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EMBEDDED MINIMAL SURFACES AND TOTAL
CURVATURE OF CURVES IN A MANIFOLD

Jaigyoung Choe and Robert Gulliver

Abstract. Let Mn be an n-dimensional complete simply connected Riemannian
manifold with sectional curvature bounded above by a nonpositive constant −κ2.
It is proved that every branched minimal surface in M bounded by a smooth
Jordan curve Γ with total curvature ≤ 4π + κ2 infp∈M Area(p××Γ) is embedded.
p××Γ denotes the geodesic cone over Γ with vertex p. It follows that a Jordan
curve Γ in M3 with total curvature ≤ 4π + κ2 infp∈M Area(p××Γ) is unknotted.
In the hemisphere Sn

+, we prove the embeddedness of any minimal surface whose

boundary curve has total curvature ≤ 4π − supp∈Sn
+

Area(p××Γ).

1. Introduction

After the formidable problem of Plateau in Euclidean Rn was settled by
Douglas and Radó, mathematicians’ attention was drawn to the uniqueness and
embeddedness of their solutions (see [D] and [R1].). The first uniqueness result
was obtained by Radó ([R2], p. 100). He proved that if a simple closed curve
Γ ⊂ R3 has a one-to-one projection onto the boundary of a convex region R ⊂
R2, then Γ bounds a unique minimal disk. In fact any minimal surface bounded
by Γ is a graph over R, and hence is simply connected and embedded. Later
Nitsche [N2] showed that if Γ is analytic with total curvature ≤ 4π, then Γ
bounds exactly one minimal disk.

The embeddedness of the minimal disk bounded by a Jordan curve Γ was
first obtained by Gulliver and Spruck [GS] under the assumption that Γ has
total curvature ≤ 4π and is extreme (that is, it lies on the boundary of a convex
set). In the same paper, they conjectured that either condition alone would be
sufficient for the embeddedness of an area-minimizing disk. Moreover Nitsche
himself asked whether his unique solution is free of self-intersection ([N3], esp.
p. 463). Indeed Tomi-Tromba [TT], Almgren-Simon [AS], and Meeks-Yau [MY]
derived the embeddedness of a minimal disk bounded by an extreme Γ; [MY]
proved embeddedness of any area-minimizing disk. But the sufficiency of the
total curvature condition alone, when Γ is not assumed to be extreme, remained
open for 25 years.
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Finally, in a very recent paper, Ekholm, White, and Wienholtz [EWW] inge-
niously proved the embeddedness of any minimal surface bounded by a curve Γ in
Rn with total curvature ≤ 4π. Their idea is based on the following observations.

(i) The logarithm of the distance function ρ(x) = d(x, p) in Rn is a funda-
mental solution of the Laplacian on a two-dimensional plane through p.
Similarly, log ρ(x) is harmonic on a cone p××Γ over Γ with vertex p. By
contrast, log ρ(x) is strictly subharmonic on a nonplanar (branched) min-
imal surface in Rn. This part of their proof is intimately related to the
well-known monotonicity formula.

(ii) By the Gauss-Bonnet theorem, 2π times the density at p of the cone p××Γ
is at most the total curvature of Γ.

In this paper we extend the Ekholm-White-Wienholtz result to minimal sur-
faces in an n-dimensional Riemannian manifold M with sectional curvature
bounded above by a nonpositive constant −κ2. The two observations above
can be appropriately generalized for these purposes. Thus, it is proved that if Γ
is a Jordan curve in Mn with total curvature

Ctot(Γ) :=
∫

Γ

|�k| ds ≤ 4π + κ2 inf
p∈M

Area(p××Γ),

then every branched minimal surface bounded by Γ is embedded (Theorem 3.)
More precisely, the infimum of area is taken only over geodesic cones with vertex
lying in the convex hull Hcvx(Γ) of Γ. In the presence of variable ambient
curvatures, a key point is the introduction of a new metric of constant Gauss
curvature on p××Γ.

A similar theorem is also proved for minimal surfaces in the hemisphere Sn
+,

using κ2 = −1 (see Theorem 1.) This case is simpler, since only one metric
is needed on p××Γ, and will be demonstrated first. In this paper, we have not
carried out the extension of our results to continuous Jordan curves, as was done
in [M] and in [EWW].

As in [EWW], our theorem has a topological implication: any Jordan curve
in M3 with total curvature ≤ 4π + κ2 infp∈M Area(p××Γ) is unknotted. This
appears to be a new extension of the Fáry-Milnor theorem, which showed that
any knotted curve in R3 has total curvature greater than 4π [F], [M]. Brickell
and Hsiung proved our unknotting result for the case when M3 is the hyperbolic
space of constant sectional curvature −κ2 (see Theorem 4 of [BH].) It should
also be mentioned that Schmitz [S] and Alexander-Bishop [AB] obtained the
unknottedness of a Jordan curve with total curvature ≤ 4π in a simply connected
Riemannian 3-manifold of nonpositive sectional curvature, which is the case
κ = 0 of our Theorem 4. Alexander and Bishop also noted that the minimum
total curvature among knotted curves in any non-positively curved 3-manifold is
exactly 4π. But for the case of a manifold M3 with sectional curvature ≤ −κ2 <
0 our hypothesis on the total curvature of Γ is weaker, and more natural, since
there are no homotheties, and thus no scaling, in M3.
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One indication of the naturalness of our hypothesis, that a curve Γ ⊂ Mn

have total curvature ≤ 4π + κ2 infp∈M Area(p××Γ), is the fact that every closed
curve in M has total curvature at least 2π + κ2 infp∈M Area(p××Γ).

2. Embeddedness of Minimal Surfaces in the Hemisphere

Recall that in the open hemisphere Sn
+ := {x ∈ Rn+1 : |x| = 1, xn+1 > 0},

any two points p, q may be connected by a unique geodesic, namely the shorter
arc of the unique great circle of Sn passing through p and q. In particular, for
any point p ∈ Sn

+ and any immersed curve Γ in Sn
+, we may define the geodesic

cone p××Γ to be the union of the geodesic segments from p to q, over all q ∈ Γ.
The smallest closed subset of Sn

+ which contains a set S ⊂ Sn
+ and contains the

geodesic segment between any two of its points is the convex hull of S, and will
be written as Hcvx(S). Observe that, since Sn

+ is a space form, Hcvx(S) may
also be described as the intersection of all closed hemispheres containing S. It
follows that if Σ is an immersed minimal surface in Sn

+ with compact closure,
whose boundary ∂Σ ⊂ S, then Σ ⊂ Hcvx(S).

