represented as Q(z) = E(B(z))+F (D(z)) for some polynomials E(z), F (z) con-
dition (*) is satisfied with q(z) = Q′(z). On the other hand, it was shown in [9]
that if deg B(z) and deg D(z) are coprime then condition (**) is not satisfied
already for Q(z) = B(z) + D(z).

Note that double decompositions with deg A(z) = deg D(z), deg B(z) =
deg C(z) and deg B(z),deg D(z) coprime are described explicitly by Ritt’s the-
ory of factorization of polynomials. They are equivalent either to decomposi-
tions with A(z) = znRm(z), B(z) = zm, C(z) = zm, D(z) = znR(zm) for a
polynomial R(z) and GCD(n, m) = 1 or to decompositions with A(z) = Tm(z),
B(z) = Tn(z), C(z) = Tn(z), D(z) = Tm(z) for Chebyshev polynomials Tn(z),
Tm(z) and GCD(n, m) = 1 (see [11], [13]).

The counterexamples above suggest to weaken the composition conjecture as
follows: polynomials P (z), q(z) satisfy condition (*) if and only if

∫
q(z)d z can

be represented as a sum of polynomials Qj such that

(∗ ∗ ∗) P (z) = P̃j(Wj(z)), Qj(z) = Q̃j(Wj(z)), and Wj(a) = Wj(b)

for some P̃j(z), Q̃j(z), Wj(z) ∈ C[z]. For the case when P (z) = Tn(z) this
statement was verified in [10]. Moreover, it was shown that for P (z) = Tn(z)
the number of terms in the representation

∫
q(z)d z =

∑
j Qj(z) can be reduced

to two.
In this paper we give a solution of the polynomial moment problem in the

case when P (z) is indecomposable that is when P (z) can not be represented as a
composition P (z) = P1(P2(z)) with non-linear polynomials P1(z), P2(z). In this
case conditions (**) and (***) are equivalent and the composition conjecture
reduces to the following statement.

Theorem 1. Let P (z), Q(z) =
∫

q(z)d z be complex polynomials and let a, b be
distinct complex numbers such that P (a) = P (b), Q(a) = Q(b), and∫ b

a

P i(z)q(z)d z = 0

for i ≥ 0. Suppose that P (z) is indecomposable. Then there exists a polynomial
Q̃(z) such that Q(z) = Q̃(P (z)).

We also examine the following condition which is stronger than (*):∫ b

a

P i(z)Qj(z)Q′(z)d z = 0

for i ≥ 0, j ≥ 0. If γ is a curve which is the image of the segment [a, b] in C
2 under

the map z → (P (z), Q(z)) then this condition is equivalent to the condition that∫
γ

ω = 0 for all global holomorphic 1-forms ω in C
2 (“the moment condition”).

For an oriented simple closed curve δ of class C2 in C
2 the moment condition

is necessary and sufficient to be a boundary of a bounded analytic variety Σ
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in C
2; it is a special case of the result of R. Harwey and B. Lawson [7]. The

case when δ is an image of S1 under the map z → (f(z), g(z)), where f(z), g(z)
are functions analytic in an annulus containing S1 was investigated earlier by J.
Wermer [14]: in this case the moment condition is equivalent to the condition
that there exists a finite Riemann surface Σ with border S1 such that f(z), g(z)
have an analytic extension to Σ.

Unlike condition (*) the more restrictive moment condition imposed on poly-
nomials P (z), Q(z) turns out to be equivalent to composition condition (**).
We show that actually even a weaker condition is needed.

Theorem 2. Let P (z), Q(z) be complex polynomials and let a, b be distinct com-
plex numbers such that P (a) = P (b), Q(a) = Q(b), and∫ b

a

P i(z)Qj(z)Q′(z)d z = 0

for 0 ≤ i ≤ ∞, 0 ≤ j ≤ da + db − 2, where da (resp. db) is the multiplicity of the
point a (resp. b) with respect to P (z). Then there exist polynomials P̃ (z), Q̃(z),
W (z) such that P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)), and W (a) = W (b).

Note that if a, b are not critical points of P (z) that is if da = db = 1 then con-
ditions of the theorem reduce to condition (*) and therefore Theorem 2 includes
as a particular case the result of C. Christopher.

2. Proofs

2.1. Lemmata about branches of Q(P−1(z)). Let P (z) and Q(z) be ratio-
nal functions and let U ⊂ C be a domain in which there exists a single-valued
branch p−1(z) of the algebraic function P−1(z). Denote by Q(P−1(z)) the com-
plete algebraic function obtained by the analytic continuation of the functional
element {U, Q(p−1(z))}. Since the monodromy group G(P−1) of the algebraic
function P−1(z) is transitive this definition does not depend of the choice of
p−1(z). Denote by d(Q(P−1(z))) the degree of the algebraic function Q(P−1(z))
that is the number of its branches.

