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FAMILIES OF K3 SURFACES OVER CURVES REACHING
THE ARAKELOV-YAU TYPE UPPER BOUNDS AND

MODULARITY

Xiaotao Sun, Sheng-Li Tan, and Kang Zuo

Let f : X → C be a family of semi-stable curves of genus g over a smooth
projective C of genus q, and S ⊂ C the degeneration locus of f. The so-called
Arakelov inequality states that

deg f∗ωX/C ≤ g

2
deg Ω1

C(log S) =
g

2
(2q − 2 + #S).

When g ≥ 2 and #S = 0, the Miyaoka-Yau inequality for surfaces implies a
much stronger inequality

deg f∗ωX/C ≤ g − 1
6

deg Ω1
C .

In general, Tan [28] proved that the Arakelov inequality for a family f : X →
C of semi-stable curves of genus ≥ 2 holds strictly.

If g = 1, then deg f∗ωX/C can reach the upper bound in the inequality.
Beauville has classified such families over C = P1 with #S = 4. More precisely,
there are exactly 6 non-isotrivial families of semi-stable elliptic curves over P1

with 4 singular fibres. All of them are modular families of elliptic curves [2].
In this paper, we will consider the similar question for families of higher

dimensional varieties. The Arakelov inequality is a special case of some more
general inequalities for Hodge bundles. To state them, let V denote a polarized
real variation of Hodge structure on a smooth projective curve C \ S such that
the local monodromies around S are all unipotent, let

(⊕p+q=kEp,q, θ)

denote the corresponding Hodge bundles. In [8] the following Arakelov-Yau type
inequality was proven (also see [18] for a similar inequality):

If k = 2l + 1, then

deg Ek,0 ≤
1

2
(hk−l,l − hk−l,l

0 ) +
l−1∑
j=0

(hk−j,j − hk−j,j
0 )

 · deg(Ω1
C(log S)).
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If k = 2l,

deg Ek,0 ≤
l−1∑
j=0

(hj,k−j − hj,k−j
0 ) · deg(Ω1

C(log S)).

These inequalities generalize the original Arakelov inequality for a family
f : A → C of semi-stable abelian varieties due to Deligne. In general, Yau [31]
proved the so-called Yau’s Schwarz type inequality, which can be formulated
as follows. Let (M, ds) be a Hermitian manifold with holomorphic sectional
curvature bounded above by a negative constant K, and let (C \ S, dsµ) be a
Poincare type metric. Then there exists a positive constant c, such that for any
holomorphic map φ : C \ S → M, one has φ∗ds ≤ cdsµ. It is the reason why we
call such inequalities are of Arakelov-Yau type.

We now consider a family f : X → C of semi-stable algebraic K3 surfaces. Let
X0 denote the largest subscheme where f is smooth and projective, and assume
that R2f∗ZX0 extends to a local system V on C \ S. We call S the singularities
of R2f∗ZX and write ∆ := f∗(S), which is a normal crossing divisor. Then the
corresponding Hodge bundles read

(f∗ωX/C ⊕ R1f∗Ω1
X/C(log ∆) ⊕ R2f∗(OX), θ).

If f is non-isotrivial, it is known that f∗ωX/C is ample on C by Fujita [6] (also
see [9] [29] for higher dimensional base). Applying the above Arakelov-Yau type
inequality for Hodge bundles of weight-2 one obtains

deg f∗ωX/C ≤ deg Ω1
C(log S).(0.0.1)

If the iterated Kodaira-Spencer map of this family is zero, one shows a stronger
inequality

deg f∗ωX/C ≤ 1
2

deg Ω1
C(log S).(0.0.2)

In this note we shall study non-isotrivial algebraic families of semi-stable K3
surfaces over curves when the inequality (0.0.1), or (0.0.2) becomes an equality.
One shows in Theorem 0.1 below that such a numerical equality has a strong
consequence for the geometry of the generic fibre. The corresponding question
has been considered in [30] for families of abelian varieties. The final presentation
of this note has been influenced by [30]. It has also been motivated by Mok’s
work on rigidity theorems of locally Hermitian symmetric spaces [13] and [14],
where he use the Gaussian curvature of the induced metric on a holomorphic
curves in a locally Hermitian symmetric space to characterize when this curve
will be a totally geodesic embedding.

To state the main result, we recall some notation. Let a : A0 → C0 be a
family of abelian surfaces with a section, then the desingularization Z0 → C0

of the quotient A0/{±1} → C0 is a family of Kummer surfaces (the so called
Kummer construction). The rational map A0 → Z0 is called a rational quotient
of A0. The family a : A0 → C0 is called the associated family of abelian surfaces
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of Z0 → C0. In general, it is not true that every family of Kummer surfaces has
an associated family of abelian surfaces.

An involution ı on a K3 surface X is called a Nikulin involution if ı∗ω = ω for
every ω ∈ H0(X, Ω2

X). It is known (Nikulin [17]) that every Nikulin involution
ı has eight isolated fixed points, and the rational quotient X → Z by ı is a K3
surface.

Theorem 0.1. Let f : X → C be a family of semi-stable K3 surfaces over C,
and S ⊂ the singular locus of V =: R2f∗(ZX0). If S �= ∅ and if deg f∗ωX/C

reaches the Arakelov bound in (0.0.1), then the following properties hold true:
a) The general fibre of f : X → C has Picard number 19.
b) There exist a finite étale cover σ : C ′ → C, a Zariski open set C

′0 ⊂ C ′

and a global Nikulin involution ı on f : X0 = f−1(C
′0) → C

′0 such that
the rational quotient X0 → Z0 by ı is a family of Kummer surfaces over
C

′0, which has an associated family of abelian surfaces that is isogenous to
the square product of a family of elliptic curves g : E → C ′.

c) The projective monodromy representation of the local system R1g∗(ZE0)
extends to

τ : π1(C ′ \ σ−1S, ∗) → PSL2(Z)
such that

C ′ \ σ−1S � H/τπ1(C ′ \ σ−1S, ∗).
A family of K3 surfaces satisfying Property b) will be called a family coming

from Nikulin-Kummer construction of the square product of a family of elliptic
curves.

Theorem 0.2. If the second iterated Kodaira-Spencer map of the family f :
X → C is zero and if the family reaches the Arakelov bound in (0.0.2). Then
then the following properties hold true:

a) The general fibres of f : X → C have the Picard number at least 18.
b) After passing to a finite étale cover σ : C ′ → C, the monodromy represen-

tation ρ of R2f∗(ZX0) is of the form

ρ = trivial rank-2 representation ⊗ (τ : π1(C ′ \ σ−1S, ∗) → SL2(Z)),
and C ′ \ σ−1S � H/τπ1(C ′ \ σ−1S, ∗).