Definition 1. Define the maximum cone area of a curve Γ ⊂ Sn
+ as

A(Γ) := sup
p∈Hcvx(Γ)

Area(p××Γ).

Theorem 1. Let Γ be a C2 Jordan curve in the n-dimensional hemisphere Sn
+.

Suppose Σ2 is a branched minimal surface, having compact closure in Sn
+ and

boundary Γ = ∂Σ. If the total curvature of Γ satisfies

Ctot(Γ) :=
∫

Γ

|�k| ds ≤ 4π −A(Γ),(1)

then Σ is an embedding.

In the definition of Ctot, �k denotes the curvature vector of Γ. If a point tra-
verses Γ with unit speed, then its acceleration vector in Sn

+ coincides with �k. A
branched minimal surface is one which may fail to be immersed at a discrete set
of singularities, which are all branch points; see Definition 2 below.

We shall give the proof of Theorem 1 at the end of this section.
Theorem 1 has an interesting topological consequence: a new extension of the

Fáry-Milnor Theorem. The Fáry-Milnor Theorem showed that a knotted curve
in Euclidean R3 has total curvature at least 4π ([F], [M].) The next theorem is
what we feel is an appropriate analogue of the Fáry-Milnor Theorem, when R3

is replaced by S3
+. We are not aware of any previous results on total curvature

of knots in S3
+. Note that the bound required from above on total curvature

in this theorem may be zero or even negative, in which case the theorem fails.
However, in Example 1 below, we shall show that the bound is sharp, in the
sense that there are knotted curves in S3

+ for which the total curvature is close
to zero and the maximum cone area is close to 4π.
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Theorem 2. If Γ is a C2 Jordan curve in S3
+, with total curvature∫

Γ

|�k| ds ≤ 4π −A(Γ),

then Γ is unknotted.

Proof. It follows from a theorem of Morrey that there is a smooth branched
immersion of the disk into S3

+ with boundary Γ, having smallest area among
surfaces of the type of the disk. Morrey’s result [Mo] requires the ambient man-
ifold M3 to be complete and homogeneously regular. Recall that homogeneous
regularity is an appropriately weak version of bounded geometry; see [Mo]. In
order to apply Morrey’s result to our case, we first need to construct a complete
and homogeneously regular manifold M3 in place of S3

+. Since Γ is compact, it
lies in a closed geodesic ball BR ⊂ S3

+ of radius R < π/2, with center the point
of rotational symmetry p0 ∈ S3

+. We extend BR isometrically to a Riemannian
manifold M diffeomorphic to R3, with a rotationally symmetric metric, so that
M is complete and homogeneously regular, and the distance balls Br of M from
p0 are convex, 0 < r < ∞. To make M homogeneously regular, we may choose
the metric to have e. g. the cylindrical form S2

b × [r1,∞) outside a compact set.
Morrey’s result shows that there is a smooth branched immersion of the disk
into M with boundary Γ, having smallest area among surfaces of the type of the
disk. Write its closed image as Σ. Since Σ is compact, it lies in Br0 for some r0,
and since each Br is convex, R ≤ r < ∞, we see by the maximum principle that
Σ ⊂ BR. Therefore Σ ⊂ S3

+.
According to Theorem 1, this area-minimizing disk must be an embedding of

the disk into S3
+ with boundary Γ; this shows that Γ is unknotted.

An alternative proof of Theorem 2 may be given for a real-analytic curve Γ,
and by approximation for a C2 curve which satisfies Ctot(Γ) < 4π −A(Γ). The
alternate proof requires Theorem 1 only for an immersed minimal surface Σ, and
cites the result that the area-minimizing branched immersion from the disk into
S3

+ with boundary Γ must be an immersion up to the boundary (see [A], [G]
and [GL].)

Example 1. With this example, we shall show that the hypothesis

Ctot(Γ) ≤ 4π −A(Γ)

of Theorems 1 and 2 (which may appear very strong from a certain point of view)
is actually sharp.

Let Γ0 be the double cover of the circle of some radius R < π/2 in a totally
geodesic S2

+ ⊂ S3
+, with center at p0. This example is a family of (2, 2m + 1)-

torus knots Γη in S3
+, η > 0, for any fixed positive integer m, such that the C2

distance between Γη and Γ0 as parameterized curves approaches zero as η → 0,
and such that

Ctot(Γη) < 4π −A(Γη) + η.
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To be specific, we might choose Γη to lie on the boundary of the tubular neigh-
borhood of Γ0 at a radius which tends to 0 as η → 0.

We first compute the geometric invariants of Γ0. Its length is 4π sinR, and
its curvature is constant: |�k| ≡ cot R. Thus, Ctot(Γ0) = 4π cos R. The maximum
cone area A(Γ0) = 2 · 2π

∫ R

0
sin r dr = 4π(1 − cos R) is achieved by the double

cover of the totally geodesic disk of radius R, since this disk is the convex
hull Hcvx(Γ0) of Γ0. Thus, equality holds in hypothesis (1) for Γ0: Ctot(Γ0) =
4π−A(Γ0). But both of the geometric invariants A(Γ) and Ctot(Γ) are continuous
as Γ varies in C2. We find therefore Ctot(Γη) < 4π − A(Γη) + η, as claimed,
showing that hypothesis (1) is sharp.

If we choose R = R(η) → π/2, then we may obtain further that Ctot(Γη) →
0.

Propositions 1 and 2 below will form the core of the proof of Theorem 1.
For the rest of this section, we shall write G(r) := log tan(r/2) for the Green’s

function of the two-dimensional sphere. Choose a point p ∈ Sn
+, and for all

x ∈ Sn
+, define ρ(x) := d(x, p), the distance measured in Sn

+.

Lemma 1. Let N2 be a two-dimensional manifold immersed in Sn
+. Then except

at p,

�NG(ρ) = 2
cos ρ

sin2 ρ

(
1 − |∇Nρ|2) +

dρ( �H)
sin ρ

,

where �H denotes the mean curvature vector of N.

