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ON THE POLYNOMIAL MOMENT PROBLEM

F. PaAkovicH

1. Introduction

In this paper we treat the following “polynomial moment problem”: for
complez polynomials P(z), Q(z) = [q(z)dz and distinct a,b € C such that
P(a) = P(b), Q(a) = Q(b) to find conditions under which

b
/ Pi(z)g(z)dz =0 (+)

for all integer non-negative 1.

The polynomial moment problem was proposed in the series of papers of
M. Briskin, J.-P. Francoise and Y. Yomdin [1]-[5] as an infinitesimal version of
the center problem for the polynomial Abel equation in the complex domain in
the frame of a programme concerning the classical Poincaré center-focus problem
for the polynomial vector field on the plane. It was suggested that the follow-
ing “composition condition” imposed on P(z) and Q(z) = [¢(z)dz is neces-
sary and sufficient for the pair P(z), ¢(z) to satisfy (*): there exist polynomials
P(2),Q(z), W(z) such that

() P(2)=P(W(2), Q()=QW(2)), and W(a)=W(b).

It is easy to see that the composition condition is sufficient: since after the
change of variable z — W (z) the way of integration becomes closed, the suffi-
cientness follows from the Cauchy theorem. The necessity of the composition
condition in the case when a, b are not critical points of P(z) was proved by C.
Christopher in [6] (see also the paper of N. Roytvarf [12] for a similar result)
and in some other special cases by M. Briskin, J.-P. Francoise and Y. Yomdin
in the papers cited above.

Nevertheless, in general the composition conjecture fails to be true. Namely,
in the paper [9] a class of counterexamples to the composition conjecture was
constructed. These counterexamples exploit polynomials P(z) which admit dou-
ble decompositions: P(z) = A(B(z)) = C(D(z)), where A(z), B(z), C(z),
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D(z) are non-linear polynomials. If P(z) is such a polynomial and, in addi-
tion, B(a) = B(b), D(a) = D(b) then for any polynomial Q(z) which can be
represented as Q(z) = E(B(z))+ F(D(z)) for some polynomials E(z), F'(z) con-
dition (*) is satisfied with ¢(z) = @Q’(z). On the other hand, it was shown in [9]
that if deg B(z) and deg D(z) are coprime then condition (**) is not satisfied
already for Q(z) = B(z) + D(z).

Note that double decompositions with deg A(z) = degD(z), deg B(z) =
deg C(z) and deg B(z),deg D(z) coprime are described explicitly by Ritt’s the-
ory of factorization of polynomials. They are equivalent either to decomposi-
tions with A(z) = z"R™(z), B(z) = 2™, C(z) = 2™, D(z) = 2"R(z™) for a
polynomial R(z) and GCD(n,m) = 1 or to decompositions with A(z) = T},,(2),
B(z) = Tu(z), C(2) = Tn(2), D(z) = Ty, (2) for Chebyshev polynomials 7,,(z),
Tn(2) and GCD(n,m) =1 (see [11], [13]).

The counterexamples above suggest to weaken the composition conjecture as
follows: polynomials P(z), q(z) satisfy condition (*) if and only if [ q(z)dz can
be represented as a sum of polynomials QQ; such that

(xx%)  P(z)=Pj(W;(2), Qj(2) =Q;(W;j(2)), and W;(a)=W;(b)

for some Pj(2),Q;(2),W;(2) € C[z]. For the case when P(z) = T,(z) this
statement was verified in [10]. Moreover, it was shown that for P(z) = T, (z)
the number of terms in the representation [ ¢(z)dz = >_; Qj(2) can be reduced
to two.

In this paper we give a solution of the polynomial moment problem in the
case when P(z) is indecomposable that is when P(z) can not be represented as a
composition P(z) = P;(P»(z)) with non-linear polynomials P (z), P2(z). In this
case conditions (**) and (***) are equivalent and the composition conjecture
reduces to the following statement.

Theorem 1. Let P(z), Q(z) = [ q(z)d z be complex polynomials and let a,b be
distinct complex numbers such that P(a) = P(b), Q(a) = Q(b), and

b

/ Pi(2)q(z)dz =0
f?ri > 0. Suppose that f’(z) 18 indecomposable. Then there exists a polynomial
Q(2) such that Q(z) = Q(P(z)).

We also examine the following condition which is stronger than (*):

b
/ PH)Q(2)Q' (2)dz = 0

fori >0, j > 0. If vy is a curve which is the image of the segment [a, b] in C% under
the map z — (P(z),Q(z)) then this condition is equivalent to the condition that
f,y w = 0 for all global holomorphic 1-forms w in C? (“the moment condition™).