Lemma 1. Let P (z), Q(z) be rational functions. Then

d(Q(P−1(z))) = deg P (z)/[C(z) : C(P, Q)].

Proof. Since any algebraic relation over C between Q(p−1(z)) and z supplies an
algebraic relation between Q(z) and P (z) and vice versa we see that
d(Q(P−1(z))) = [C(P, Q) : C(P )]. As [C(P, Q) : C(P )] = [C(z) : C(P )]/
[C(z) : C(P, Q)] the lemma follows now from the observation that
[C(z) : C(P )] = deg P (z).

Recall that by Lüroth theorem each field k such that C ⊂ k ⊂ C(z) and
k �= C is of the form k = C(R), R ∈ C(z) \ C. Therefore, the field C(P, Q) is
a proper subfield of C(z) if and only if P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)) for
some rational functions P̃ (z), Q̃(z), W (z) with deg W (z) > 1; in this case we
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say that P (z) and Q(z) have a common right divisor in the composition algebra.
The Lemma 1 implies the following explicit criterion which is essentially due to
Ritt [11] (cf. also [6], [12]).

Corollary 1. Let P (z), Q(z) be rational functions. Then P (z) and Q(z) have
a common right divisor in the composition algebra if and only if

(1) Q(p−1(z)) = Q(p̃−1(z))

for two different branches p−1(z), p̃−1(z) of P−1(z).

Proof. Indeed, by Lemma 1, the field C(P, Q) is a proper subfield of C(z) if
and only if d(Q(P−1(z))) < deg P (z). On the other hand, the last inequality is
clearly equivalent to condition (1).

Lemma 2. Let P (z), Q(z) be rational functions, deg P (z) = n. Suppose that
there exist ai ∈ C, 1 ≤ i ≤ n, not all equal between themselves such that

(2)
n∑

i=1

aiQ(p−1
i (z)) = 0.

If, in addition, the group G(P−1) is doubly transitive then Q(z) = Q̃(P (z)) for
some rational function Q̃(z).

Proof. Let G ⊂ Sn be a permutation group and let ρG : G → GL(Cn) be the
permutation representation of G that is ρG(g), g ∈ G is the linear map which
sends a vector 'a = (a1, a2, ..., an) to the vector 'ag = (ag(1), ag(2), ..., ag(n)). It
is well known (see e.g. [15], Th. 29.9) that G is doubly transitive if and only
if ρG is the sum of the identical representation and an absolutely irreducible
representation. Clearly, the one-dimensional ρG-invariant subspace E ⊂ C

n cor-
responding to the identity representation is generated by the vector (1, 1, ..., 1).
Therefore, since the Hermitian inner product ('a,'b) = a1b̄1 + a2b̄2 + ... + anb̄n

is invariant with respect to ρG, the group G is doubly transitive if and only if
the subspace E and its orthogonal complement E⊥ are the only ρG-invariant
subspaces of C

n.
Suppose that (2) holds. In this case also

(3)
n∑

i=1

aiQ(p−1
σ(i)(z)) = 0

for all σ ∈ G(P−1) by the analytic continuation. To prove the lemma it is enough
to show that Q(p−1

i (z)) = Q(p−1
j (z)) for all i, j, 1 ≤ i, j ≤ n; then by Lemma 1

[C(z) : C(P, Q)] = deg P (z) = [C(z) : C(P )] and therefore Q(z) = Q̃(P (z))
for some rational function Q̃(z). Assume the converse i.e. that there exists
z0 ∈ U such that not all Q(p−1

i (z0)), 1 ≤ i ≤ n, are equal between themselves.
Without loss of generality we can suppose that all Q(p−1

i (z0)), 1 ≤ i ≤ n, are
finite. Consider the subspace V ⊂ C

n generated by the vectors 'vσ, σ ∈ G(P−1),
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where 'vσ = (Q(p−1
σ(1)(z0)), Q(p−1

σ(2)(z0)), ..., Q(p−1
σ(n)(z0)). Clearly, V is ρG(P−1)-

invariant and V �= E. Moreover, it follows from (3) that V is contained in the
orthogonal complement A⊥ of the subspace A ⊂ C

n generated by the vector
(ā1, ā2, ..., ān). Since A �= E we see that V is a proper ρG-invariant subspace
of C

n distinct from E and E⊥ that contradicts the assumption that the group
G(P−1) is doubly transitive.

