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DWYER’S FILTRATION AND TOPOLOGY OF 4-MANIFOLDS

Vyacheslav S. Krushkal

Abstract. Topological 4-dimensional surgery is conjectured to fail, in general, for
free fundamental groups. M. Freedman and P. Teichner have shown that surgery
problems with an arbitrary fundamental group have a solution, provided they
satisfy a certain condition on Dwyer’s filtration on second homology. We give a
new geometric proof of this result, and analyze its relation to the canonical surgery
problems.

The lower central series of the fundamental group of a space X is closely
related to the Dwyer’s [D] filtration φk(X) of the second homology H2(X; Z).
It is well known [FQ] that, for any k > 1, the canonical 4-dimensional surgery
problems may be arranged to have the kernel represented by a submanifold M
which is π1-null, and satisfies H2(M) = φk(M). It is conjectured [F] that these
canonical problems do not have a solution. On the other hand, Freedman and
Teichner showed in [FT] that if the surgery kernel is π1-null and its second
homology lies in the ω-term of the filtration, H2(M) = φω(M), then the surgery
problem has a solution.

This theorem was a development of the earlier result ([FQ], Chapter 6) that
a surgery problem can be solved if the kernel M is π1-null and H2(M) is
spherical. In the present paper we give a new, geometric, proof of the theorem of
Freedman–Teichner. We show that a surgery problem with the kernel M in their
setup, i.e. π1-null and with H2(M) = φω(M), in a 4-manifold N , can be reduced
to the π1-null spherical case, in the same manifold N . The proof is based on the
idea of splitting of capped gropes. This technique has been useful in solving a
number of other problems in 4-manifold topology, see [K], [KQ].

It is interesting to note that the proof goes through if H2(M) = φk(M) for
k ≥ k0, where k0 is a constant depending on the inclusion M ⊂ N . This integer
k0 can be easily read off from the data as the number of group elements in π1N ,
represented by the double point loops of the Whitney disks for M in N . As
is common in the subject, the aforementioned canonical surgery problems may
be chosen to satisfy H2(M) = φk0−1(M), just missing the requirement for the
theorem above.

Section 1 gives a brief overview of the splitting operation on gropes. The back-
ground material on the lower central series and Dwyer’s filtration is presented
in Section 2. The main theorem is stated and proved in Section 3.
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1. Gropes and splitting

This is a brief summary of terminology and notations; for a more detailed
exposition the reader is referred to [FQ], [FT], [K], [KQ]. Observe that the
notion of a grope of class k which is needed in this paper is different from the
symmetric gropes discussed in [FQ], [KQ]. In particular, a symmetric grope of
height n has class 2n. To be precise, we recall the definition:

Definition 1. A grope is a special pair (2-complex, circle). A grope has a class
k = 2, 3, . . . . A grope of class 2 is a compact oriented surface Σ with a single
boundary component. A k-grope is defined inductively as follows: let {αi, βi} be
a standard symplectic basis of circles for Σ. For any positive integers pi, qi with
pi + qi = k, a k-grope is formed by gluing a pi-grope to each αi and a qi-grope
to each βi.

The tips of a grope g is a symplectic basis of circles in its top stage surfaces.
They freely generate π1g. A model capped grope gc is obtained from a grope
g by attaching disks to its tips. The grope g is then called the body of gc.
Finally, a capped grope in a 4-manifold M is an immersion gc −→ M , where
only intersections among the caps are allowed (so the body is embedded, and
is disjoint from the interiors of the caps.) Each intersection point between the
caps carries an element of π1M . It is determined by the double point loop of
the intersection.

Here we use the terminology of [K]. In particular, g denotes a grope (the
underlying 2-complex), while the capital letter G indicates the use of its un-
twisted 4-dimensional thickening. The operations that will be used in the proof
are contraction, sometimes also referred to as symmetric surgery, and pushoff,
which are described in detail in [FQ, §2.3]. The following lemma (suitably for-
mulated grope splitting) is a central ingredient in the proof of the main theorem
in Section 3. For more applications of grope splitting see [K], [KQ].

Lemma 2 (Grope splitting). Let (gc, γ) be a capped grope in M4. Then, given
a regular neighborhood N of gc in M , there is a capped grope (gc

split, γ) ⊂ N ,
such that each cap of gc

split has double points which represent at most one group
element in π1M , and each body surface, above the first stage, of gc

split has
genus 1.

Proof. First assume that N is the untwisted thickening of gc, N = Gc, and
moreover let gc be a model capped grope (without double points). Let C, D be
a dual pair of its caps, and let α be an arc in C with endpoints on the boundary
of C. (In our applications, α will be chosen to separate intersection points of C
corresponding to different group elements.) Recall that the untwisted thickening
N of gc is defined as the thickening in R

3, times the interval I. We consider the
3-dimensional thickening, and surger the top-stage surface of g, which is capped
by C and D, along the arc α. The cap C is divided by α into two disks C ′, C ′′

which serve as the caps for the new grope; their dual caps D′, D′′ are formed
by parallel copies of D. This operation increases the genus of this top-stage
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surface by 1. We described this operation for a model capped grope; splitting of
a capped grope with double points is defined as an obvious generalization.

