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BOUNDED SMOOTH STRICTLY PLURISUBHARMONIC
EXHAUSTION FUNCTIONS ON TEICHMÜLLER SPACES

Sai-Kee Yeung

Let Tg,n be the Teichmüller space of finite Riemann surfaces of genus g with
n punctures. The main purpose of this note is to construct a smooth bounded
strictly plurisubharmonic exhaustion function on Tg,n. Some geometric conse-
quences will also be studied.

The problem about the existence of bounded plurisubharmonic exhaustion
function on Tg,n was originally proposed by Gromov (cf. [Kr]). An example of
weakly plurisubharmonic exhaustion function with log poles but bounded from
above is produced by Krushkal [Kr]. The construction is complex analytic, based
on Bers embedding of Tg,n as a bounded domain in C3g−3+n and constructed
from the Grunsky coefficients of the Schwarzian derivative representing a point
on the bounded domain. One may pose a more precise problem and ask if
smooth bounded strictly plurisubharmonic exhaustion functions exists on Tg,n.
The motivation behind the specification is that in complex geometry, existence
of strictly instead of weakly plurisubharmonic function is very useful in the
construction of holomorphic sections of certain line bundles using L2−estimates.
The question is answered affirmatively in this article by a geometric construction
which is very different from the constructions in [Kr].

In contrast to the complex analytic method used in [Kr], which does not
seem to yield strictly plurisubharmonicity, the approach here is more geometric
and explicit, depending heavily on the computation of Wolpert [W] on length
functions. In [W], a strictly convex exhaustion function is constructed. The
function goes to ∞ as we approach the boundary of the Teichmüller space. Our
construction is a modification of the construction in [W]. It does not lead to
a bounded convex exhaustion function, but somewhat surprisingly, leads to a
bounded plurisubharmonic exhaustion function. The real Hessian form of the
bounded exhaustion function is not definite, but the complex Hessian or the Levi
form is positive definite.

We consider only moduli space of hyperbolic Riemann surface. In particular,
the dimension of the Teichmüller space is 3g−3+n > 0. Since we are considering
a fixed Teichmüller space, we are going to suppress the subscript (g, n) and
denote the Teichmüller and moduli spaces by T and M respectively. M can be
considered as the quotient of T by the mapping class group.
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In a fixed homotopy class of curves on a negatively curved Riemann surface
X, there is a unique geodesic representative minimizing the length in its class. A
family of geodesic curves {γj}m

n=1 is said to fill up X if X−∪m
i=1γj is topologically

a two cell or a cylinder with a boundary contained in ∂X. Denote by �γ the
geodesic length function along a geodesic in the class of γ. Obviously for a finite
Riemann surface S, there exist a finite number of geodesics which fill up S.

Lemma 1 (Ke). Let {γj}j∈A be a finite number of geodesic curves filling up a
Riemann surface S. Then LA =

∑
j∈A �γj

is a proper exhaustion function on
T = T (S).

It is furthermore proved in [W] that LA is a convex exhaustion function on T .
Here is our main result.

Theorem 1. Suppose that {γj}j∈A represents a finite number of geodesic curves
filling up a Riemann surface S. Then −L−α

A is a bounded non-positive strictly
plurisubharmonic exhaustion function on T (S) for all 0 < α < 1. −L−α

A (x)
approaches 0 as x tends to the boundary of T . The Levi form has lower bound
given by

Levi(−L−α
A )(ν, ν) ≥ α(1 − α)[

Levi(LA)(ν, ν)
Lα+1

A

],

which is positive definite.

The followings are some immediate corollaries from Theorem 1. Some of the
statements can however be obtained by other methods.