Proof. In Sn
+, the Hessian of the distance function is ∇2

ρ = cot ρ (g−∇ρ⊗∇ρ),
where g is the metric tensor of Sn

+. The trace formula states that

�NG =
2∑

α=1

∇2
G(eα, eα) + dG( �H),

where {e1, e2} is an orthonormal basis for the tangent plane to N. These formulas
are well known (see e. g. [CG2], pp. 172, 174.) Choosing {e1, e2} with dρ(e2) = 0
and dρ(e1) = |∇Nρ|, we have

∇2
G(e1, e1) =

cos ρ

sin2 ρ
(1 − 2 dρ(e1)2)

and
∇2

G(e2, e2) =
cos ρ

sin2 ρ
.

The conclusion follows.

Definition 2. Let Ω be a Riemann surface, k a positive integer. A mapping
f : Ω → Mn has a branch point of order k at w0 ∈ Ω if its complex first partial
derivative fw := 1

2 (fu − ifv) satisfies limw→w0 [fw(w)(w−w0)−k] = �a ∈ Cn\{0}.
Here u and v are the real and imaginary parts of the local complex variable
w ∈ Ω, and i =

√−1.
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A branched minimal surface f : Ω → Mn is a conformally parameterized
harmonic mapping. By abuse of language, we shall also refer to the image
Σ = f(Ω) of f as a branched minimal surface.

It may be shown that each point of a branched minimal surface either is a
branch point or has an immersed neighborhood; moreover, the real and imag-
inary parts of the complex vector �a in the definition of a branch point are or-
thogonal and have equal length (see [HH]). The importance of branched minimal
surfaces stems from the fact that the solution of Plateau’s problem for a minimal
surface of a given topological type in Rn or in Mn is not an immersion in gen-
eral, but only a branched immersion. Solutions to this variational problem are
necessarily immersions only when n = 3 ([A], [G], [GL]), or when the boundary
curve meets hyperplanes of Rn in at most five points ([R2], pp. 34–35), or when
the topological type is not prescribed ([Fed], [HS].)

The following lemma describes the effect of branch points on area and
divergence-theorem computations on a branched minimal surface. Part (b)
shows that if p �∈ Σ, then there is no effect on the integral of �ΣG. The
conclusion of part (a) may be interpreted to say that for some purposes, Σ acts
like the (k + 1)-fold cover of a smooth surface near a branch point of order k.

Lemma 2. Let Σ = f(Ω) be a branched minimal surface in a Riemannian man-
ifold M .
(a) Let p = f(w0), w0 ∈ Ω, be a branch point of Σ of order k. If νΣ is the unit

normal vector to Σ ∩ ∂Bε(p) tangent to Σ and pointing towards p, then
as ε → 0, νΣ → −∇ρ uniformly on Σ ∩ ∂Bε(p). After rescaling to unit
radius, the curve Σ ∩ ∂Bε(p) converges in C1 norm to the constant-speed
(k + 1)-fold cover (resp. half of the constant-speed (k + 1)-fold cover) of
a great circle in the unit sphere of Tp(M), if w0 ∈ Ω (resp. w0 ∈ ∂Ω).
Moreover, if w0 ∈ ∂Ω and f maps ∂Ω monotonically to a C2 curve Γ,
then k is even.

(b) If p �∈ Σ, then ∫
Σ

�ΣG dA =
∫

∂Σ

νΣ · ∇G ds,

where νΣ is the outward unit normal vector to ∂Σ tangent to Σ.

Proof. Choose local conformal coordinates for Ω near w0 and Riemannian normal
coordinates for M at p. Write �a = limw→w0

(
(w − w0)−kfw(w)

)
=: �b+ i�c, where

the real vectors �b and �c are orthogonal and have the same length (see [HH].)
Then as w → w0, the tangent plane to Σ at f(w) converges to the plane in
Tp(M) spanned by �b and �c. Integration shows that f(w)− f(w0) is the real part
of 2

k+1�a(w−w0)k+1, modulo a term which tends to zero faster than |w−w0|k+1.
The parity of k at a boundary branch point was shown in [N1], p. 332. The
conclusions of part (a) follow.

To prove part (b), we apply part (a) to each branch point qi = f(wi) of Σ,
1 ≤ i ≤ m. The divergence theorem on Σ\∪m

i=1 Bε(qi) leads to the m additional
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boundary terms ∫
Σ∩∂Bε(qi)

νΣ · ∇G ds.

Since p �∈ Σ, νΣ · ∇G is uniformly bounded in a neighborhood of qi, while the
length of Σ ∩ ∂Bε(qi) approaches 0 by part (a), so these additional boundary
terms tend to 0 as ε → 0.

Corollary 1. If Σ2 is a branched minimal surface in Sn
+, then G(ρ(x)) =

log tan(ρ(x)/2) is subharmonic on Σ. If C is the cone p××∂Σ over the pole
p of the distance function ρ, then G(ρ) is harmonic on C, except at p.

Proof. Since ρ is a distance function in Sn
+, |∇Σρ| ≤ 1, while on the cone, since

the Sn
+-gradient ∇ρ is tangent to C, |∇Cρ| ≡ 1. The mean curvature vector of

Σ vanishes, and the mean curvature vector of C is orthogonal to the gradient
∇ρ. Lemmas 1 and 2(a) now imply that �ΣG(ρ) ≥ 0 and �CG(ρ) ≡ 0, except
at p.

If p ∈ Σ, then the outward normal derivative of G(ρ) on ∂Bε(p)∩Σ approaches
+∞ as ε → 0 (if p is a branch point of Σ, Lemma 2(a) will be useful here), which
implies that G is subharmonic everywhere on Σ.

For a 2-dimensional immersed Lipschitz surface, or a branched surface, N2 ⊂
Sn

+, we define the density of N at q to be the limit

ΘN (q) := lim
ε→0

Area(N ∩ Bε(q))
πε2

.(2)

Here, Bε(q) is the geodesic ball of Sn
+ with spherical radius ε, centered at q.

Note that when N is smooth or a cone, we may also compute the density in
terms of lengths:

ΘN (q) = lim
ε→0

L(N ∩ ∂Bε(q))
2πε

.

Of course, the same limit is also obtained if the denominators in these two
quotients are replaced by the spherical area 2π(1 − cos ε) and spherical length
2π sin ε, respectively. Observe that if N is a smoothly immersed submanifold
and has a self-intersection at p ∈ Sn

+, then ΘN (p) ≥ 2. Also note that if p is
a branch point of N of order k, then ΘN (p) ≥ k + 1 (see the proof of Lemma
2(a).)