2.2. Lemma about preimages of domains. For a polynomial P (z) denote
by c(P ) the set of finite critical values of P (z).

Lemma 3. Let P (z) be a polynomial and let V ⊂ CP
1 be a simply connected

domain containing infinity such that c(P )∩V = ∅. Then P−1{V } is conformally
equivalent to the unit disk and P−1{∂V } is connected.

Proof. Indeed, by the Riemann theorem V is conformally equivalent to the unit
disk D whenever ∂V contains more than one point. It follows from c(P )∩V = ∅
that ∂V contains a unique point if and only if P (z) has a unique finite critical
value c and ∂V = c; in this case there exist linear functions σ1, σ2 such that
σ1(P (σ2(z))) = zn, n ∈ N and the lemma is obvious. Therefore, we can suppose
that V ∼= D. Since c(P ) ∩ V = ∅ the restriction of the map P (z) : CP

1 → CP
1

on P−1{V } \P−1{∞} is a covering map. As V \∞ is conformally equivalent to
the punctured unit disc D

∗ it follows from covering spaces theory that P−1{V }\
P−1{∞} is a disjoint union of domains ∪Vi conformally equivalent to D

∗ such
that all induced maps fi : D

∗ → D
∗ are of the form z → zli , li ∈ N. But,

as P−1{∞} = {∞}, there may be only one such a domain. Therefore, the
preimage P−1{V } is conformally equivalent to the unit disk. In particular, since
P−1{∂V } = ∂P−1{V } we see that P−1{∂V } is connected.

2.3. Proof of Theorem 2: the case of a regular value. In this section
we investigate the case when t0 = P (a) = P (b) is not a critical value of the
polynomial P (z). For a simple closed curve M ⊂ C denote by D+

M (resp. by
D−

M ) the domain that is interior (resp. exterior) with respect to M.

Let L ⊂ C be a simple closed curve such that t0 ∈ L and c(P ) ⊂ D+
L . Denote

by 'L the same curve considered as an oriented graph embedded into the complex
plane. By definition, the graph 'L has one vertex t0 and one counter-clockwise
oriented edge l. Let 'Ω = P−1{'L} be an oriented graph which is the preimage of
the graph 'L under the mapping P (z) : C → C, i.e. vertices of 'Ω are preimages
of t0 and oriented edges of 'Ω are preimages of l. As L ∩ c(P ) = ∅ the graph 'Ω
has n = deg P (z) vertices and n edges. Furthermore, by Lemma 3 the graph
'Ω = P−1{∂D−

L } is connected. Therefore, as a point set in C the graph 'Ω is a
simple closed curve. Let lj , 1 ≤ j ≤ n, be oriented edges of 'Ω and let aj (resp.
bj) be the starting (resp. ending) point of lj . We will suppose that edges of 'Ω
are numerated by such a way that a1 = a and that under a moving around the
domain P−1{D−

L } along its boundary 'Ω the edge li, 1 ≤ i ≤ n − 1, is followed
by the edge li+1 (see fig. 1).
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Let U ⊂ C be a simply connected domain such that U ∩ c(P ) = ∅ and
L \ {t0} ⊂ U. By the monodromy theorem, in such a domain there exist n
single-valued branches of P−1(t). Denote by p−1

j (t), 1 ≤ j ≤ n, the single-valued
branch of P−1(t) defined in U by the condition p−1

j {l \ t0} = lj \ {aj , bj}; such
a numeration of branches of P−1(t) means that the analytic continuation of
the functional element {U, p−1

j (t)}, 1 ≤ j ≤ n − 1, along L is the functional
element {U, p−1

j+1(t)}. Let lk, k < n, be the edge of Ω such that bk = b and let
Γ = {l1, l2, ..., lk} be the oriented path in the graph Ω joining the vertices a1 = a

to bk = b. For t ∈ U set ϕ(t) =
∑k

j=1 Q(p−1
j (t)).

Consider an analytic function on CP
1 \ L

I(λ) =
∮

L

ϕ(t)
t − λ

d t =
∫

Γ

Q(z)P ′(z)d z

P (z) − λ
.