Remark 0.3.
i) Theorem 0.1 can be used to explain the observation of B. Lian and S.-T.

Yau ([10], [11]) that the weight-2 VHS attached to a certain one dimen-
sional families of K3 surfaces coming from the Mirror of K3 surfaces of
Picard number ≥ 1 can be expressed as the square products of the weight 1
VHS attached to a certain one dimensional families of elliptic curves (also
see [5]). Note that such a family must reach the Arakelov bound in (0.0.1).
We thank A. Todorov for pointing that out to us. Note that, if S = ∅ then
there is another type families of K3 surfaces reaching the Arakelov bound
(0.0.1). Namely, let a : A → C be a modular family of false elliptic curves,



326 XIAOTAO SUN, SHENG-LI TAN, AND KANG ZUO

i.e. abelian surface whose endomorphism ring is isomorphic to an order
of an indefinite quaternion algebra over Q ([26]). Then the Kummer con-
struction gives rise to a family f : X → C of smooth K3 surfaces reaching
the Arakelov bound (0.0.1), and C is a Shimura curve. One likes to know
what is the mirror pair of this family.

ii) For a family f : X → C as in Theorem 0.2 one can find a family f ′ : X ′ →
C, which comes from the Nikulin-Kummer construction of a product of a
modular family of elliptic curves g : E1 → C with an elliptic curve E2

over C, and such that sub VHSs of transcendental lattices of f and f ′ are
Hodge isometric to each other. Are there closer geometric relations among
these families?

Let f : X → P1 be a Calabi-Yau 3-fold fibred by non-constant families of
semi-stable K3 surfaces. The triviality of ωX implies that deg f∗ωX/P1 = 2.

Corollary 0.4. Let f : X → P1 be a Calabi-Yau 3-fold fibred by non-constant
semi-stable K3 surfaces. Then the followings hold true:

i) If the iterated Kodaira-Spencer map of f is non-zero, then f has at least 4
singular fibres. If f has 4 singular fibres, then X is rigid and birational to
the Nikulin-Kummer construction of a square product of a family of elliptic
curves g : E → P1. After passing to (if necessary) a double cover E′ → E,
the family g′ : E′ → P1 is one of the 6 modular families of elliptic curves
constructed by Beauville.

ii) If the iterated Kodaira-Spencer map of f is zero, then f has at least 6
singular fibres. If f has 6 singular fibres over S ⊂ P1, then X is non-rigid,
the general fibres have Picard number 18, and P1 \ S � H/Γ, where Γ is a
subgroup of SL2(Z) of index 24.

Remark 0.5.
i) Any K3-fibred Calabi-Yau 3-fold f : X → P1 in 0.4, i) is rigid because

of the modular construction for X. Since all 6 examples of Beauville are
defined over Z, we may assume that X has a suitable integral model. The
L−series of X is defined to be the L−series of the Galois representation on
H3

et(X̄, Q). One should be able to verify the so-called modularity conjecture
for X. M.-H. Saito and N. Yui [20] checked for one example that up to a
finite Euler factor, L(X, s) = L(f, s) for f ∈ S4(Γ0(N)).

ii) Does any rigid Calabi-Yau 3-fold fibred by semi-stable K3 surfaces come
from the modular construction in 0.4, i)?

iii) One can construct an example for the case ii) of Corollary 0.4. Let

g : E(4) → X(4)

be the modular family of elliptic curves corresponding to the congruence
group Γ(4). Then X(4) � P1 with six cusps, and deg g∗ωE(4)/X(4) = 2. The
Nikulin-Kummer construction applied to the product of g : E(4) → X(4)
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with a constant family of elliptic curves gives an K3 fibred Calabi-Yau
3-fold reaching the upper bound in (0.0.2), which is non-rigid.

1. Weight-2 VHS and R−Splitting

Let f : X → C be a family of semi-stable K3 surfaces. Consider its weight-2
variation of Hodge structure (VHS for simplicity)

V0 = R2f∗(ZX0).

Let S ⊂ C denote the subset, where the local monodromies of V0 are non-
trivial, hence of infinite order and ∆ := f∗(S). We will write V for the extension
of V0 to C \ S. One has the canonical extension of Hodge bundles

Ep,q = Rqf∗(Ω
p
X/C(log ∆), p + q = 2,

together with the cup product of Kodaira-Spencer map

θp,q : Ep,q → Ep−1,q+1 ⊗ Ω1
C(log S).

θ = θ2,0 + θ1,1 is called the Higgs field of V.

Lemma 1.1. We have deg E2,0 ≤ deg Ω1
C(log S), and if the equality

deg E2,0 = deg Ω1
C(log S)

holds, then there is a real splitting V⊗R = WR ⊕UR, which is orthogonal w.r.t.
the polarization, and U is unitary. The corresponding Higgs bundle splitting is

(E2,0 ⊕ E1,1
1 ⊕ E0,2, θ) ⊕ (E1,1

2 , 0)

where E1,1 = E1,1
1 ⊕ E1,1

2 and E1,1
1 is a line bundle of degree zero such that

θ : E2,0 → E1,1
1 ⊗ Ω1

C(log S), θ : E1,1
1 → E0,2 ⊗ Ω1

C(log S)

are isomorphisms.

Proof. We consider the map θ1,1 : E1,1 → E0,2 ⊗Ω1
C(log S), and let E1,1

2 ⊂ E1,1

denote the kernel of θ1,1. Then (E1,1
2 , 0) is a Higgs sub-bundle.

Claim. deg E1,1
2 ≤ 0, and if the equality holds then the Higgs subbundle

(E1,1
2 , 0) ⊂ (E, θ)

induces a splitting (E, θ) = (E2,0⊕E1,1
1 ⊕E0,2, θ)⊕ (E1,1

2 , 0), which corresponds
to a C−splitting of the local system V ⊗ C = WC ⊕ UC.