Proposition 1 (Density Comparison). Let Γ be a C2 immersed closed curve in
Sn

+. Choose p ∈ Sn
+\Γ. If Σ2 is a branched minimal surface in Sn

+ with boundary
∂Σ = Γ, and C is the cone p××Γ over p, then their densities at p satisfy the
inequality

ΘΣ(p) < ΘC(p),

unless Σ is totally geodesic.
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Proof. By Corollary 1, we have �ΣG(ρ) ≥ 0 and �CG(ρ) ≡ 0, where G(ρ(x)) :=
log tan(ρ(x)/2) and ρ(x) := d(x, p). For small ε > 0, write Cε := C\Bε(p),
and similarly Σε. Then the boundary of Σε is Γ ∪ (Σ ∩ ∂Bε(p)) . Let νΣ (νC ,
respectively) be the outward unit normal vector tangent to Σε at ∂Σε (to Cε at
∂Cε, resp.). Then

0 ≤
∫

Σε

�ΣG(ρ) dA =
∫

∂Σε

νΣ · ∇G ds =
∫

Σ∩∂Bε(p)

νΣ · ∇ρ

sin ε
ds +

∫
Γ

νΣ · ∇ρ

sin ρ
ds.

Along the small boundary component Σ ∩ ∂Bε(p), as ε → 0, νΣ · ∇ρ → −1
uniformly, and

L(Σ ∩ ∂Bε(p))
2π sin ε

→ ΘΣ(p).

Along Γ, νΣ · ∇ρ ≤ νC · ∇ρ. Hence as ε → 0, we find

2πΘΣ(p) ≤
∫

Γ

νC · ∇ρ

sin ρ
ds.

Similarly, along C ∩ ∂Bε(p), we have νC ≡ −∇ρ. After applying the divergence
theorem to the vector field ∇CG(ρ) on Cε, we find

2πΘC(p) =
∫

Γ

νC · ∇ρ

sin ρ
ds.(3)

This implies ΘΣ(p) ≤ ΘC(p). If equality holds, then �ΣG ≡ 0, which requires
|∇Σρ| ≡ 1 according to Lemma 1. This can only happen when Σ is totally
geodesic.

We have tacitly assumed that C\{p} is immersed in M . Equation (3) may
be proved in the general case either by analysis in singular coordinates or by
approximation; we shall carry out an appropriate approximation argument at
the end of the proof of the next proposition.

Proposition 2 (Gauss-Bonnet). Consider the geodesic cone C = p××Γ over an
immersed C2 curve Γ in Sn

+, n ≥ 2.

(a) If p �∈ Γ, then

2πΘC(p) = Area(C) −
∫

Γ

�k · νC ds.

(b) If p ∈ Γ, then

2πΘC(p) = Area(C) −
∫

Γ

�k · νC ds − π.

Proof. We first assume that C\{p} is immersed in Sn
+.

Consider case (a), where p �∈ Γ. By the Gauss-Bonnet formula on Cε, for ε
less than the distance from p to Γ,∫

Cε

K dA −
∫

Γ

�k · νC ds −
∫

C∩∂Bε(p)

�k · νC ds = 2πχ(Cε).(4)
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where χ is the Euler number and K is the intrinsic Gauss curvature of C. Since
Cε is an immersed annulus, we have χ(Cε) = 0. Now C has principal curvature
zero in the ∇ρ direction, so the determinant of its second fundamental form
vanishes, and by the Gauss equation, K equals the sectional curvature K = 1 of
the ambient Sn

+.

Along C ∩ ∂Bε(p), νC = −∇ρ and �k · νC ≡ cot ε. Thus, we may compute

lim
ε→0

∫
C∩∂Bε(p)

�k · νC ds = lim
ε→0

(cot ε) L(C ∩ ∂Bε(p)) = 2πΘC(p),(5)

so that formula (4) implies

Area(C) −
∫

Γ

�k · νC ds − 2πΘC(p) = 0,(6)

which proves Proposition 2(a) when C\{p} is an immersion.
The proof of part (b) is analogous. However, when p ∈ Γ, for small ε, Cε is

a topological disk, so that χ(Cε) = 1. Also, the boundary of Cε consists of the
arc C ∩ ∂Bε(p) and the arc Γε := Γ\Bε(p). For small ε > 0, these arcs meet at
two points forming exterior angles α(ε) and β(ε). Equation (4) becomes∫

Cε

K dA −
∫

Γε

�k · νC ds −
∫

C∩∂Bε(p)

�k · νC ds + α(ε) + β(ε) = 2π.

Since Γ is smooth, α(ε) → π/2 and β(ε) → π/2 as ε → 0, which yields

Area(C) −
∫

Γ

�k · νC ds − 2πΘC(p) = π,(7)

and Proposition 2(b) follows.
In general, the cone C = p××Γ need not be an immersion away from p. The

problem arises exactly on the set A ⊂ Γ where Γ is tangent to the radial geodesic
from p, that is, the unit tangent vector �T coincides with ±∇ρ. Let us choose a
C1 mapping �Tδ from Γ into the unit tangent bundle of Sn

+\{p}, which is C1-close
to �T and transverse to the two sections ±∇ρ. The two sections ±∇ρ define a
codimension-(n − 1) submanifold of the total space of the unit tangent bundle.
If n ≥ 3, transversality means that �Tδ is disjoint from this submanifold. If
n = 2, we first embed S2

+ as a totally geodesic surface in S3
+, and then require

transversality for �Tδ. In order to ensure that �Tδ is the tangent vector to a closed
curve Γδ, we adjust �Tδ to satisfy the n − 1 closure conditions, for small δ. In
the case p ∈ Γ, we may require p ∈ Γδ. Then p××Γδ satisfies formula (3), and
formula (6) or (7), if p �∈ Γ or p ∈ Γ, respectively.

We claim that, since Γδ → Γ in the C2 norm, each term of equation (3),
(6) or (7) is the limit, as δ → 0, of the corresponding quantity for Γδ. To be
precise, it should be observed that in general, the cone C = p××Γ is only C1,1

up to the boundary Γ. Namely, the outward unit normal vector νC satisfies
νC · ∇ρ ≥ 0. For q in the set A ⊂ Γ, νC(q) is nonunique; clearly, for qδ →
q, qδ ∈ Γδ, the normal vectors νCδ

(qδ) need not converge. Nonetheless, the
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inward geodesic curvature k = −�k · νC is well defined almost everywhere on Γ,
since �k = 0 almost everywhere on the problematic set A. Similarly, νC · ∇ρ is
well defined almost everywhere on Γ. Both k and νC · ∇ρ are pointwide limits
almost everywhere of the corresponding quantities for Γδ, which are uniformly
bounded. The dominated convergence theorem now implies that formula (3),
and either formula (6) or (7), hold for any C2 curve Γ ⊂ Sn

+.