For an oriented simple closed curve § of class C? in C? the moment condition
is necessary and sufficient to be a boundary of a bounded analytic variety X
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in C2; it is a special case of the result of R. Harwey and B. Lawson [7]. The
case when ¢ is an image of S* under the map 2z — (f(2), g(2)), where f(2),g(z)
are functions analytic in an annulus containing S* was investigated earlier by J.
Wermer [14]: in this case the moment condition is equivalent to the condition
that there exists a finite Riemann surface X with border S! such that f(2), g(z)
have an analytic extension to X.

Unlike condition (*) the more restrictive moment condition imposed on poly-
nomials P(z), Q(z) turns out to be equivalent to composition condition (**).
We show that actually even a weaker condition is needed.

Theorem 2. Let P(z),Q(z) be complex polynomials and let a,b be distinct com-
plex numbers such that P(a) = P(b),Q(a) = Q(b), and

b
/ PH)Q(2)Q'(2)dz = 0

for0<i<oo,0<j<d,+d,—2, whered, (resp. dy) is the multipljcity of the
point a (resp. b) with respect to P(z). Then there exist polynomials P(z), Q(2),
W (z) such that P(z) = P(W(z)), Q(z) = Q(W (2)), and W (a) = W (b).

Note that if a, b are not critical points of P(z) that is if d, = d, = 1 then con-
ditions of the theorem reduce to condition (*) and therefore Theorem 2 includes
as a particular case the result of C. Christopher.

2. Proofs

2.1. Lemmata about branches of Q(P~!(z)). Let P(z) and Q(z) be ratio-
nal functions and let U C C be a domain in which there exists a single-valued
branch p~!(z) of the algebraic function P~!(z). Denote by Q(P~!(2)) the com-
plete algebraic function obtained by the analytic continuation of the functional
element {U,Q(p~'(z))}. Since the monodromy group G(P~1!) of the algebraic
function P~1(z) is transitive this definition does not depend of the choice of
p~1(z). Denote by d(Q(P~1(z))) the degree of the algebraic function Q(P~!(z))
that is the number of its branches.

Lemma 1. Let P(z),Q(z) be rational functions. Then
d(Q(P™(2))) = deg P(2)/[C(2) : C(P, Q)].

Proof. Since any algebraic relation over C between Q(p~!(z)) and z supplies an
algebraic relation between Q(z) and P(z) and vice versa we see that
AQP(2))) = [C(P,Q) : C(P)). As [C(P,Q) : T(P)] = [C(:) : C(P)]/
[C(z) : C(P,Q)] the lemma follows now from the observation that
[C(z) : C(P)] = deg P(2). O

Recall that by Liiroth theorem each field & such that C C & C C(z) and
k # C is of the form k = C(R), R € C(z) \ C. Therefore, the field C(P,Q) is
a proper subfield of C(z) if and only if P(z) = P(W(2)), Q(z) = Q(W (2)) for

some rational functions P(z), Q(z), W(z) with degW(z) > 1; in this case we
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say that P(z) and Q(z) have a common right divisor in the composition algebra.
The Lemma 1 implies the following explicit criterion which is essentially due to
Ritt [11] (cf. also [6], [12]).

Corollary 1. Let P(z),Q(z) be rational functions. Then P(z) and Q(z) have
a common right divisor in the composition algebra if and only if

(1) Qlr~'(2) = QW '(2))
for two different branches p~1(z), p~(2) of P~1(z).

Proof. Indeed, by Lemma 1, the field C(P, Q) is a proper subfield of C(z) if
and only if d(Q(P~1(2))) < deg P(z). On the other hand, the last inequality is
clearly equivalent to condition (1). O

Lemma 2. Let P(z), Q(z) be rational functions, deg P(z) = n. Suppose that
there exist a; € C, 1 < i < n, not all equal between themselves such that

(2) >_ @il (2)) = 0.

If, in addition, the group G(P~') is doubly transitive then Q(z) = Q(P(2)) for
some rational function Q(z).