Proof of the claim. Let h denote the Hodge metric on E|C\S , and let Θ(E|C\S , h)
be its curvature form. Then we have ([7], Chapter II)

Θ(E|C\S) + θ ∧ θ̄ + θ̄ ∧ θ = 0,

where θ̄ is the complex conjugation of θ with respect to h. Consider the C∞

h−orthogonal decomposition E|C\S = E1,1
2 |C\S ⊕ E1,1

2 |C\S
⊥

. One has

Θ(E1,1
2 |C\S , h) = Θ(E|C\S , h)|E1,1

2
+ Ā∧A = −(θ∧ θ̄)|E1,1

2
− (θ̄∧ θ)|E1,1

2
+ Ā∧A,
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where A ∈ A1,0(Hom(E1,1
2 , E1,1

2

⊥
)) is the second fundamental form of the sub-

bundle E1,1
2 ⊂ E and Ā is the complex conjugation with respect to h. Since

θ(E1,1
2 ) = 0, we have (θ̄ ∧ θ)|E1,1

2
= 0. Hence

Θ(E1,1
2 |C\S′ , h) = −(θ ∧ θ̄)E1,1

2
+ Ā ∧ A.

Θ(E1,1
2 |C\s′ , h) is negative semidefinite since θ∧ θ̄E1,1

2
is positive semidefinite and

Ā ∧ A is negative semidefinite. Since the local monodromies around points in
S are unipotent, Tr Θ(E1,1

2 |C\S′ , h) represents (by [22]) the Chern class c1(E
1,1
2 )

as a current. Thus

deg E1,1
2 =

∫
C\S

TrΘ(E1,1
2 |C\S , h) ≤ 0,

and Θ(E1,1
2 |C\S , h) = 0 if deg E1,1

2 = 0. This implies that θ̄(E1,1
2 ) = 0 and A = 0.

Altogether this shows that the sub-Higgs bundle (E1,1
2 , 0) of (E, θ) induces a

splitting of the Higgs bundle

(E, θ) = (E2,0 ⊕ E1,1
1 ⊕ E0,2, θ) ⊕ (E1,1

2 , 0)

and the corresponding splitting V ⊗ C = WC ⊕ UC of the complex local system.
Thus the claim is proved.

Let I ⊂ E0,2 ⊗ Ω1
C(log S) denote the image of θ1,1. Then the exact sequence

0 → E1,1
2 → E1,1 → I → 0,

together with deg E1,1 = 0 implies that

−deg E1,1
2 = deg I.

Hence,

−deg E2,0 + deg Ω1
C(log S) = deg(E0,2 ⊗ Ω1

C(log S)) ≥ deg I = −deg E1,1
2 ≥ 0.

Thus the inequality deg E2,0 ≤ deg Ω1
C(log S) becomes an equality if and only if

deg E1,1
2 = 0 and I = E0,2 ⊗ Ω1

C(log S), which is our E1,1
1 . It is easy to see that

the Higgs field of WC is an isomorphism, thus WC is irreducible over C. Now
we only need to show that the decomposition V⊗C = WC ⊕UR can be, in fact,
defined over R. Taking the complex conjugation on WC one has

WC ⊂ V ⊗ C = V ⊗ C.

W̄C is again of the Hodge type (2, 0) + (1, 1) + (0, 2), irreducible and with
non-zero Higgs field. The projection p : WC ⊂ V ⊗ C → UC can not be injective
since UC is unitary. Moreover, since W̄C can not have a proper sub local system,
this projection must be zero. Thus WC = WC and we obtain a real sub local
system WR ⊂ V⊗R. The intersection form restricted to WR is non-degenerated.
Thus the orthogonal complement of WR with respect to the intersection form
gives the desired real decomposition V ⊗ R = WR ⊕ UR.
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Lemma 1.2. If the iterated Kodaira-Spencer map θ1,1θ2,0 = 0, then

deg E2,0 ≤ 1
2

deg Ω1
C(log S).

When the equality deg E2,0 = 1
2 deg Ω1

C(log S) holds, then there is a real splitting

V ⊗ R = W ⊕ U,

which is orthogonal w.r.t. the polarization, and U is unitary. The corresponding
Higgs bundle splitting is

(E2,0 ⊕ (E1,1
1 ⊕ E1,1

1

∗
) ⊕ E0,2, θ) ⊕ (E1,1

2 , 0)

where E1,1
1 and E1,1

1

∗
are sub line bundles of E1,1 with

deg E1,1
1 = −deg E2,0 = −1

2
deg Ω1

C(log S),

and E1,1 = E1,1
1 ⊕ E1,1

1

∗ ⊕ E1,1
2 . The Higgs field

θ : (E2,0 ⊕ (E1,1
1 ⊕ E1,1

1

∗
) ⊕ E0,2) → (E2,0 ⊕ (E1,1

1 ⊕ E1,1
1

∗
) ⊕ E0,2) ⊗ Ω1

C(log S)

is defined by θ = τ ⊕−τ∗, where τ : E2,0 � E1,1
1 ⊗ Ω1

C(log S), E1,1
1 → 0.

Proof. Since θ1,1θ2,0 = 0, the map θ2,0 factors through

θ2,0 : E2,0 → E1,1
1 ⊗ Ω1

C(log S),

where E1,1
1 ⊂ E1,1 is a sub-line bundle such that θ1,1(E1,1

1 ) = 0. Thus

(E2,0 ⊕ E1,1
1 , θ2,0) ⊂ (E, θ)

is a rank-2 Higgs sub bundle. By the same arguments as in the proof of
Lemma 1.1, one has deg E2,0 ⊕ E1,1

1 ≤ 0, thus

deg E2,0 ≤ 1
2
Ω1

C(log S).

If the equality holds, then θ2,0 =: τ : E2,0 → E1,1
1 ⊗ Ω1

C(log S) is an isomor-
phism with deg E1,1

1 = −deg E2,0 = − 1
2 deg Ω1

C(log S), and the Higgs sub bundle
(E2,0⊕E1,1

1 , θ2,0) ⊂ (E, θ) gives rise to a complex sub local system W1 ⊂ V⊗C.
The dual W̄1 ⊂ V ⊗ C corresponds to Higgs subbundle

(E2,0 ⊕ E1,1
1 )∗ = E1,1

1

∗ ⊕ E0,2

together with the Higgs field −τ∗ : E1,1
1

∗ → E0,2 ⊗ Ω1
C(log S). The sub-local

system W := W1 ⊕ W̄1 is real, and the intersection form restricted to W is
non-degenerated. Hence, the orthogonal complement defines the desired decom-
position.
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2. Splitting over Q̄

We start with a very simple observation. Suppose that V is a local system
defined over Q̄. Fixing a positive integer r, let G(r, V) denote the set of all rank-r
sub-local systems of V. Then G(r, V) is a projective variety defined over Q̄. The
following property is well known.