Proof of Embedding Theorem 1. Let Σ2 be a branched minimal surface in Sn
+

whose boundary ∂Σ = Γ is a C2 Jordan curve satisfying the hypothesis (1):

Ctot(Γ) :=
∫

Γ

|�k| ds ≤ 4π −A(Γ).

Note that Σ ⊂ Hcvx(Γ) by the maximum principle. To show that Σ has no
interior branch points and is embedded, it suffices to show that ΘΣ(p) < 2 for
all p ∈ Σ (p �∈ Γ).

Choose p ∈ Σ, and let C = p××Γ be the geodesic cone over Γ with vertex p.
If Σ is totally geodesic, then it is the subset of a totally geodesic S2

+ bounded
by the embedded curve Γ ⊂ S2

+, so Σ is embedded. Otherwise, by Propositions
1 and 2(a), we have

2πΘΣ(p) < 2πΘC(p) = −
∫

Γ

�k · νC ds + Area(C).

Since p ∈ Hcvx(Γ), Area(C) is less than or equal to the maximum cone area
A(Γ). But −�k · νC ≤ |�k|, so hypothesis (1) implies ΘΣ(p) < 2, as required.

It remains to rule out boundary branch points (in the case n = 3 of Theorem
2, this would follow by well-known arguments from embeddedness in the interior,
e.g. [GL].) If p ∈ Γ, then by Propositions 1 and 2(b), unless Σ is totally geodesic,
we have

2πΘΣ(p) < 2πΘC(p) = −
∫

Γ

�k · νC ds + Area(C) − π.

Using hypothesis (1) as before, we find that ΘΣ(p) < 3/2. For a boundary
branch point p of order k, the density ΘΣ(p) ≥ (k + 1)/2, and k is even, by
Lemma 2(a). This would imply that ΘΣ(p) ≥ 3/2, which is impossible. We
have shown that Σ is embedded.

3. Embeddedness of Minimal Surfaces in Negatively Curved Spaces

We now turn our attention to the case of nonpositive ambient sectional curva-
ture. For a minimal surface in hyperbolic space, embeddedness may be proved in
complete analogy to section 2 above, with −A(Γ) replaced in hypothesis (1) by
the infimum of areas of cones. However, unlike the case of Sn

+, the nonpositively
curved case can be significantly improved to permit variable sectional curvature,
and the inequalities require only a nonpositive upper bound −κ2 on ambient
sectional curvature.

Thus, throughout this section we assume that M is an n-dimensional com-
plete, simply connected Riemannian manifold with sectional curvature bounded
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above by a nonpositive constant −κ2. Let Γ be a C2 immersed curve in M. We
define the (geodesic) cone C = p××Γ over Γwith vertex p as the union of the
geodesic segments from p to q, over all q ∈ Γ. Since the geodesic joining any
two points of M is unique and depends smoothly on its endpoints, C\{p} is the
image of a C2 mapping.

The main tool which will be added to the methods employed in Section 2
above is comparison with a metric ĝ of constant Gauss curvature −κ2 on the
geodesic cone C; see Definition 4 below. This metric was introduced by the first
author in his study of isoperimetric inequalities on minimal surfaces ([C].)

Definition 3. Define the minimum cone area of Γ as

A(Γ) := inf
p∈Hcvx(Γ)

Area(p××Γ).

Remark 1. A refinement of the methods of this paper would be to replace
the convex hull of Γ in Definitions 1 and 3 with the (usually) smaller mean-
curvature hull of Γ. This would allow Theorems 1 and 3 to be proved with
slightly weaker hypotheses. The mean-curvature hull of a subset S ⊂ M is
defined as the intersection of the closures of C2 open subsets of M which contain
S, have boundaries of nonnegative mean curvature (with respect to the inward
unit normal), and which are members of a continuous exhaustion of M by open
subsets whose boundaries have nonnegative mean curvature. It follows that if
Σ is a branched minimal surface in M with compact closure, then Σ lies inside
the mean-curvature hull of ∂Σ.

In this regard, it should be noted that Brickell and Hsiung actually proved
the unknotting Theorem 4 for the special case when M3 is the hyperbolic space
of constant sectional curvature −κ2, and the infimum of area is taken only over
cones whose vertices lie on Γ itself (see [BH].)

Theorem 3. Let Σ2 be a branched minimal surface (of arbitrary topological
type) in an n-dimensional complete, simply connected Riemannian manifold M
whose sectional curvature is bounded above by a nonpositive constant −κ2. Write
Γ = ∂Σ, which we assume to be a C2 Jordan curve, i.e. a C2 embedding of the
circle S1. If the total curvature of Γ satisfies

Ctot(Γ) :=
∫

Γ

|�k| ds ≤ 4π + κ2 A(Γ),(8)

then Σ is an embedding.

We shall give the proof of Theorem 3 at the end of this section.

Theorem 3 implies a substantial extension of the Fáry-Milnor Theorem, which
was proved for κ = 0 in [AB] and [S]. The proof of the following theorem is
similar to the proof of Theorem 2 above.

Theorem 4. Let Γ be a C2 Jordan curve in a complete, simply connected Rie-
mannian 3-manifold M with sectional curvature ≤ −κ2. If the total curvature
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of Γ satisfies ∫
Γ

|�k| ds ≤ 4π + κ2 A(Γ),

then Γ is unknotted.

Example 2. This example shows that the hypothesis

Ctot(Γ) ≤ 4π + κ2A(Γ)

of Theorems 3 and 4 is sharp.

Let Γ0 be the double cover of the circle of radius R in a totally geodesic H2 ⊂ H3.
Here Hn is the n-dimensional hyperbolic space of constant sectional curvature
−κ2 = −1. In a similar fashion to Example 1, given any choice of positive
integer m, the example is a one-parameter family of (2, 2m + 1)-torus knots Γη

in H3, η > 0, with Γη → Γ0 and with

Ctot(Γη) < 4π + A(Γη) + η.