Proof. Let G C S, be a permutation group and let pg : G — GL(C") be the
permutation representation of G that is pg(g), g € G is the linear map which
sends a vector @ = (a1, as,...,a,) to the vector ag; = (ag(1), ag(2), s Ggn))- It
is well known (see e.g. [15], Th. 29.9) that G is doubly transitive if and only
if pg is the sum of the identical representation and an absolutely irreducible
representation. Clearly, the one-dimensional pg-invariant subspace £ C C™ cor-
responding to the identity representation is generated by the vector (1,1, ...,1).
Therefore, since the Hermitian inner product (@, E) = a1by + asbs + ... + a, b,
is invariant with respect to pg, the group G is doubly transitive if and only if
the subspace E and its orthogonal complement E-1 are the only pg-invariant
subspaces of C".
Suppose that (2) holds. In this case also

(3) Z QP (2

for all ¢ € G(P~1) by the analytic continuation. To prove the lemma it is enough
to show that Q(p; '(2)) = Q(p}l(z)) for all 4,7, 1 <4,5 < n; then by Lemma 1
[C(z) : C(P,Q)] = degP(z) = [C(z) : C(P)] and therefore Q(z) = Q(P(z))
for some rational function Q(z). Assume the converse i.e. that there exists
2o € U such that not all Q(p; Y(20)), 1 < i < n, are equal between themselves.
Without loss of generality we can suppose that all Q(p[l(zo)), 1 <¢<n,are
finite. Consider the subspace V' C C" generated by the vectors @, 0 € G(P~1),
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where v, = (Q(p;(ll)(zo))aQ(p;(lg)(zo))7 L Q(p U(n)( 0)). Clearly, V' is PG(P-1)
invariant and V' # E. Moreover, it follows from (3) that V is contained in the
orthogonal complement A+ of the subspace A C C" generated by the vector
(ay,as9,...,a,). Since A # E we see that V is a proper pg-invariant subspace
of C™ distinct from E and E+ that contradicts the assumption that the group
G(P~1) is doubly transitive. O

2.2. Lemma about preimages of domains. For a polynomial P(z) denote
by ¢(P) the set of finite critical values of P(z).

Lemma 3. Let P(z) be a polynomial and let V. C CP' be a simply connected
domain containing infinity such that c(P)NV = 0. Then P~{V'} is conformally
equivalent to the unit disk and P~*{0V'} is connected.

Proof. Indeed, by the Riemann theorem V is conformally equivalent to the unit
disk D whenever OV contains more than one point. It follows from ¢(P)NV =)
that OV contains a unique point if and only if P(z) has a unique finite critical
value ¢ and 9V = ¢; in this case there exist linear functions o1, o2 such that
01(P(02(2))) = 2™, n € N and the lemma is obvious. Therefore, we can suppose
that V = D. Since ¢(P) NV = () the restriction of the map P(z) : CP! — CP!
on P~HV}\ P~}{oo} is a covering map. As V '\ oo is conformally equivalent to
the punctured unit disc D* it follows from covering spaces theory that P=1{V}\
P~1{oo} is a disjoint union of domains UV; conformally equivalent to D* such
that all induced maps f; : D* — D* are of the form z — 2%, I; € N. But,

as P~1{oc} = {oo}, there may be only one such a domain. Therefore, the
preimage P~1{V'} is conformally equivalent to the unit disk. In particular, since
P=HoV} = 0P 1{V} we see that P~1{OV} is connected. O

2.3. Proof of Theorem 2: the case of a regular value. In this section
we investigate the case when to = P(a) = P(b) is not a critical value of the
polynomial P(z). For a simple closed curve M C C denote by D}, (resp. by
D) the domain that is interior (resp. exterior) with respect to M.

Let L C C be a simple closed curve such that tg € L and ¢(P) C D} . Denote
by L the same curve considered as an oriented graph embedded into the complex
plane. By definition, the graph L has one vertex to and one counter-clockwise
oriented edge I.Let O = P~ 1{L} be an oriented graph which is the preimage of
the graph L under the mapping P(z) : C — C, i.e. vertices of Q are preimages
of ty and oriented edges of @ are preimages of I. As L N ¢(P) = 0 the graph O
has n = deg P(z) vertices and n edges. Furthermore, by Lemma 3 the graph
0= P~Y{dD7 } is connected. Therefore, as a point set in C the graph Qs a
simple closed curve. Let [;, 1 < j < n, be oriented edges of Q and let a; (resp.
b;) be the starting (resp. ending) point of [;. We will suppose that edges of 0
are numerated by such a way that a; = a and that under a moving around the
domain P~!'{D7 } along its boundary Q the edge l;, 1 < i <n—1, is followed
by the edge l;11 (see fig. 1).
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Let U C C be a simply connected domain such that U N ¢(P) = 0 and
L\ {to} C U. By the monodromy theorem, in such a domain there exist n
single-valued branches of P~1(t). Denote by p]l(t), 1 < j < n, the single-valued
branch of P~1(¢) defined in U by the condition pj_l{l \to} =1; \ {aj,b;}; such
a numeration of branches of P~!(t) means that the analytic continuation of
the functional element {U, pj_l(t)}, 1 < j <n-—1,along L is the functional

element {U,pj__&l(t)}. Let I, kK < n, be the edge of Q such that b, = b and let
I' ={l1,ls,...,1x} be the oriented path in the graph Q joining the vertices a1 = a
to by = b. For t € U set o(t) = Y5, Q(p; ().