Lemma 2.1. If [W ] ∈ G(r, V) is an isolated point, then W is defined over Q̄.

Lemma 2.2. The R-splittings V ⊗ R = W ⊕ U in Lemma 1.1 and Lemma 1.2
can be defined over Q̄.

Proof. By Lemma 2.1, one only needs to show that W is a rigid sub-local system
of V ⊗ C. Suppose that there is a family of sub-local systems

{Wt}, W0 = W.

By semi-continuity, the Higgs fields θp,q of Wt are again isomorphisms for t being
sufficiently closed to 0. Then the projection Wt → V ⊗ C → U must be zero,
otherwise, Wt would contain a non-trivial unitary component, which contradicts
that θp,q are isomorphisms. Hence Wt = W.

Similarly, we show that the sub-local system W = W1 ⊕ W̄1 ⊂ V = W ⊕ U is
rigid. Suppose that there is a family of sub local systems {Wt} with W0 = W,
we decompose Wt into the direct sum of irreducible components over C, which
has only following possible types up to isomorphism

W1 ⊕ W̄1; W1 ⊕ U′; W̄1 ⊕ U′′; U′′′,

where U′, U′′, U′′′ are unitary. By semicontinuity, the last three cases are im-
possible if t is sufficiently closed to 0 (otherwise θ1,1 would be zero). Thus

Wt � W1 ⊕ W̄1,

which implies that the projection Wt → V ⊗ C → U must be zero. Otherwise,
W1 would contain a non-trivial unitary component, which contradicts that the
Higgs fields of W are isomorphisms.

3. Splitting over Q and Z-structures

We call the splitting in Lemma 1.1 of type (0.0.1) and the splitting in Lemma
1.2 of type (0.0.2).

Lemma 3.1. If S �= ∅, the splittings in Lemma 2.2 can be defined over Q.

Proof. Let V ⊗ K = W ⊕ U be the splitting of type (0.0.1) in Lemma 2.2,
where K is a Galois extension of Q. For any σ ∈ Gal(K/Q), we claim that
σW = W. Otherwise, the projection p : σW → V ⊗ K → U must be non-
zero and σW is isomorphic to a unitary sub local system U′ ⊂ U under p since
W is irreducible (thus σW is also irreducible). Let γ be a short loop around
s ∈ S. Then the monodromy matrix ρW(γ) has infinite order, hence ρσW(γ) has
also infinite order, which contradicts that ρU′(γ) is identity. We proved that W
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is invariant under Gal(K/Q). Hence W is defined over Q and the orthogonal
complement of W ⊂ V ⊗ Q w.r.t. the intersection form defines an Q−splitting

V ⊗ Q = W ⊕ U.

By the same argument, we show that the splitting of type (0.0.2) in Lemma
2.2 is also defined over Q.

Lemma 3.2. After passing to a finite etale cover of C the splittings in Lemma
3.1 induce Z−sub lattices

V ⊃ WZ ⊕ Zν ,

where ν = 19 under the assumptions of 1.1 and ν = 18 under those in 1.2 such
that

V ⊗ Q = (WZ ⊕ Zν) ⊗ Q,

where Zν is respectively a rank-ν constant Z-lattice of type-(1,1).

Proof. Let WZ = V ∩ W, UZ = V ∩ U. It is easy to check that

WZ ⊗ Q = W, UZ ⊗ Q = U,

thus WZ and UZ are lattices in W and U. Since U is unitary and carries an
Z−structure, the monodromy group of U is finite. Since the local monodromies of
U around S are trivial, U extends to a local system on C. Therefore, after passing
to the cover corresponding to this monodromy group, U becomes a constant local
system Z19, Z18 respectively.

Corollary 3.3. Let f : X → C be a family of semi-stable K3 surfaces over a
curve C. When it reaches the upper bound deg f∗ωX/C = deg Ω1

C(log S), then the
Picard number of the general fibres is at least 19. If θ1,1θ2,0 = 0 and f reaches
the upper bound deg f∗ωX/C = 1

2 deg Ω1
C(log S), then the Picard number of the

general fibres is at least 18.

4. Nikulin and Kummer construction

Let f : X → C be a family of semi-stable K3 surfaces, which reaches the
upper bound deg f∗ωX/C = deg Ω1

C(log S). By Lemma 3.2, after passing to a
finite étale cover of C, one has

V ⊗ Q = W ⊕ Q19,

where W is an C-irreducible representation of π1(C \S, ∗) and Q19 is a constant
local system of rank 19 such that Q19

t ⊂ NS(Xt) ⊗ Q for any t ∈ C \ S. We
obtain therefore,

Lemma 4.1. For any t ∈ C \ S, the Picard number ρ(Xt) ≥ 19 and for any
class st ∈ Q19

t ⊂ Pic(Xt) ⊗ Q there is a Q-divisor D ∈ Div(X) ⊗ Q such that
D|Xt

= st.
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Let Y be an algebraic K3 surface and H2(Y, Z) = TY ⊕ NS(Y ) be the
orthogonal decomposition. TY is the so called transcendental lattice of Y , which
is even and has signature (2, 20 − ρ(Y )). It is well-known that as lattices

H2(Y, Z) ∼= U3 ⊕ E8(−1)2.

We recall some results about embeddings of lattices (see [15] and references given
there).

Lemma 4.2 (Theorem 2.4 of [12], or Corollary 2.6 of [15]). Let T be a non-
degenerate even lattice of rank r. Then there is a primitive embedding

T ↪→ Ur

In particular, if ρ(X) ≥ 19, then there is a primitive embedding

TX ↪→ U3.

Lemma 4.3. If 12 < ρ ≤ 20, then every even lattice T of signature (2, 20 − ρ)
occurs as the transcendental lattice of some algebraic K3 surface and the primi-
tive embedding T ↪→ U3 ⊕ E8(−1)2 is unique.

Theorem 4.4 ([15]). If ρ(Y ) ≥ 19, then there exists a primitive embedding

ϕ : E8(−1)2 ↪→ NS(Y ) ⊂ H2(Y, Z)

and a Nikulin involution τ : Y → Y such that τ∗ : H2(Y, Z) → H2(Y, Z) is
identity on (ϕ(E8(−1)2)⊥.

Proof. By Lemma 4.2, there is a primitive embedding φ : TY ↪→ U3, thus a
primitive embedding φ ⊕ 0 : TY ↪→ U3 ⊕ E8(−1)2. By Lemma 4.3 (uniqueness),
the above embedding is isomorphic to

TY = NS(X)⊥ ⊂ H2(Y, Z) ∼= U3 ⊕ E8(−1)2.