More precisely, the integral above defines two analytic functions: one of them
I+(λ) is analytic in D+

L and the other one I−(λ) is analytic in D−
L . Furthermore,

calculating the Taylor expansion of I−(λ) at infinity and using integration by
part we see that condition (*) reduces to the condition that I−(λ) ≡ 0 in D−

L .
By a well-known result about integrals of the Cauchy type (see e.g. [8]) the last
condition implies that ϕ(t) is the boundary value on L of the analytic func-
tion I+(λ) in D+

L . It follows from the uniqueness theorem for boundary values
of analytic functions that the functional element {U, ϕ(t)} can be analytically
continued along any curve M ⊂ D+

L . As c(P ) ⊂ D+
L this fact implies that

{U, ϕ(t)} can be analytically continued along any curve M ⊂ C. Therefore,
by the monodromy theorem, the element {U, ϕ(t)} extends to a single-valued
analytic function in the whole complex plane. In particular, the analytic contin-
uation of {U, ϕ(t)} along any closed curve coincides with {U, ϕ(t)}. On the other
hand, by construction the analytic continuation of {U, ϕ(t)} along the curve L

is {U, ϕL(t)}, where ϕL(t) =
∑k+1

j=2 Q(p−1
j (t)). It follows from ϕ(t) = ϕL(t) that

Q(p−1
1 (t)) = Q(p−1

k+1(t)) and by Corollary 1 we conclude that P (z) and Q(z)
have a common right divisor in the composition algebra.
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As the field C(P, Q) is a proper subfield of C(z) and P (z), Q(z) are poly-
nomials it is easy to prove that C(P, Q) = C(W ) for some polynomial W (z),
deg W (z) > 1. It means that P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)) for some poly-
nomials P̃ (z), Q̃(z) such that P̃ (z) and Q̃(z) have no a common right divisor
in the composition algebra. Let us show that W (a) = W (b). Since t0 is not a
critical value of the polynomial P (z) = P̃ (W (z)) the chain rule implies that t0
is not a critical value of the polynomial P̃ (z). Therefore, if W (a) �= W (b) then
after the change of variable z → W (z) in the same way as above we find that
P̃ (z) = P̄ (U(z)), Q̃(z) = Q̄(U(z)) for some polynomials P̄ (z), Q̄(z), U(z) with
deg U(z) > 1 that contradicts the fact that P̃ (z), Q̃(z) have no a common right
divisor in the composition algebra. This completes the proof in the case when
z0 is not a critical value of P (z).

2.4. Proof of Theorem 2: the case of a critical value. Assume now that
t0 = P (a) = P (b) is a critical value of P (z). In this case let L be a simple closed
curve such that t0 ∈ L and c(P )\t0 ⊂ D+

L . Consider again a graph 'Ω = P−1{'L}.
Since P−1{D−

L } is still conformally equivalent to the unit disk by Lemma 3, we
see that the graph 'Ω topologically is the boundary of a disc although it is not
a simple closed curve any more. Let lj , 1 ≤ j ≤ n, be oriented edges of 'Ω
and let aj (resp. bj) be the starting (resp. the ending) point of lj . Let us fix
again such a numeration of edges of 'Ω that a1 = a and that under a moving
around the domain P−1{D−

L } along its boundary 'Ω the edge li, 1 ≤ i ≤ n − 1,
is followed by the edge li+1. As above denote by U a domain in C such that
U ∩ c(P ) = ∅, L \ {t0} ⊂ U and let p−1

j (t), 1 ≤ j ≤ n, be the single-valued
branch of P−1(t) defined in U by the condition p−1

j {l \ t0} = lj \ {aj , bj}. If
k < n is a number such that bk = b then for the same reason as above the
function ϕ(t) =

∑k
j=1 Q(p−1

j (t)) extends to an analytic function in U ∪ D+
L but

this fact does not imply now that ϕ(t) extends to an analytic function in the
whole complex plane since D+

L does not contain t0 ∈ c(P ). Nevertheless, if V is
a simply connected domain such that U ⊂ V and t0 /∈ V then ϕ(t) still extends
to a single-valued analytic function in V. In particular, the analytic continuation
of {U, ϕ(t)} along any simple closed curve M such that t0 ⊂ D−

M coincides with
{U, ϕ(t)}.

Let t1 ∈ U be a point and let M1 (resp. M2) be a simple closed curve
such that t1 ∈ M1, M1 ∩ c(P ) = ∅ and D+

M1
∩ c(P ) = t0 (resp. t1 ∈ M2,

M2 ∩ c(P ) = ∅ and D+
M2

∩ c(P ) = c(P ) \ t0). Define a permutation ρ1 ∈ Sn

(resp. ρ2 ∈ Sn) by the condition that the functional element {U, p−1
ρ1(j)