Consider an analytic function on CP! \ L

el [ QE)P(2)dz
“)—fimdt—/rm-

More precisely, the integral above defines two analytic functions: one of them
I*()) is analytic in D} and the other one I~ () is analytic in D} . Furthermore,
calculating the Taylor expansion of I~ (\) at infinity and using integration by
part we see that condition (*) reduces to the condition that I=(A) =0 in D; .
By a well-known result about integrals of the Cauchy type (see e.g.[8]) the last
condition implies that ¢(¢) is the boundary value on L of the analytic func-
tion IT(A) in D} . It follows from the uniqueness theorem for boundary values
of analytic functions that the functional element {U, p(t)} can be analytically
continued along any curve M C Df. As ¢(P) C D} this fact implies that
{U,p(t)} can be analytically continued along any curve M C C. Therefore,
by the monodromy theorem, the element {U, ¢(t)} extends to a single-valued
analytic function in the whole complex plane. In particular, the analytic contin-
uation of {U, ¢(t)} along any closed curve coincides with {U, ¢(¢)}. On the other
hand, by construction the analytic continuation of {U, ¢(t)} along the curve L

is {U, ¢ (t)}, where ¢ (t) = 25221 Q(pj_l(t)). It follows from ¢(t) = ¢ (t) that

Q(py'(t)) = Q(py;,(t)) and by Corollary 1 we conclude that P(z) and Q(2)
have a common right divisor in the composition algebra.
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As the field C(P, Q) is a proper subfield of C(z) and P(z), Q(z) are poly-
nomials it is easy to prove that C(P, Q) = C(W) for some polynomial W (z),
deg W (z) > 1. It means that P(z) = P(W(z)), Q(z) = Q(W(z)) for some poly-
nomials P(z), Q(z) such that P(z) and Q(z) have no a common right divisor
in the composition algebra. Let us show that W(a) = W(b). Since t; is not a
critical value of the polynomial P(z) = P(W(z)) the chain rule implies that #,
is not a critical value of the polynomial P(z). Therefore, if W (a) # W (b) then
after the change of variable 2 — W(z) in the same way as above we find that
P(z) = P(U(2)), Q(z) = Q(U(2)) for some polynomials P(z),Q(z),U(z) with
degU(z) > 1 that contradicts the fact that P(z), Q(z) have no a common right
divisor in the composition algebra. This completes the proof in the case when
2o is not a critical value of P(z).

2.4. Proof of Theorem 2: the case of a critical value. Assume now that
to = P(a) = P(b) is a critical value of P(z). In this case let L be a simple closed
curve such that tg € L and ¢(P)\to C D . Consider again a graph Q=P YL
Since P~*{D7 } is still conformally equivalent to the unit disk by Lemma 3, we
see that the graph 0 topologically is the boundary of a disc although it is not
a simple closed curve any more. Let [;, 1 < j < n, be oriented edges of Q
and let a; (resp. b;) be the starting (resp. the ending) point of [;. Let us fix
again such a numeration of edges of Q that a; = a and that under a moving
around the domain P~'{D; } along its boundary Qtheedge l;, 1 <i<n-—1,
is followed by the edge l;+1. As above denote by U a domain in C such that
Unec(P) =10, L\{te} € U and let pj_l(t), 1 < j < n, be the single-valued
branch of P~1(¢) defined in U by the condition p}l{l \to} =1\ {a;,b;}. If
k < n is a number such that b, = b then for the same reason as above the
function ¢(t) = 2?21 Q(pj_l(t)) extends to an analytic function in U U D} but
this fact does not imply now that ¢(t) extends to an analytic function in the
whole complex plane since D} does not contain ¢y € ¢(P). Nevertheless, if V is
a simply connected domain such that U C V and ¢y ¢ V then ¢(t) still extends
to a single-valued analytic function in V. In particular, the analytic continuation
of {U, p(t)} along any simple closed curve M such that t, C D}, coincides with
{U, o(t)}-

Let t; € U be a point and let M; (resp. Ms) be a simple closed curve
such that t; € My, My N¢(P) = 0 and DJJ\FJ1 Ne(P) = to (resp. t; € Ms,
MsNe(P) = 0 and Dj&2 N¢c(P) = ¢(P) \ tp). Define a permutation p; € S,
(resp. p2 € Sy) by the condition that the functional element {U, p:(j)(t)} (resp.