Corollary 1.
a. Let ω be a complete Kähler metric on T . Let L be a holomorphic line

bundle on T equipped with a Hermitian metric with non-negative curvature.
Then there exist non-trivial L2 holomorphic sections of KT +L on T , where
KT is the canonical line bundle of the Teichmüller space T . Moreover, the
L2−sections separate points on T and generate any jet of the line bundle
KT + L.

b. Let ω be a complete Kähler metric on the moduli space M. Let L be a holo-
morphic line on M endowed with a Hermitian metric of bounded positive
curvature on M. Then the orbifold Euler characteristic χ(M, KM+L) > 0.
Furthermore, there exists a non-trivial L2−holomorphic section of KM+L
on M, where KM is the canonical line bundle of the moduli space M.

For simplicity of notations, we will suppress the subscript and denote by K
the canonical line bundle in the appropriate spaces or manifolds. We note that
for L trivial, the L2−norm of K is conformal invariant and independent of the
metric. In such a case, completeness is not required.

Corollary 2. The Bergman metric on T is complete. In fact, it is greater than
the Carathéodory metric on T .
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Before we proceed to the proof of Theorem 1, we recall briefly the notion of
quasi-Fuchsian uniformization of Riemann surfaces used in standard theory of
Teichmüller spaces. General reference for the formulation of variation formu-
lae in our discussions can be found in [W] or [G]. Consider a Riemann surface
X ∈ T = Teich(S), the Teichmüller space of a Riemann surface S. As a con-
sequence of Riemann Uniformization Theorem, we may represent X = H/Γ,
where H is the upper half plane and Γ is a lattice on H. Tangent vectors in
TX are represented by harmonic Beltrami differentials. For a harmonic Beltrami
differential µ, we denote by fµ the solution of the Beltrami equation

fz = µ(z)fz, z ∈ H

fz = µ(z)fz, z ∈ L

f(0) = 0, f(1) = 1, f(∞) = ∞,

where L is the lower half plane in C. Let µ be a fixed Beltrami differential of
norm 1. Let ε be a small complex number. We consider the Beltrami equation
associated to εµ and let f εµ be the solution of the equation. For ε small, f εµ

defines a Fuchsian group Γε = f εµΓ(f εµ)−1. The Riemann surfaces Xε = H/Γε

defines a curve in T with X0 = X for ε small.
We consider now the geodesic length function �γ for the closed geodesic curve

γ in a fixed homotopy class of curves. As in [W], we lift γ to the universal
covering H and normalize the coordinate if necessary so that the lift lies in the
positive imaginary axis with the deck transformation corresponding to γ given by
z 
→ λz with λ > 0. Consider now the length function �γ(Xε) on Xε determined
by the homotopy class of γ. We need to estimate the derivatives d�γ(Xε)

dε .

On H, the Beltrami differential µ on X defining Xε can be considered as a
Γ invariant tensor of the form µ = b(z) ∂

∂z ⊗ dz. Since µ is harmonic, it follows
that φ = 1

(z−z)2 b(z)dz ⊗ dz is a Γ-invariant holomorphic quadratic differential.

Let a(z) = 1
(z−z)2 b(z). We have a series expansion of a(z) in terms of powers of

zσ, where σ = 2πi
log λ . Hence

a(z) =
1
z2

∞∑
n=−∞

anzσn.

The following computations are essentially contained in [W]. We go through the
calculations briefly to present it in a way convenient for our later use. It is
necessary to go into some details since the precise constants are important for
our proof.

Proposition 1. Let µ = b(z) ∂
∂z ⊗ dz be a harmonic Beltrami differential rep-

resenting a tangent vector in TTX and Xε = H/f εµΓ(f εµ)−1, |ε| < δ, be a local
1−parameter family of Riemann surfaces determined by µ. In terms of series
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expansion 1
(z−z)2 b(z) = 1

z2

∑∞
n=−∞ anzσn, the length function satisfies

�γ(X) = log λ,

d�γ(Xε)
dε

|ε=0 = −4 log λRe(ao),

d2�γ(Xε)
dε2

|ε=0 = 8 log λ(2|a0|2 − Re(a2
0))