Thus, there is a primitive embedding

ψ : E8(−1)2 ↪→ T⊥
Y = NS(Y ) ⊂ H2(Y, Z).

Let {c1
j}1≤j≤8 and {c2

j}1≤j≤8 be the bases of E8(−1) ⊕ 0 and 0 ⊕ E8(−1) and

g : H2(Y, Z) → H2(Y, Z)

be defined as: g(ψ(c1
j )) = ψ(c2

j ), g(ψ(c2
j )) = ψ(c1

j ) and g(e) = e for any e ∈
(ψ(E8(−1)2))⊥. Then, by theorems of Nikulin (see Theorem 5.6 of [Mo]), there
is a Nikulin involution τ : Y → Y and w ∈ W (Y ) (the group of Picard-Lefschetz
reflections) such that τ∗ = w · g · w−1. Let

ϕ : E8(−1)2
ψ→ H2(Y, Z) w→ H2(Y, Z),

then ϕ : E8(−1)2 ↪→ NS(Y ) ⊂ H2(Y, Z) is another primitive embedding, and

τ∗(ϕ(c1
j )) = ϕ(c2

j ), τ∗(ϕ(c2
j )) = ϕ(c1

j ), τ∗(e) = e, ∀e ∈ (ϕ(E8(−1)2))⊥.
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Let t0 ∈ C \S be a point such that the fibre Xt0 satisfying ρ(Xt0) = 19. Thus,

Q19
t0 = NS(Xt0) ⊗ Q.

Since the monodromy action of π1(C\S, t0) on Q19
t0 is trivial, ϕ(c1

j ) and ϕ(c2
j ), 1 ≤

j ≤ 8 can be lifted to divisors D1
j and D2

j , 1 ≤ j ≤ 8 on X. Then we have

Lemma 4.5. For any t ∈ C \S, let di
jt

= Di
j |Xt ∈ H2(Xt, Z). Then {di

jt
}1≤j≤8

(i = 1, 2) generate a sublattice of H2(Xt, Z), which is isomorphic to E8(−1)2

such that E8(−1)2 ↪→ H2(Xt, Z) is a primitive embedding, E8(−1) ⊕ 0 and
0 ⊕ E8(−1) are isomorphic to Z{d1

j t
, j = 1, ..., 8} and Z{d2

j t
, j = 1, ..., 8}

Proof. The proof is straightforward. For example, to prove that {d1
j t
}1≤j≤8 are

Z-linearly independent: if
∑

njd
1
j t

= 0 in H2(Xt, Z), we claim that
∑

njϕ(c1
j ) =

0, which will imply the Z-linearly independence of {d1
j t
}1≤j≤8. The claim is clear,

otherwise there is a A ∈ NS(Xt0) such that (
∑

njϕ(c1
j ), A) �= 0. Let Ã be a

lifting of A, then(∑
njd

1
j t

, Ã|Xt

)
=

(∑
njD

1
j |Xt

, Ã|Xt

)
=

(∑
njD

1
j |Xt0

, Ã|Xt0

)
=

(∑
njϕ(c1

j ), A
)
�= 0.

To see that the embedding E8(−1)2 ↪→ H2(Xt, Z) is primitive, let B ∈ H2(Xt, Z)
be a class with mB ∈ Z{di

jt
, i = 1, 2, j = 1, ..., 8}. Since B is invariant under

the monodromy, one finds a lifting B̃ of B. Since ϕ : E8(−1)2 ↪→ H2(Xt0 , Z) is
primitive and mB̃|Xt0

∈ ϕ(E8(−1)2), B̃|Xt0
=

∑
ni

jϕ(ci
j). Then(

m
(
B̃ −

∑
ni

jD
i
j

)
|Xt , m

(
B̃ −

∑
ni

jD
i
j

)
|Xt

)
= 0

and (m(B̃ − ∑
ni

jD
i
j)|Xt , H|Xt) = 0. By Hodge index theorem one obtains

m(B̃ − ∑
ni

jD
i
j)|Xt

= 0, hence, (B̃ − ∑
ni

jD
i
j)|Xt

= 0.

Let E =
⊕

p+q=2 Ep,q denote the canonical extension of the Hodge bundle
associated to the local system R2f∗(ZX0), and End(E) → C denote the sheaf
of endomorphisms of the vector bundle m(B̃ − ∑

ni
jD

i
j)|Xt = 0E → C, which

represents the functor

End(E)� : {schemes over C} → {sets}
where End(E)�(T ) = {bundle morphism ET → ET over T}. For t ∈ C \ S, by
Lemma 4.5, we can define an isometric involution

gt : H2(Xt, Z) → H2(Xt, Z)

by gt(d1
j t

) = d2
j t

, gt(d2
j t

) = d1
j t

, gt(e) = e for all e ∈ Z{di
jt
}⊥ and 1 ≤ j ≤ 8. It is

easy to see that gt : H2(Xt, Z) → H2(Xt, Z) is a morphism of π1(C\S)-modules.
Thus, they give rise an involution

g : R2f∗(ZX0) → R2f∗(ZX0)

of local system, which corresponds to a section g ∈ H0(C \ S, End(E)).
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Lemma 4.6. The section g ∈ H0(C \S, End(E)) defined above can be extended
to a section in H0(C,End(E)), and thus g is an algebraic section.

Proof. Recall that R2f∗(ZX0) ⊗ Q = W ⊕ Q19 and the canonical extension of
the Hodge bundle corresponding to R2f∗(ZX0) can be written into

(E, θ) = (EW, θ) ⊕ (O19
C , 0),

where (EW, θ) and (O19
C , 0) are the canonical extension of the Hodge bundles

corresponding to W and Q19 respectively. By the construction of g, it is identity
on W (thus extended to EW), and is well-defined on the constant lattice Z19.
Thus it is clear that g can be extended on C.

Lemma 4.7. Let H be an ample divisor on X and gt : H2(Xt, Z) → H2(Xt, Z)
be the Hodge isometry involutions defined above. Then there exists a non-empty
Zariski open set C0 ⊂ C \ S such that gt(H|Xt

) is an ample divisor for any
t ∈ C0, In particular, gt is an effective Hodge isometry for any t ∈ C0.

Proof. We may write H|Xt0
=

∑
n1

jϕ(c1
j ) +

∑
n2

jϕ(c2
j )+ e, where e∈ϕ(E8(−1)2)⊥.