In fact, Γ0 has length 4π sinhR, curvature |�k| ≡ coth R, Ctot(Γ0) = 4π cosh R,
and A(Γ0) = 4π(cosh R − 1).

We shall now present six results, in preparation for the proof of Theorem 3.

Write G(r) := log tanh(κr/2) for the Green’s function of the two-dimensional
hyperbolic plane H2(−κ2) with Gauss curvature ≡ −κ2 < 0, and G(r) := log r
for R2, if κ = 0. We compute dG/dr = κ/sinhκr or dG/dr = 1/r, respectively.
Choose a point p ∈ M, and define ρ(x) := d(x, p), using the distance function
d(·, ·) of M.

Lemma 3. Let N2 be a two-dimensional manifold immersed in a complete, sim-
ply connected Riemannian manifold M whose sectional curvature is bounded
above by −κ2, κ ≥ 0. Then

(a) except at p,

�NG(ρ) ≥ 2κ2 cosh κρ

sinh2 κρ

(
1 − |∇Nρ|2) + κ

dρ( �H)
sinhκρ

in case κ > 0,

and

�NG(ρ) ≥ 2
ρ2

(
1 − |∇Nρ|2) +

dρ( �H)
ρ

in case κ = 0,

where �H is the mean curvature vector of N.

(b)

�N log(1 + cosh κρ) ≥ κ2 + κ tanh(κρ/2) dρ( �H) in case κ > 0,

and
�Nρ2 ≥ 4 + 2ρ dρ( �H) in case κ = 0.
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Proof. By the Hessian comparison theorem, the Hessian of the distance function
ρ of M satisfies

∇2
ρ ≥ κ cothκρ(g −∇ρ ⊗∇ρ) for κ > 0, and ∇2

ρ2 ≥ 2g for κ = 0,

where g is the metric tensor of M (see [SY], p. 4).
As in the proof of Lemma 1, after applying the trace formula, this inequality

leads us to the conclusion of part (a).
For the proof of part (b), we again use the trace formula and note that

∇2
log(1+cosh κρ) ≥ κ2

1 + cosh κρ

[
cosh κρ · g + (1 − cosh κρ)∇ρ ⊗∇ρ

]
for κ > 0.

For a 2-dimensional immersed Lipschitz submanifold, or a branched surface,
N ⊂ M and a point q ∈ M , we define the density of N at q to be the limit

ΘN (q) := lim
ε→0

Area(N ∩ Bε(q))
πε2

(9)

as in definition (2) above. As observed in section 2 above, if N is a smoothly
immersed submanifold of M and has a self-intersection at p ∈ M, then ΘN (p) ≥
2. Further, if p is an interior branch point of N of order k, then ΘN (p) ≥ k + 1;
at a boundary branch point, ΘN (p) ≥ (k + 1)/2.

Let Γ be a C2 immersed closed curve in M. Choose p ∈ M . If Σ2 is a branched
minimal surface in M with boundary ∂Σ = Γ, and C is the cone p××Γ over p, then
the key ingredient in the proof of Theorem 3 is to give an upper bound of ΘΣ(p)
by ΘC(p). Unfortunately this is impossible unless M is rotationally symmetric
about p. To get around this difficulty we need to define a constant-curvature
metric ĝ on C as follows.

Definition 4. Let ĝ be a new metric on C with constant Gauss curvature −κ2

such that the distance from p remains the same as in the original metric g, and
so does the arclength element of Γ. More precisely, every geodesic from p under
g remains a geodesic of equal length under ĝ, the length of any arc of Γ remains
the same, and the angles between the tangent vector to Γ and the geodesic from
p remain unchanged.

We shall write Ĉ for the two-dimensional Riemannian manifold (C, ĝ), which
is singular at p. In order to construct Ĉ, we may start with an arc-length
parameter s along Γ. Let r(s) be the distance in C from the corresponding
point of Γ to p. Then choose a point p̂ ∈ H2(−κ2), and let a curve Γ̂ locally
isometric to Γ be traced out in H2(−κ2) so that the distance from p̂ equals r(s).
Let Ĉ = p̂××Γ̂, which may be in a covering of H2(−κ2) branched over p̂, and
finally glue Ĉ along the geodesic segments from p̂ to the initial and final points
(cf. [C], p. 211.) Note that the angle between two geodesics at p becomes larger
under ĝ, as we shall see in Proposition 5 below.



356 JAIGYOUNG CHOE AND ROBERT GULLIVER

Corollary 2.
(a) If Σ2 is a branched minimal surface in M, then G(ρ) is subharmonic on

Σ.

(b) If Ĉ is the cone p××∂Σ over the pole p of the distance function ρ in M

with the metric ĝ of Gauss curvature ≡ −κ2, then G(ρ) is harmonic on Ĉ,
except at p.

(c) Further, on Ĉ

�Ĉ log(1 + cosh κρ) = κ2 for κ > 0, and

�Ĉρ2 = 4 for κ = 0.

Proof.
(a) On Σ, the mean curvature vector of Σ vanishes and |∇Σρ| ≤ 1, hence

�ΣG(ρ) ≥ 0, except at p, according to Lemma 3(a). Near p, we argue as
in the proof of Corollary 1.

(b) On the cone Ĉ, however, we apply Lemma 3(a) with M = N = Ĉ, so that
�H ≡ 0 and |∇Ĉρ| ≡ 1. Moreover constancy of the Gauss curvature on Ĉ
forces all the inequalities in the proof of Lemma 3(a) to become equality
and consequently �ĈG(ρ) ≡ 0.

(c) Similarly for part (c).

Remark 2. The following four propositions treat the cone C = p××Γ. In the
proof of each, it is convenient to assume that the cone is immersed except at
p. This implies that Ĉ\{p} is a smooth two-dimensional manifold with Gauss
curvature K̂ ≡ −κ2. This assumption entails no loss of generality, since, as a
curve in M , Γ is the C2 limit of closed curves Γδ with the property that p××Γδ is
immersed except at p. Specifically, the geodesic curvatures k and k̂ considered
below, and the normal derivative νC · ∇ρ of ρ, are the pointwise limits almost
everywhere of the corresponding quantities for Γδ. This may be proven as at the
end of the proof of Proposition 2 above.