+
∞∑

n=1

2
1 + |σn|2

∫ 2π

0

(|aneiθ(σn−1) + a−ne−iθ(σn−1)|2

+|aneiθ(σn+1) + a−ne−iθ(σn+1)|2) sin2 θdθ

Proof. On the upper half plane H, the hyperbolic metric is given by |dz|2
y2 . γ lies

along the imaginary axis. Hence the length �γ(X) =
∫ λ

1
dy
y = log λ. This proves

(1).
For (2), denote by Ωλ the region {z ∈ C|1 < |z| < λ}∩H. We used as in [W],

Theorem 3.1 or [G] the classical fact that

d�γ(Xε)
dε

|ε=0 =
2
π

Re
∫

Ωλ

b(z)
z2

dE

=
2
π

Re
∫

Ωλ

[
(z − z)2

|z|4
∞∑

n=−∞
anzσn]dE,

where dE is the Euclidean area element. In terms of polar coordinates z = reiθ

and ρ = log r
log λ , zσ = e

−2πθ
log λ (cos(2πρ) + i sin(2πρ)). Upon simplification,

d�γ(Xε)
dε

|ε=0

=
2
π

Re{
∞∑

n=−∞
an[

∫ λ

1

1
r2

(cos(2πnρ)+i sin(2πnρ))rdr][
∫ π

0

(e2iθ−2+e−2iθ)e
2πθn
log λ dθ]}

The second integral is trivial unless n = 0. After a change of variable in the
integral,

d�γ(Xε)
dε

|ε=0

=
2
π

Re{a0 log λ

∫ 1

0

dρ

∫ π

0

(e2iθ − 2 + e−2iθ)dθ}

=
2
π

(−2 log λRe(a0)(π))

= −4 log λRe(a0),

concluding the proof of (2).
(3) is just a slightly more detailed version of the computations in [W]. Dif-

ferentiating the expression of d�γ(Xε)
dε with respect to ε as explained in Theorem



EXHAUSTION FUNCTIONS ON TEICHMÜLLER SPACES 395

3.2 and Lemma 4.1 of [W],

d2�γ(Xε)
dε2

|ε=0

=
4
π

Re
∫

Ωλ

[
µ

z3
(z

dfz

dε
|ε=0 − df

dε
|ε=0)]dE

=
4
π

Re
∫

Ωλ

µ

z3
[z22Re(

∞∑
n=−∞

anzσn−1

σn − 1
) − 2Re(

∞∑
n=−∞

anzσn+1

σn + 1
)]dE

=
4
π

Re
∫

Ωλ

(z − z)2

z3z2 [
∞∑

m=−∞
amzσm][z22Re(

∞∑
n=−∞

anzσn−1

σn − 1
)

− 2Re(
∞∑

n=−∞

anzσn+1

σn + 1
)]dE

= I + II + III,

where

I =
4
π

∑
m�=±n

Re
∫

Ωλ

(z − z)2

z3z2 [amzσm][z22Re(
anzσn−1

σn − 1
) − 2Re(

anzσn+1

σn + 1
)]dE

II =
4
π

∞∑
n=1

Re
∫

Ωλ

(z − z)2

z3z2 [anzσn + a−nz−σn]

[z22Re{anzσn−1

σn − 1
+

a−nz−σn−1

−σn − 1
} − 2Re{anzσn+1

σn + 1
+

a−nz−σn+1

−σn + 1
}]dE

III =
4
π

Re
∫

Ωλ

(z − z)2

z3z2 [a0][−z22Re(a0z
−1) − 2Re(a0z)]dE.