Let E be a lifting of e and

D =
8∑

j=1

n1
jD

1
j +

8∑
j=1

n2
jD

2
j + E, D̃ =

8∑
j=1

n1
jD

2
j +

8∑
j=1

n2
jD

1
j + E.

Then, for any t ∈ C \S, H|Xt = D|Xt and gt(D|Xt) = D̃|Xt . Thus D is a relative
ample divisor on f−1(C \ S) and D̃|Xt0

is ample (here we have chosen t0 such
that gt0 is effective). Thus there exists a Zariski open set C0 ⊂ C \ S such that
D̃ is relative ample on f−1(C0).

Lemma 4.8. The g induces an involution τ : f−1(C0) → f−1(C0) over C0

such that τt : Xt → Xt (for t ∈ C0) are Nikulin involutions with τ∗
t = gt.

Proof. Let L = D + D̃, where D and D̃ are the divisors defined in the proof of
Lemma 4.7. Then we know that L is relative ample on f−1(C0) and Lt = L|Xt

is invariant under the involution gt. Let π : AutL(f−1(C0)/C0) → C0 denote
the automorphism group scheme, which represents the functor

AutLf−1(C0)/C0(T ) =

{
Isomorphisms h : f−1(C0) ×C0 T → f−1(C0) ×C0 T

over T such that h∗(p∗TL) = p∗T (L)

}
.

Thus there exists a universal automorphism

f−1(C0) ×C0 AutL(f−1(C0)/C0) h→ f−1(C0) ×C0 AutL(f−1(C0)/C0)
f̃ ↓ f̃ ↓

AutL(f−1(C0)/C0) = AutL(f−1(C0)/C0)

and h∗ induces an endomorphism π∗E → π∗E, which gives a homomorphism

AutL(f−1(C0)/C0) α→ End(E)
π ↓ ↓
C0 = C0.
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By Torelli theorem of K3 surfaces, α is injective. On the other hand, the fibres
of α are isomorphic to group schemes, which are smooth. Thus α is an embed-
ding. By Lemma 4.6 and Lemma 4.7, g(C0) is algebraic and contained in the
image of α, which gives a section of π : AutL(f−1(C0)/C0) → C0. That is an
automorphism

f−1(C0) τ→ f−1(C0)
f ↓ f ↓
C0 = C0

such that τ∗
t = gt for any t ∈ C0. Thus τt are Nikulin involutions, i.e. τ∗

t ω = ω
for any ω ∈ H2,0(Xt).

Since all fibres Xt are algebraic K3 surfaces, the τt gives rise a Shioda-Inose
structure on Xt by theorems of Morrison (see Theorem 6.3 of [15]). Let g : Z0 →
C0 be the desingularization of f−1(C0)/τ → C0. Then g : Z0 → C0 is a family
of Kummer surfaces and there exist divisors N1, ..., N8 on Z0 such that their
restrictions (N1)t, ..., (N8)t on Z0

t are the exceptional (−2)-curves of the double
points of Xt/τt (produced by the eight isolated fixed points of τt). By Lemma
3.2, we write R2f∗(Zf−1(C0)) = W⊕Z19. Then we have (see Lemma 3.1 of [15])

R2g∗(ZZ0) � (W ⊕ Z19τ
)(2) ⊕ Z[N1, ..., N8],

where Z19τ is the invariant sub local system of Z19 under τ, (W ⊕ Z19τ )(2) has
the same underlying local system as (W⊕Z19τ ), and with the intersection form
defined by multiplication by 2 of the the intersection form on (W ⊕ Z19τ ).

Lemma 4.9. By making C0 smaller, there exists a family of abelian surfaces

a : A0 → C0

with ρ(A0
t ) ≥ 3 such that g : Z0 → C0 is its Kummer construction.

Proof. It is easy to see that, for any t ∈ C0, NS(Z0
t ) contains a sub-lattice,

which is isomorphic to Z19τ (2) ⊕ Z[N1, ..., N8] as a trivial π1(C \ S)-modules.
Thus g : Z0 → C0 is a family of Kummer surfaces with ρ(Zt) ≥ 19. Let t0 ∈ C0

with ρ(Z0
t0) = 19. Then NS(Z0

t0) ⊃ Z19τ ⊕ Z[N1, ..., N8] and

NS(Z0
t0) ⊗ Q = (Z19τ ⊕ Z[N1, ..., N8]) ⊗ Q.

Let F1, ..., F16 be the liftings of the sixteen pairwise-disjoint (−2)-curves on
Z0

t0 to Z0. It is not difficult to see that we can choose Fi (i = 1, ..., 16) to be
effective divisors on Z0. In fact, since g∗OZ0(Fi) �= 0 (because H0(Fi|Z0

t
) �= 0

for any t ∈ C0 by Riemann-Roch theorem), we have, for m large enough and a
point p ∈ C0, H0(OZ0(Fi + mg−1(p))) = H0(OC0(mp) ⊗ g∗OZ0(Fi)) �= 0. Thus
there is an effective divisor D on Z0 such that D|Z0

t0
is numerical equivalent

to Fi|Z0
t0

, which implies that D|Z0
t0

= Fi|Z0
t0

since a nodal class is represented
by only one effective divisor. We can choose Fi (i = 1, ..., 16) to be irreducible
further. In fact, we will show that Fi|Z0

t
is irreducible if ρ(Z0

t ) = 19. Otherwise,
let Fi|Z0

t
= D1 + D2, where D1 is irreducible with D2

1 = −2 and D2 is effective.
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Note that for any lifting of an irreducible curve, whose restriction to any other
fibre is equivalent to an effective divisor. Thus if D̃1 and D̃2 are the liftings of
D1 and D2 (D̃2 obtained by lifting the irreducible components of D2), we see
that D̃1|Z0

t0
and D̃2|Z0

t0
are equivalent to effective divisors. On the other hand,

Fi|Z0
t0
− D̃1|Z0

t0
is numerically equivalent to D̃2|Z0

t0
since it is so on Z0

t . But this
is impossible since Fi|Z0

t0
is a nodal class. Let g : Z → C be a compactification

of g : Z0 → C0 with Z smooth and F1, ..., F16 be extended to Z. It is known
that F1|Zt0

+ · · · + F16|Zt0
≡ 2δ. Let ∆ be a divisor on Z such that ∆|Zt0

= δ.
Then F1 + · · ·+F16 − 2∆ is numerically equivalent to zero on the general fibres,
thus

F1 + · · · + F16 − 2∆ ≡ g∗Da, Da ∈ Div(C).