Proposition 3 (Density Comparison). Let Σ2 be a branched minimal surface
in an n-dimensional simply connected Riemannian manifold M with sectional
curvature ≤ −κ2. If Ĉ is as in Definition 4 above, then ΘΣ(p) < ΘĈ(p) unless
Σ is totally geodesic with constant Gauss curvature −κ2.

Proof. By Corollary 2, we have �ΣG(ρ) ≥ 0 and �ĈG(ρ) ≡ 0, where, as above,
G(ρ(x)) := log tanh(κρ(x)/2) and ρ(x) := dM (x, p) or dĈ(x, p) respectively. For
small ε > 0, write Ĉε := Ĉ\Bε(p) and Σε := Σ\Bε(p), where Bε(p) denotes
the geodesic ball in M of radius ε and center p. Then the boundary of Σε is
Γ ∪ (Σ ∩ ∂Bε(p)) . (The component Σ ∩ ∂Bε(p) may be empty.) Let νΣ be the
outward unit normal vector tangent to Σε at ∂Σε. Then

0 ≤
∫

Σε

�ΣG(ρ) dA =
∫

∂Σε

νΣ·∇G ds =
∫

Σ∩∂Bε(p)

κ
νΣ · ∇ρ

sinhκε
ds+

∫
Γ

κ
νΣ · ∇ρ

sinhκρ
ds.
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Along the small boundary component Σ ∩ ∂Bε(p), as ε → 0, νΣ · ∇ρ → −1
uniformly, and

κ
L(Σ ∩ ∂Bε(p))

2π sinhκε
→ ΘΣ(p).

Let νC be the outward unit normal vector tangent to C along its boundary.
Then it should be noted that

νΣ · ∇ρ ≤ νC · ∇ρ along Γ.

Thus, we find that the inequality above implies

2πΘΣ(p) ≤
∫

Γ

κ
νC · ∇ρ

sinhκρ
ds.(10)

Note here that νC , considered as a tangent vector to C, is also the outward
unit normal vector in the metric ĝ. Along the intrinsic distance sphere ∂B̂ε(p) ⊂
Ĉ, −∇ρ is the outward unit normal vector tangent to Ĉε. Hence by Corollary
2(b), assuming C\{p} is immersed, as ε → 0,

0 =
∫

Ĉε

�ĈG(ρ) dA → −2πΘĈ(p) +
∫

Γ

κ
νC · ∇ρ

sinhκρ
ds.

See Remark 2 for the non-immersed case. Therefore, by inequality (10),

2πΘĈ(p) =
∫

Γ

κ
νC · ∇ρ

sinhκρ
ds ≥ 2πΘΣ(p),

which is the desired estimate.
If equality holds, then �ΣG ≡ 0, which requires |∇Σρ| ≡ 1 according to

Lemma 3. But this means that Σ is a cone over p, as well as being minimal,
which can only occur when Σ is totally geodesic. Moreover, �ΣG ≡ 0 now
implies that �Σρ ≡ κ coth κρ, which, along with KΣ ≤ −κ2, implies that Σ has
constant Gauss curvature KΣ ≡ −κ2.

Proposition 4 (Geodesic Curvature Comparison). Let Γ be a C2 curve in Mn,
a manifold with sectional curvatures ≤ −κ2, and let C be the cone p××Γ. If Ĉ
is the cone C with the constant curvature metric ĝ, as in Definition 4 above,
then k(q) ≥ k̂(q) for almost all q ∈ Γ, where k and k̂ denote the inward geodesic
curvatures of Γ in C and Ĉ, respectively.

Proof. We first assume that C\{p} is immersed. For ρ0 > 0, let Γ0 = C ∩
∂Bρ0(p), and let k0 be the geodesic curvature of Γ0 in C. Also, let k̂0 be
the geodesic curvature of Γ0 in Ĉ. To estimate k0 and k̂0 let us define V (V̂ ,
respectively) to be a Jacobi field in C (Ĉ, respectively) along the unit-speed
geodesic γ from p to q ∈ Γ, satisfying

V (p) = V̂ (p) = 0 and V ⊥ γ̇, V̂ ⊥ γ̇.(11)

For each q ∈ Γ, since g = ĝ along Γ, we may also impose the boundary conditions

V (q) = V̂ (q), |V (q)| = |V̂ (q)| = 1,(12)
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thereby determining V and V̂ uniquely, since K and K̂, the Gauss curvatures of
C and Ĉ respectively, are nonpositive. In fact, V = V̂ as vector fields on C\{p}.
V and V̂ satisfy the Jacobi equations

∇γ̇∇γ̇V = R(γ̇, V )γ̇ and ∇̂γ̇∇̂γ̇ V̂ = R̂(γ̇, V̂ )γ̇,(13)

where ∇, ∇̂ denote the connections for the metrics g, ĝ respectively, while R, R̂
denote the Riemann curvature tensors of g and ĝ, respectively. Write f(t) =
||V (γ(t))||, and similarly f̂(t) = ||V̂ (γ(t))||, where the norms are measured using
g and ĝ, respectively. Since C and Ĉ have dimension 2, equations (13) are
equivalent to the scalar Jacobi equations

f ′′(t) + K(γ(t))f(t) = 0, f̂ ′′(t) + K̂(γ(t))f̂(t) = 0.(14)

By the Gauss equation we have

K = RM (γ̇, V, V, γ̇)/||V ||2 + det(B),

where RM is the Riemann curvature tensor of M and B is the second funda-
mental form of C in M. Since C is a cone, we have det(B) = 0, and it follows
that C has Gauss curvature

K ≤ −κ2.

We next compute k0 and k̂0. Extend V and V̂ as normal Jacobi fields along
all radial geodesics from p. Also, let W be the unit vector field which is tangent
to the radial geodesics. Then [V, W ] ≡ 0 and 〈V, W 〉 ≡ 0. Similarly, [V̂ , W ] ≡ 0
and 〈V̂ , W 〉 ≡ 0. Then

||V ||2k0 = −〈∇V V, W 〉 = 〈V,∇V W 〉 = 〈V,∇γ̇V 〉 = γ̇(||V ||2)/2 = f ′(t)f(t).

Thus k0(γ(t)) = f ′(t)/f(t). Similarly, we compute k̂0(γ(t)) = f̂ ′(t)/f̂(t). As
is well known, the scalar Jacobi equations (14) are equivalent to the Riccati
equations

k′
0(γ(t)) + k0(γ(t))2 = −K(γ(t)) ≥ κ2,

and
k̂′
0(γ(t)) + k̂0(γ(t))2 = −K̂(γ(t)) = κ2.