Recall that in all the expressions, zσ = e−2πθ/ log λ(cos(2πρ) + i sin 2πρ) with
ρ = log r/ log λ. Direct computation leads to orthogonality properties that I = 0
as verified in Lemma 4.2, Lemma 4.4 of [W]. Similar computations (pp. 289–290
of [W]) shows that

II =
8
π

∞∑
i=1

2
1 + |σn|2 [

∫ λ

1

∫ π

0

1
r
|aneiθ(σn−1) + a−neiθ(1−σn)|2sin2θdθdr

+
∫ λ

1

∫ 2π

0

1
r
|aneiθ(σn+1) + a−ne−iθ(σn+1)|2sin2θdθdr]

=
8 log λ

π

∞∑
i=1

2
1 + |σn|2 [

∫ π

0

|aneiθ(σn−1) + a−neiθ(1−σn)|2

+ |aneiθ(σn−1) + a−ne−iθ(σn+1)|2sin2θdθ].
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III can be evaluated by putting n = 0 in the summand of the expression II and
dividing the resulting expression by 2, or more directly from definition that

III =
4
π

Re
∫

Ωλ

{ (z − z)2

z3z2 [−z2(
a0

z
+

a0

z
) − (a0z + a0z)]a0}

=
4
π

Re
∫ λ

1

∫ π

0

1
r2

(4a0 − 2ao)aodθrdr

= 8(2|a0|2 − Re(a2
0)) log λ.

Summing up the expressions I, II and III, we get the expression in part (3) of
the proposition, thereby concluding the proof of Proposition 1.

We now proceed to the proof of Theorem 1.

Proof of Theorem 1. Let us label the closed geodesic curves in A by 1, . . . , m so
that LA =

∑m
j=1 �j . LA is a function defined on the Teichmüller space T = T (S).

Let X be a Riemann surface in T . A local coordinates around X ∈ T can
be described as follows. Let µi, i = 1, . . . , d be a unitary basis of the space
of harmonic Beltrami differentials on X = H/Γ. The tuple t = (t1, ..., td) ∈
Cd with |tj | < 1 gives a coordinate neighbourhood of X, so that t represents
a Riemann surface Xt = H/(f tµΓ(f tµ)−1, where tµ represents the harmonic
Beltrami differential

∑d
j=1 tjµj and f tµ is the quasi-Fuchsian uniformization

explained earlier. t gives rise to locally geodesic coordinates for the Weil-Peterson
metric gWP in the sense that the metric is just the Euclidean metric with respect
to t up to an error term of order |t|2 (cf. [A2]). Convexity of a function f on T
is equivalent to the positive definiteness of the Hessian Hess(f)(µ, µ) > 0 with
respect to any tangent vector µ ∈ TXT , while plurisuharmonicity is given by
the positive definiteness of the Levi form. Expressing µ as a linear combination
of µi, i = 1, . . . , d and consider a local 1−parameter family of Riemann surfaces
Xε corresponding to εµ, |ε| < 1, it is clear that

Hess(f)(µ, µ) =
d2f(Xε)

dε2
|ε=0.

The Levi form on T is related to the Hessian by

Levi(f)(µ + Jµ, µ − Jµ) = Hess(f)(µ, µ) + Hess(f)(Jµ, Jµ),

where J is the complex structure on T . In our situation, a tangent vector in TX

is represented by a harmonic differential µ. The complex structure is given by
Jµ = iµ, where i is the complex structure on the Riemann surface X.
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Denote by ν = µ + iµ a tangent vector of (1, 0) type on T . In terms of the
expansion of µ in Proposition 1, we conclude that

Levi(�γ)(ν, ν)
= Hess(�γ)(µ, µ) + Hess(�γ)(iµ, iµ)

≥ 8 log λ(2|a0|2 − Re(a2
0)) + 8 log λ(2|a0|2 − Re((ia0)2))

= 32 log λ|a0|2
= 2[(4 log λRe(a0))2 + (4 log λIm(a0))2]

=
2
�γ

|∇ν�γ |2.

It follows that

LALevi(LA)(ν, ν) − 2|∇νLA|2

= [
m∑

j=1

�γj ][
m∑

k=1

Levi(�γk
)(ν, ν)] − 2|

m∑
j=1

∇ν�γj |2

≥ [
m∑

j=1

�γj ][
m∑

k=1

2
�γk

|∇ν�γk
|2] − 2|

m∑
j=1

∇ν�γj |2

= 2
m∑

j=1

|�γk
∇ν�γj − �γj∇ν�γk√

�γj
�γk

|2

≥ 0.