(t)} (resp.
{U, p−1

ρ2(j)
(t)}) is the result of the analytic continuation of the functional element

{U, p−1
j (t)}, 1 ≤ j ≤ n, from t1 along the curve M1 (resp. M2). Having in mind

the identification of the set of elements {U, p−1
j (t)}, 1 ≤ j ≤ n, with the set of

oriented edges of the graph 'Ω the permutations ρ1, ρ2 can be described as follows:
ρ1 cyclically permutes the edges of 'Ω around the vertices from which they go
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while cycles (j1, j2, ..., jk) of ρ2 correspond to simple cycles (lj1 , lj2 , ..., ljk
) of the

graph 'Ω and ρ1ρ2 = (12...n) (see fig. 2).
To unload notation denote temporarily the element {U, Q(p−1

i (t))}, 1 ≤ i ≤ n,
by si. Since t0 ⊂ D−

M2
we have:

(4) 0 =
k∑

j=1

sρ2(j) −
k∑

j=1

sj = sρ2(k) +
k−1∑
j=1

[
sρ2(j) − sj+1

] − s1.

Using ρ1ρ2 = (12...n) we can rewrite (4) as

sρ−1
1 (k+1) − s1 +

k−1∑
j=1

[
sρ2(j) − sρ1ρ2(j)

]
= 0.

Therefore, by the analytic continuation

(5) sρf−1
1 (k+1) − sρf

1 (1) +
k−1∑
j=1

[
sρf

1ρ2(j)
− sρf+1

1 ρ2(j)

]
= 0

for f ≥ 0. Summing equalities (5) from f = 1 to f = o(ρ1), where o(ρ1) is the
order of the permutation ρ1, changing the order of summing, and observing that

o(ρ1)−1∑
f=0

[
sρf

1ρ2(j)
− sρf+1

1 ρ2(j)

]
= sρ2(j) − s

ρ
o(ρ1)
1 ρ2(j)

= 0

we conclude that

(6)
o(ρ1)−1∑

s=0

Q(p−1
ρs
1(k+1)(t)) =

o(ρ1)−1∑
s=0

Q(p−1
ρs
1(1)

(t))

in U. Note that if a, b are regular points of P (z) then ρ1(1) = 1, ρ1(k+1) = k+1
and (6) reduces to the equality Q(p−1

k+1(t)) = Q(p−1
1 (t)).
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Since (6) holds for any polynomial Q(z) such that q(z) = Q′(z) satisfies (*),
substituting in (6) Qj(z), 2 ≤ j ≤ da + db − 1, instead of Q(z) we see that

(7)
o(ρ1)−1∑

s=0

Qj(p−1
ρs
1(k+1)(t)) =

o(ρ1)−1∑
s=0

Qj(p−1
ρs
1(1)

(t))

for all j, 1 ≤ j ≤ d b + db − 1. Consider a Vandermonde determinant D =
‖ dj,i ‖, where dj,i = Qj(p−1

i (t)), 0 ≤ j ≤ da + db − 1 and i ranges the set of
different indices from the cycles of ρ1 containing 1 and k + 1. Since (7) implies
that D = 0 we conclude again that Q(p−1

i (t)) = Q(p−1
j (t)) for some i �= j,

1 ≤ i, j ≤ n. Therefore, P (z) and Q(z) have a common right divisor in the
composition algebra and we can finish the proof by the same argument as in
section 2.3 taking into account that the multiplicity of a point c ∈ C with
respect to P (z) = P̃ (W (z)) is greater or equal than the multiplicity of the point
W (c) with respect to P̃ (z).

2.5. Proof of Theorem 1. Suppose at first that n = deg P (z) is a prime
number. In this case the degree of the algebraic function Q(P−1(t)) equals
either n or 1 since d(Q(P−1(t))) divides deg P (z). If d(Q(p−1(t))) = n then
Puiseux expansions at infinity

(8) Q(p−1
i (t)) =

∑
k≤k0

akεikt
k
n ,

1 ≤ i ≤ n, ak ∈ C, ε = exp(2πi/n), contain a coefficient ak �= 0 such that k
is not a multiple of n. Substituting (8) in the equality obtained by the analytic
continuation of (6) along a curve going to the domain where series (8) converge,
we conclude that εk is a root of a polynomial with integer coefficients distinct
from the n-th cyclotomic polynomial Φn(z) = 1 + z + ... + zn−1. Since εk is a
primitive n-th root of unity it is a contradiction. Therefore, d(Q(p−1(t))) = 1
and Q(z) = Q̃(P (z)) for some polynomial Q̃(z).

Suppose now that n is composite. Since P (z) is indecomposable the group
G(P−1) is primitive by the Ritt theorem [11]. By the Schur theorem (see e.g.
[15], Th. 25.3) a primitive permutation group of composite degree n which
contains an n-cycle is doubly transitive. Therefore, by Lemma 2 equality (6)
implies that Q(z) = Q̃(P (z)) for some polynomial Q̃(z).
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