Continue the proof of lemma 2 by dividing each cap C by arcs {α}, so that
each component of C�∪α has double points representing just one group element,
and splitting gc along all these arcs. The crucial observation is that any future
application of this technique preserves the progress achieved up to date: the
parallel copies D′, D′′ of D as above inherit the collection of the group elements
carried by D. We apply the same operation to the surfaces in the (h − 1)-st
stage of the grope, separating each top stage surface by arcs into genus 1 pieces.
This procedure is performed inductively, descending to the first stage of gc. For
example, if originally each body surface of a k-grope g had genus one, and each
cap carried n group elements, then after this complete splitting procedure the
first stage surface will have genus nk.

2. Dwyer’s filtration

In this section we recall basic facts about the lower central series and Dwyer’s
filtration, and their geometric reformulation in terms of gropes. For proofs of
the propositions, see [FT]. Recall that the lower central series of a group H
is defined by H1 = H, Hk = [H, Hk−1] for k ≥ 1, and Hω = ∩k∈NHk. The
following proposition provides a geometric reformulation:

Proposition 3. A loop γ in a space X lies in π1(X)k if and only if γ bounds a
map of some k-grope in X.

Clearly, a loop γ is in π1(X)ω iff for each finite k, γ bounds a map of a k-grope
in X. The Dwyer’s subspace φk(X) ⊂ H2(X; Z) is defined as the kernel of the
composition

H2(X) −→ H2(K(π1X, 1)) = H2(π1X)) −→ H2(π1(X)/π1(X)k−1).

Proposition 4. Dwyer’s subspace φk(X) of H2(X) coincides with the subset of
homology classes represented by maps of closed k-gropes into X.

Here a closed k-grope is a 2-complex obtained by replacing a 2-cell in S2 with
a k-grope. Note again that a homology class is in the ω-term of the Dwyer’s
filtration if and only if for each k ≥ 2 it is represented by a map of a closed
k-grope into X.

3. Surgery theorem for φω.

Before formulating the main theorem (Theorem 1.1 in [FT]), recall the setting
for surgery. Let N be a compact topological 4-manifold, possibly with boundary.
Suppose f : N −→ X is a degree 1 normal map from N to a Poincaré complex
X. Following the higher-dimensional arguments, it is possible to find a map
normally bordant to f which is a π1-isomorphism, and such that the kernel

K = ker(H2(N ; Z[π1X]) −→ H2(X; Z[π1X]))
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is a free Z[π1X]-module. Suppose Wall’s obstruction vanishes, so there is a
preferred basis for the kernel K in which the intersection form is hyperbolic.
Then we say that M ⊂ N represents the surgery kernel if M is π1-null, H2(M)
is free and

H2(M) ⊗Z Z[π1X] −→ H2(N ; Z[π1X])
maps isomorphically onto K. Here we assume that M ⊂ int(N) is a (compact)
codimension 0 submanifold. Recall that M is π1-null means that the inclusion
induces the trivial map π1M −→ π1N .

Theorem 5. Suppose a standard surgery kernel is represented by M ⊂ N which
is π1-null and satisfies φω(M) = H2(M). Then there is a normal bordism from
f : N −→ X to a simple homotopy equivalence f ′ : N ′ −→ X.

More precisely, the proof shows that there is an integer m depending on the
inclusion M ⊂ N so that the theorem still holds if H2(M) ⊂ φm(M).

Proof. Let γ1, . . . , γk be loops in M representing generators of π1M . Since M is
π1-null, there are null-homotopies ∆1, . . . ,∆k in N , ∂∆i = γi. Let f1, . . . , fm ∈
π1N be the group elements represented by M ∪ ∆1 ∪ . . . ∪ ∆k. These are given
by the double point loops of the null-homotopies ∆, and by the intersections
∆ ∩ M . (Each component of the intersection determines a group element by
starting at the basepoint in M , following a path in M to ∆ ∩ M and returning
via ∆, avoiding its double points. This is well-defined since M is π1-null.)

The integer m is “universal” for the loops in M : given any loop γ in M , there
is a nullhomotopy for γ in N giving rise to at most m group elements, since M
is π1-null in M ∪∆. (Represent γ as a composition of the generators {γi}, so it
bounds parallel copies of the singular disks {∆i}.)

Let G = {Gi} be (m + 1)-gropes representing standard free generators of
H2(M) (corresponding to the preferred basis of H2(M) ⊗Z Z[π1X] ∼= K, in
which the intersection form is hyperbolic.) Since G is contained in M , all its
double point loops are trivial in π1N . Cap G by null-homotopies for its tips in
N , to get a collection of capped (m+1)-gropes Gc. These are not capped gropes
in the conventional sense, because the body has self-intersections (but these are
π1N -null), and also the caps may intersect any surface stage – however the total
number of group elements represented by the double point loops of Gc is at most
m, as observed above.

Split Gc (as in Lemma 2), with respect to the group elements at its caps. In
other words, first split the caps, separating different group elements, and then
proceed down the grope, splitting surface stages into genus 1 pieces. (When
splitting the surface stages, ignore their intersections with any other surfaces
and caps.) The result, for each Gc

i , is a capped (m + 1)-grope with the base
surface of high genus, with all surfaces above the first stage of genus 1, and with
each cap having double points (intersections with other caps/surface stages) with
just one group element.

Consider a genus 1 piece of the base surface. It is a base of a capped “dyadic”
(m + 1)-grope (all surface stages have genus 1), so has m + 1 caps. There are
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at most m group elements present at the caps, so two of the caps must have the
same group element. Contract the grope along these two caps, and push off all
other caps/surfaces intersecting them, thus creating only π1-null intersections.
This produces a collection of π1-null transverse pairs of spheres, and reduces the
problem to Chapter 6 of [FQ].
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