It follows that the difference satisfies a homogeneous linear differential inequality

(k0 − k̂0)′ + (k0 + k̂0)(k0 − k̂0) = −K + K̂ ≥ 0.

Meanwhile, k0−k̂0 = (f ′f̂−f̂ ′f)/(f̂f) → 0 as t → 0, as follows from L’Hospital’s
rule using the equations (14). Therefore

f ′/f − f̂ ′/f̂ = k0 − k̂0 ≥ 0.(15)

We are now in a position to compare the respective inward geodesic curvatures
k and k̂ of Γ. Write T = (V/f) cos ϕ − W sin ϕ for the unit tangent vector to
Γ: T has unit length with respect to either metric g or ĝ. Then ∇T T = −k νC

and ∇̂T T = −k̂ νC , where νC = (V/f) sinϕ + W cos ϕ is the outward unit
normal vector to Γ, with respect to either metric, and cosϕ ≥ 0. We compute
∇W W = ∇W (V/f) = 0, ∇V/f (V/f) = −k0W and ∇V W = k0V . It follows in
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a straightforward fashion that −k νC = ∇T T = −k0 νC cos ϕ − νCT (ϕ). Thus
k = k0 cos ϕ + T (ϕ), and similarly k̂ = k̂0 cos ϕ + T (ϕ). Hence

k − k̂ = (k0 − k̂0) cos ϕ ≥ 0.

Remark 2 now implies that k ≥ k̂ almost everywhere in the general case where
C\{p} need not be immersed.

Remark 3. The proof of Proposition 4 holds more generally, for any two
metrics g, ĝ on a cone which have the same unit-speed geodesics from the vertex,
agree at the boundary, and whose Gaussian curvatures satisfy K ≤ K̂.

Proposition 5 (Density and Area Comparison). Let Γ be a C2 curve in Mn,
and let C = p××Γ, as in Proposition 4. If Ĉ is the cone C with the constant
curvature metric ĝ, as in Definition 4 above, then the densities ΘC(p) ≤ ΘĈ(p)
and the areas Area(C) ≤ Area(Ĉ).

Proof. The inequality (15) above implies that f(t)/f̂(t) is increasing. Recalling
the normalization f = f̂ at each q ∈ Γ and f = f̂ = 0 at p, we see that
f(t) ≤ f̂(t) along γ, f ′ ≥ f̂ ′ at q, and f ′ ≤ f̂ ′ at p. Note that Area(C) and
Area(Ĉ) may be written as the same double integral with respective integrands
f and f̂ .

Remark 4. We note here an interesting inequality, related to Proposition 5
above, although we will not need it in this paper:

Area(Σ) ≤ Area(Ĉ).

The proof follows analogously to Proposition 3, using Lemma 3(b) and Corol-
lary 2.

Proposition 6 (Gauss-Bonnet).
(a) For any geodesic cone Ĉ = p××Γ, p �∈ Γ, with constant curvature −κ2 over

an immersed C2 curve Γ in Mn, n ≥ 2,

2πΘĈ(p) + κ2 Area(Ĉ) =
∫

Γ

k̂ ds,

where k̂ is the geodesic curvature of Γ in Ĉ.
(b) If p ∈ Γ, then

2πΘĈ(p) + κ2 Area(Ĉ) =
∫

Γ

k̂ ds − π.

Proof. (a) Consider p �∈ Γ. By the Gauss-Bonnet formula on Ĉε := Ĉ\Bε(p),∫
Ĉε

K̂ dA +
∫

Γ

k̂ ds +
∫

Ĉ∩∂Bε(p)

k̂ ds = 2πχ(Ĉε) = 0,(16)

where K̂ ≡ −κ2 is the intrinsic Gauss curvature of Ĉε. Since Ĉε is an immersed
annulus, the Euler number χ(Ĉε) = 0.
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The geodesic curvature of Ĉ ∩ ∂Bε(p) is the negative of the curvature of
∂Bε(p) as a curve in H2(−κ2), namely, −κ coth κε. Thus,

lim
ε→0

∫
Ĉ∩∂Bε(p)

k̂ ds = − lim
ε→0

(κ coth κε)L(Ĉ ∩ ∂Bε(p))

= − lim
ε→0

(cosh κε)2πΘĈ(p) = −2πΘĈ(p).

Since Area(Ĉε) → Area(Ĉ), the Gauss-Bonnet formula (16) now implies

−κ2 Area(Ĉ) +
∫

Γ

k̂ ds − 2πΘĈ(p) = 0,(17)

which proves Proposition 6(a) when C\{p} is an immersion. The general case
follows from Remark 2. The proof of (b) is analogous to (a) and Proposition
2(b).

Proof of Embedding Theorem 3. Let Σ2 be a branched minimal surface in M
whose boundary ∂Σ = Γ is a C2 Jordan curve satisfying the hypothesis (8):

Ctot(Γ) :=
∫

Γ

|�k| ds ≤ 4π + κ2A(Γ),

where −κ2 is an upper bound on sectional curvatures of the ambient manifold
M . We need to show that Σ has no branch points and is embedded. Thus, it
will suffice to show that ΘΣ(p) < 2 at all p ∈ M\Γ and that ΘΣ(p) < 3/2 at
p ∈ Γ.

Consider any p ∈ Σ\Γ, and let C = p××Γ be the geodesic cone over Γ with
vertex p. If Σ is totally geodesic, then Σ is embedded, since there are no compact
totally geodesic surfaces and no geodesic loops in M . Otherwise, by Proposition
3 and Proposition 6(a), we have

2πΘΣ(p) < 2πΘĈ(p) =
∫

Γ

k̂ ds − κ2 Area(Ĉ).

Recall that Σ ⊂ Hcvx(Γ). Hence Proposition 5 implies that Area(Ĉ) is at least
equal to the minimum cone area A(Γ), and since k̂ ≤ k ≤ |�k| almost everywhere
along Γ by Proposition 4, we find

2πΘΣ(p) < Ctot(Γ) − κ2A(Γ).

Therefore, hypothesis (8) implies ΘΣ(p) < 2. If p ∈ Γ, apply Proposition 6(b) to
show ΘΣ(p) < 3/2. Then, as in the proof of Theorem 1, the embedded character
of Σ follows.
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