Choose C0 smaller so that Fi|Zt (i = 1, ..., 16) are irreducible for t ∈ C0 and

F1 + · · · + F16 ≡ 2∆ on Z0.

Let A0′ → Z0 be the double covering with branch locus F1 + · · · + F16, and
let = : A0′ → A0 be the uniform blowing down of the sixteen (−1)-curves
on the fibres A′

0t. Then a : A0 → C0 is the family of abelian surfaces with
ρ(A0

t) ≥ 3.

5. Splitting on families of abelian surfaces

Let a : A0 → C0 be the family of abelian surfaces constructed in Lemma 4.9.
We take a compactification a : A → C, (which may not be semi-stable). We
consider the decomposition

R2a∗(ZA0) ⊗ Q = Qρ ⊕ Ta,

where Qρ is the maximal constant sub local system and its complement Ta is the
so-called the sub VHS of the transcendental part of R2a∗(ZA0). It is known that
Ta is Hodge isometric to Tg(2), where Tg is the sub VHS of the transcendental
part of the weight-2 VHS R2g∗(ZZ0)attached to the family of Kummer surfaces
g : Z0 → C0 arisen from a : A → C. Furthermore, Tg is Hodge isometric to
Tf (2), where Tf = W is the sub VHS of the transcendental part of the weight-2
VHS R2f∗(Zf−1(C0)) attached to one original family f : f−1(C0) → C0. Since
W is, in fact, defined on C \ S, Ta can be extended to C \ S as an VHS.

Lemma 5.1. The Q−vector space of endomorphisms of

R1a∗(ZA0) ⊗ Q

has dimension 4, and is of (0, 0)-type.

Proof. By the construction of a : A0 → C0, we see R2a∗(ZA0)⊗Q contains a con-
stant local system of dimension 3 of (1,1)-type (this corresponds to a sub-lattice
of Picard lattice of A0). Hence, it corresponds to a 3-dimensional subspace of
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End(R1a∗(ZA0)) of (0,0)-type. Using a non-scalar endomorphism of this space,
we can split R1a∗(ZA0) ⊗ C into the following type

R1a∗(ZA0) ⊗ C � W1 ⊕ W2,

where both Wi are of rank-2 and irreducible over C. Otherwise R1a∗(ZA0) ⊗ C
would contain a rank-1 sub-local system with zero Higgs field. This implies that
the Higgs field of (p, g)-type on ∧2R1a∗(ZA0)⊗C can not be isomorphism, a con-
tradiction. We claim that W1 � W2. Otherwise, the space End(R1a∗(ZA0))⊗C
of global sections of End(R1a∗(ZA0))⊗C has at most dimension 2, a contradic-
tion. Let W1 � W2 � W. We have then

End(R1a∗(ZA0)) ⊗ C � End(W)⊕4 = End0(W)⊕4 ⊕ C4 = W′ ⊕ C4.

Since W is irreducible, one shows that W′ does not contain any constant sub-local
system and the last splitting can be defined overQ. Hence,

dim End(R1a∗(ZA0)) ⊗ Q = 4.

Lemma 5.2. The family a : A0 → C0 is isogenous to the square product of a
family of elliptic curves e : E0 → C0.

Proof. Case 1). Suppose that there is a subset T ⊂ C0 of non-countable many
points such that At is isogenous to Et×Et, t ∈ T. Since there are only countable
many isomorphic classes of elliptic curves having complex multiplication, we find
an t0 ∈ T such that End(Et0) ⊗ Q = Q. Hence, the endomorphism algebra

End(At0) ⊗ Q � M2(Q).

In the other words, we have End(R1a∗(ZA0) ⊗ Q)|t0 � M2(Q). Since

End(R1a∗(ZA0) ⊗ Q)

is constant local system, we have End(R1a∗(ZA0) ⊗ Q) � M2(Q). The element[
1 0
0 0

]
∈ End(R1a∗(ZA0) ⊗ Q)

gives a Q−splitting R1a∗(ZA0) ⊗ Q = WQ ⊕ WQ, thus isogeny splitting of
f : A0 → C0 into the square product of a family of elliptic curves e : E0 → C0.

Case 2). Suppose that there are non-countable many points {t} ⊂ C0 such
that At is simple. Since the Picard number ρ(At) ≥ 3, one checks easily that
ρ(At) = 3 and End(At) ⊗ Q is the totally indefinite quaternion algebra over Q.
An abelian surface with this type endomorphism algebra is called a false elliptic
curve. There are countable many projective curves {Ci}i∈N in the moduli space
of polarized abelian surfaces, which are Shimura curves of certain type and
parameterize all false elliptic curves. So, the family a : A0 → C0 induces a
morphism φ : C0 → Ci for some i ∈ N, which extends to a morphism φ : C → Ci.
This implies that the local monodromies of R2a∗(ZA0) around the singularity
has finite order. It contradicts to S �= ∅.
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6. Proof of Theorems 0.1, 0.2 and Corollary 0.4

Proof of Theorem 0.1. Only the modularity of C ′ \ σ−1S needs to be checked.
The isogeny a : A0 → C0 ∼ e2 : E0 ×C0 E0 → C0 induces an isomorphism
S2(R1e∗(ZE0)) � W|C0 . There are natural group homomorphisms

1 → {±1} → SL2(R) → SO(1, 2),

which induce an isomorphism between H and a connected component of the
symmetric space SO(1, 2)/SO(2) × O(1), say

i : H � SO+(1, 2)/SO(2) × O(1).

Since W|C0 is the restriction of W on C \ S to C0, the local monodromies
of R1e∗(ZE0) around (C \ S) \ C0 are either +1, or −1. Thus the projective
monodromy representation of R1e∗(ZE0) is actually defined on C \ S, say

ρR1e∗ZE0 : π1(C \ S, ∗) → PSL2(Z).

Let φ̃R1e∗(ZE0 ) : C̃ \ S → H be the period map corresponding to R1e∗ZE0 and

φ̃W : C̃ \ S → SO+(1, 2)/SO(2) × O(1))

denote the period map corresponding to W. Then φ̃W = i · φ̃R1e∗(ZE0 ) is an
isomorphism. In fact, the tangent map of φ̃W is precisely the Kodaira-Spencer
map of W: θ2,0 : E2,0 → E1,1

1 ⊗ Ω1
C(log S), which is isomorphic at each point

by Lemma 1.1. Thus φ̃W is a local diffeomorphism. Since the Hodge metric on
the Higgs bundle corresponding to W has logarithmic growth at S and bounded
curvature by Schmid [22], together with the remarks after Proposition 9.1 and
Proposition 9.8 in [25], φ̃W is a covering map, hence an isomorphism. This
implies that φ̃R1e∗(ZE0 ) is an isomorphism. Thus

φR1e∗(ZE0 ) : C \ S � H/ρR1e∗(ZE0 )

is an isomorphism.