Hence

Levi(−L−α
A )(ν, ν)

= α[
LALevi(LA)(ν, ν) − (α + 1)|∇νLA|2

Lα+2
A

]

≥ α(1 − α)[
Levi(LA)(ν, ν)

Lα+1
A

]

from the above estimates. From Proposition 1 again, we conclude that Levi(LA)
(ν, ν) and hence Levi(−L−α

A )(ν, ν) is positive definite for 0 < α < 1. From
Lemma 1, we know that LA is an exhaustion function, LA(x) → ∞ as x → ∂T ,
and is proper. It follows that −L−α

A (x) → 0 as x → ∂T . As LA is continuous,
it is bounded away from 0 on an compact set of T and hence on T since it
blows up near infinity. Therefore −L−α

A is a bounded strictly plurisubharmonic
exhaustion function. This concludes the proof of Theorem 1.

Proof of Corollary 1. We recall the following standard techniques from L2−
estimates (cf. [Hö]). Let M be a Kähler manifold with a complete Kähler metric
ω and canonical line bundle KM . Let ϕ be a function on M . Let (L, h) be a
hermitian line bundle on M . Assume that

c1(L, h) +
√−1∂∂̄ϕ − c1(KM ) > c(x)ω(1)
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for some positive function c(x). Let g be a ∂̄-closed L−valued (0, 1)−form on M
with

∫
M

1
c‖g‖2

he−ϕ < ∞. Then the equation ∂̄f = g has a solution satisfying
the L2− estimate ∫

M

‖f‖2
he−ϕ <

∫
M

‖g‖2
he−ϕ

c
.(2)

To prove Part (a) of Corollary 1, we use hL to denote the Hermitian metric
of L on T . Let x ∈ T . To construct a holomorphic section of KT + L non-
vanishing at x, we choose a small complex coordinate neighbourhood Ux around
x so that both K and L are trivialized by local sections eK,x and eL,x on Ux.
Let Vx be a smaller neighbourhood of x so that the closure of Vx is contained
in Ux. Let χx be a C∞ cut-off function on T so that 0 ≤ χx ≤ 1 on T , its
support is contained in Ux and it is identically 1 on Vx. Let N = 3g − 3 + n

be the complex dimension of T and ηx = (log
∑N

i=1 |zi|2)χx, where zi are the
coordinate functions on Ux and ηx is defined to be identically 0 outside of Ux.
χeK,x ⊗ eL,x is a C∞ section on Ux and can be regarded as a section on T after
extending by 0 outside of Ux. Choose c to be a positive number large enough so
that

√−1c∂∂̄(−L−α
A )+

√−1N∂∂̄ηx|Ux−Vx is positive and moreover greater than
c1ω for some positive function c1(x) on T , where α is a fixed number between 0
and 1. This is possible since

√−1N∂∂̄ηx has compact support. It follows easily
that equation (1) is satisfied with ϕ = −cL−α

A + Nηx, corresponding to

c1(KT ) + c1(L, hL) +
√−1c∂∂̄(−L−α

A ) +
√−1N∂∂̄ηx − c1(KT )

≥ √−1c∂∂̄(−L−α
A ) + (N

√−1∂∂̄ηx)|Ux−Vx + (
√−1N∂∂̄(log

N∑
i=1

|zi|2))|Vx

> c1(x)ω,

where we have used the fact that c1(L, hL) ≥ 0. Letting g = ∂(χeK,x⊗eL,x) and
noting the right hand side of (2) is finite since the section involved is compactly
supported, we apply the L2−estimate above to obtain a section f of K + L
satisfying ∂f = g,

∫
T ‖f‖2e−ϕ ≤ ∫

T
1
c1
‖g‖2e−ϕ < ∞. It follows from the log-pole

of ϕ that f(x) = 0. Since (χeK,x⊗eL,x)(x) = (eK,x⊗eL)(x) �= 0, f−χeK,x⊗eL,x

is a non-trivial holomorphic section of K+L. It is furthermore L2−bounded with
respect to the weight −ϕ = cL−α

A −Nηx and hence without any weight since both
L−α

A and −η are bounded from below on T . Hence there exists a L2−holomorphic
section of K + L non-vanishing at x.