{U, pp_;(j) (t)}) is the result of the analytic continuation of the functional element

{U, pj*l(t)}, 1 < j <n, from t; along the curve M; (resp. Ms). Having in mind
the identification of the set of elements {U, pj_l(t)}, 1 < j < mn, with the set of
oriented edges of the graph Q the perrgutations p1, p2 can be described as follows:
p1 cyclically permutes the edges of {2 around the vertices from which they go
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while cycles (j1, jo, ..., ji) of pa correspond to simple cycles (15, ,1,,...,;,) of the
graph Q and p1ps = (12...n) (see fig. 2).

To unload notation denote temporarily the element {U, Q(p; YN} 1<i<n,
by s;. Since tg C D]T/b we have:

k k k—1
(4) 0= Spa(i) = D55 = Spatt) T D [8pas) = 5551] — 1.
j=1 j=1 Jj=1

Using p1p2 = (12...n) we can rewrite (4) as

x

-1

Sprl(kt1) — 51T [Sp2(i) = Sprpai)] =0

Therefore, by the analytic continuation

(5) Spl (k1) T Spf(1) T Z {SP{pz(j) - Sp{“pz(ﬁ} =0

for f > 0. Summing equalities (5) from f =1 to f = o(p1), where o(py) is the
order of the permutation p;, changing the order of summing, and observing that

o(p1)—1

fzzo Splpa(i) ~ Spf“pz(j)} = Sp203) T 5000y (5) T 0
we conclude that
o(p1)—1 o(p1)—1
(6) ZO Qp ey (1) = ZO Qp,1) (1)

in U. Note that if a, b are regular points of P(z) then p1(1) =1, p1(k+1) = k+1
and (6) reduces to the equality Q(p;il(t)) = Q(p; (1))
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Since (6) holds for any polynomial Q(z) such that ¢(z) = Q'(z) satisfies (*),
substituting in (6) Q’(2), 2 < j <d, +d, — 1, instead of Q(z) we see that

o(p1)—1 o(p1)—1

(7) Z Q(p pl(k+1) Z Q’(p p(l) (t)

for all j, 1 < j5 < db + dp — 1. Consider a Vandermonde determinant D =
| d;i ||, where dj; = Q7(p;*(t)), 0 < j < dy +dp — 1 and i ranges the set of
different indices from the cycles of p; containing 1 and k + 1. Since (7) implies
that D = 0 we conclude again that Q(p; ' (t)) = Q(pj_l(t)) for some i # j,
1 < i,57 < n. Therefore, P(z) and Q(z) have a common right divisor in the
composition algebra and we can finish the proof by the same argument as in
section 2.3 taking into account that the multiplicity of a point ¢ € C with
respect to P(z) = P(W(z)) is greater or equal than the multiplicity of the point
W (c) with respect to P(z). O

2.5. Proof of Theorem 1. Suppose at first that n = deg P(z) is a prime
number. In this case the degree of the algebraic function Q(P~1(t)) equals
either n or 1 since d(Q(P~1(¢))) divides deg P(z). If d(Q(p~'(t))) = n then
Puiseux expansions at infinity

(8) Q' (1) = > are™tr,
k<ko

1 <i<n,a, € C, e = exp(2mi/n), contain a coefficient a; # 0 such that k
is not a multiple of n. Substituting (8) in the equality obtained by the analytic
continuation of (6) along a curve going to the domain where series (8) converge,
we conclude that € is a root of a polynomial with integer coefficients distinct
from the n-th cyclotomic polynomial ®,(z) = 1+ z + ... + 2"~!. Since £* is a
primitive n-th root of unity it is a contradiction. Therefore, d(Q(p~1(¢))) = 1
and Q(z) = Q(P(2)) for some polynomial Q(z).

Suppose now that n is composite. Since P(z) is indecomposable the group
G(P~1) is primitive by the Ritt theorem [11]. By the Schur theorem (see e.g.
[15], Th. 25.3) a primitive permutation group of composite degree n which
contains an n-cycle is doubly transitive. Therefore, by Lemma 2 equality (6)
implies that Q(z) = Q(P(z)) for some polynomial Q(z). O
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