In order to prove Theorem 0.2, we need the following lemma.

Lemma 6.1. Let f : X → C be a family of semi-stable K3 surfaces, which has
zero iterated Kodaira-Spencer map and reaches the Arakelov bound (II)

deg f∗ωX/C =
1
2

deg Ω1
C(log S).

Then, after passing to a finite étale covering C ′ → C, the VHS W is non-rigid.

Proof. One needs to show that, after passing through a finite étale covering of
C, the local system R2f∗(ZX0) ⊗ C admits a non-zero endomorphism of type
(−1, 1). By Lemma 3.2, one has splitting

R2f∗(ZX0) ⊃ WZ ⊕ Z18, R2f∗(ZX0) ⊗ Q = (WZ ⊕ Z18) ⊗ Q.

By Lemma 1.2, the Higgs bundle corresponds to W has the form

(E2,0 ⊕ E1,1
1 ) ⊕ (E1,1

1

∗ ⊕ E0,2)
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such that the Higgs fields

τ : E2,0 → E1,1
1 ⊗ Ω1

C(log S), τ∗ : E1,1∗ → E0,2 ⊗ Ω1
C(log S)

are isomorphisms. These two Higgs subbundles correspond to two sub-local
systems W1 and W̄1. We claim that, after passing to a finite étale covering of
C, one has W1 � W̄1. To prove the claim, consider the sub-local system

W1 → W.

If W1 is not rigid, then there is a small deformation W1,t ⊂ W ⊗ C such that
both projections W1,t ⊂ W ⊗ C → W1 and W1,t ⊂ W ⊗ C → W̄1 are non-zero.
Since W1 is irreducible, one obtains

W1 � W1,t � W̄1.

If W1 is rigid, then by Lemma 2.1 W1 is defined over a number field K. Let
OK denote the ring of algebraic integers in K, and let

W1OK
= W ⊗Z OK ∩ W1.

Then W1OK
⊗ K = W1, which means that the corresponding monodromy

representation of W1 can be defined over OK . The determinant det W1 = E2,0⊗
E1,1

1 is a rank-1 unitary local system η ∈ Pic0(C) and takes values in OK . By a
theorem of Kronecker, η is a torsion. So, after passing to the finite étale covering
corresponding to η, one obtains E2,0 � E1,1

1

∗
and

(E2,0 ⊕ E1,1
1 , τ) � (E1,1∗

1 ⊕ E0,2, τ∗).

Thus, in any case, we obtain a non-zero endomorphism

(E2,0 ⊕ E1,1
1 ) ⊕ (E1,1

1

∗ ⊕ E0,2) → (E2,0 ⊕ E1,1
1 ) ⊕ (E1,1

1

∗ ⊕ E0,2)

of type (−1, 1), which corresponds to an endomorphism of R2f∗(ZX0) ⊗ C of
type (−1, 1).

Proof of Theorem 0.2. By Lemma 6.1, after passing to a finite étale covering
C ′ → C, the VHS W is non-rigid. By Corollary 5.6.3 of [21], one has

End(W) ⊗ Q � M2(Q).

Taking an element in M2(Q) with two distinct rational eigenvalues, we get a
Q−splitting W⊗Q = W1⊕W2 such that W1 is isomorphic to W2 and the Higgs
bundle corresponding to W1 has the form

(L ⊕ L−1, θ), θ : L � L−1 ⊗ Ω1
C(log S).

W1 has an Z−structure defined by W1Z = WZ ∩ W1. Again by Proposition 9.1
of [25], the Higgs bundle θ : L � L−1⊗Ω1

C(log S) gives rise to the uniformization

C \ S � H/ρW1π1(C \ S, ∗),
where ρW1π1(C \ S, ∗) ⊂ SL2(Z) of finite index.
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Proof of Corollary 0.4. i) By Theorem 0.1 there exists a family of elliptic curves
g : E0 → P10 ⊂ P1 \ S such that the projective representation

pρR1g∗ZE0 : π1(P1 \ S, ∗) → Γ′ ⊂ PSL2(Z)

extends to P1 \ S and P1 \ S � H/Γ′. By [2], Γ′ ⊂ PSL2(Z) is of index 12 and
conjugates to one of the following 6 subgroups of PSL2(Z), which are images of
Γ(3), Γ0

0(4) ∩ Γ(2), Γ0
0(5), Γ0

0(6), Γ0(8) ∩ Γ0
0(4) and Γ0(9) ∩ Γ0

0(3) in SL2(Z) of
index 24, where

Γ(n) =
{[

a b
c d

]
∈ SL2(Z)|b ≡ c ≡ 0, a ≡ 1(mod.n)

}
,

Γ0
0(n) =

{[
a b
c d

]
∈ SL2(Z)|c ≡ 0, a ≡ 1(mod.n)

}
,

Γ0(n) =
{[

a b
c d

]
∈ SL2(Z)|c ≡ 0(mod.n)

}
.

In the proof of Theorem 0.1, we have seen already that the monodromy of
R1g∗ZE0 of a short loop around a point of (P1\S)\P10 is either +1, or −1. If all
of them equal to +1, then the representation ρR1g∗ZE0 extends to P1 \S, and the
image of π1(P1 \ S, ∗) under this representation conjugates to one of the above
6 subgroups. Hence g : E0 → P10 extends to a modular family of elliptic curves
g : E → P1 \ S from one of 6 examples in [2]. Suppose that the monodromies of
R1g∗ZE0 of short loops around some points of (P1 \S) \P 10 equal to −1. Then
the image of π1(P1 \ S, ∗) conjugates to the preimage p−1pΓ, where Γ is one of
Γ(3), Γ0

0(4)∩ Γ(2), Γ0
0(5), Γ0

0(6), Γ0(8)∩ Γ0
0(4) and Γ0(9)∩ Γ0

0(3). The inclusion
Γ ⊂ p−1pΓ of index 2 defines an étale covering E0′ → E0, which is étale along
the fibres and the family g′ : E0′ → P10 extends to the modular family of elliptic
curves g′ : E′ → P1 \ S corresponding to Γ.

ii) is straightforward.
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