The proofs for the separation of points and generation of jets are quite
similar and hence only the modification is sketched here. To prove that the
L2−holomorphic sections separate points on T , it suffices to prove that there
exists a section non-zero at x but zero at y �= x for arbitrary points x and y
on T . For this purpose, we choose g = ∂[χeK,x ⊗ eL,x + (1 − χ)eK,y ⊗ eL,y],
ηx,y = ηx + ηy and c large enough so that ϕ = −cL−α

A + Nηx + Nηy satisfies
condition (1). The L2 estimate yields a L2 holomorphic section of K + L taking
value −eK,x ⊗ eL,x at x but vanishes at y.
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Similarly, to prove that the holomorphic sections generate an arbitrary jet
∂

∂zi1 · · · ∂
∂zik

at x ∈ T , we replace ϕ = −cL−α
A +Nηx by ϕ = −cL−α

A +(k +N)ηx

for sufficiently large c to make sure that condition (1) still holds. Then we
let g = ∂[zi1 · · · zikχeK,x ⊗ eL,x] and apply the the same argument as before to
solve ∂f = g. Letting f1 = f− [zi1 · · · zikχeK,x⊗eL,x], we get a L2−holomorphic
section with ∂

∂zi1 · · · ∂
∂zik

f1|x �= 0. This concludes the proof of (a).

To prove (b), we assume that M is equipped with a complete Kähler metric
with bounded geometry, such as the ones constructed by McMullen [Mc]. We
then apply Atiyah’s Covering Index Theorem [A] with modification by Cheeger-
Gromov [CG] to relate χL2(T , K+L) = χ(M, K+L). The original version of the
Covering Index Theorem of Atiyah is stated for a compact manifold. Here the
moduli space is non-compact and we have to use the results of Cheeger-Gromov
[CG] to make sure that the covering theorem works for complete non-compact
manifolds of bounded geometry. The result of Cheeger-Gromov [CG] also implies
that χ(M, K + L) is just the usual alternate sum

∑m
i=0 hi

L2(M, K + L) as in
the compact case. The interests in [CG] are mainly for the usual Betti numbers
but the arguments work for cohomology groups of differential forms twisted by
a line bundle of bounded curvature. Kodaira’s Vanishing Theorem or the above
L2-estimates implies that hi

L2(T , K +L) = 0 for 1 ≤ i ≤ m. Considering a finite
cover M1 of M corresponding to moduli space of curves with a certain level
structure (cf. [HM]) so that M1 is smooth and pulling back differential forms
from M to M1, we conclude by the same argument that hi

L2(M, K + L) = 0
for 1 ≤ i ≤ m as well.

Combining the above results and conclusion of part (a), we conclude that

h0
L2(M, K + L) = χ(M, K + L) = χL2(T , K + L) = h0

L2(T , K + L) > 0.

This concludes the proof of Corollary 1.

Proof of Corollary 2. Recall that a domain in CN is said to be hyperconvex if
there exists a continuous plurisubharmonic exhaustion function from the domain
to (−∞, 0). It is a theorem of Herbort [He] and Biocki-Pflug [BP] that a bounded
hyperconvex domain in CN is complete with respect to the Bergman metric.
Hence completeness of Bergman metric on T follows directly from Theorem 1
and the observation here.

For the estimate of the Bergman metric, we notice that Corollary 1a implies
that the Bergman metric and its infinitesemal form are non-degenerate every-
where. It is also well-known that the Carathéodory metric and its infinitesemal
form of T are non-degenerate and complete as shown in Earle [E]. From the work
of Hahn [Ha], the infinitesemal Bergman metric metric is bounded from below
by the infinitesemal Carathéodory metric at any point on T . The conclusion
follows.
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