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A COUNTEREXAMPLE TO A MULTILINEAR ENDPOINT
QUESTION OF CHRIST AND KISELEV

Camil Muscalu, Terence Tao, and Christoph Thiele

Abstract. Christ and Kiselev [2],[3] have established that the generalized eigen-
functions of one-dimensional Dirac operators with Lp potential F are bounded for
almost all energies for p < 2. Roughly speaking, the proof involved writing these
eigenfunctions as a multilinear series

∑
n Tn(F, . . . , F ) and carefully bounding

each term Tn(F, . . . , F ). It is conjectured that the results in [3] also hold for L2

potentials F . However in this note we show that the bilinear term T2(F, F ) and
the trilinear term T3(F, F, F ) are badly behaved on L2, which seems to indicate
that multilinear expansions are not the right tool for tackling this endpoint case.

1. Introduction

Let F (x) be a real potential on IR. For each energy k2 > 0 we can consider
the Dirac generalized eigenfunction equation

(
d

dx
+ F )(− d

dx
+ F )φ(x) = k2φ(x)

on IR. This Dirac equation can be thought of as a Schrödinger equation with
potential V = F ′ + F 2. For each k there are two linearly independent eigen-
functions φ = φk. A natural question from spectral theory is to ask whether
these eigenfunctions are bounded (i.e. are in L∞

x ) for almost every real k. In [3]
Christ and Kiselev1 showed among other things that this was true when F ∈ Lp

x

for any 1 ≤ p < 2. It is well known (see e.g. [12]) that the statement fails when
p > 2, but the p = 2 case remains open. In [5] it is shown that for L2 potentials
one has absolutely continuous spectrum on [0,∞), but this is a slightly weaker
statement.

We briefly outline the arguments in [2],[3]. The method of variation of con-
stants suggests the ansatz

φ(x) = a(x)eikx + b(x)e−ikx

(− d

dx
+ F )φ(x) = −ika(x)eikx + ikb(x)e−ikx.

Received July 30, 2001.
1The results cited are phrased for Schrödinger operators but also extend to the slightly

simpler case of Dirac operators, see [4].
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Substituting this into the previous and simplifying, we reduce to the first-order
system

a′(x) = F (x)e−2ikxb(x)

b′(x) = F (x)e2ikxa(x).

For simplicity we may assume F is supported on the positive half axis. If we
set initial conditions a(−∞) = 1, b(−∞) = 0 for instance, and then solve this
system by iteration, we thus obtain the formal multilinear expansions

a = 1 +
∑

n≥2, even
Tn(F, . . . , F ); b =

∑
n≥1, odd

Tn(F, . . . , F )

where for each n ≥ 1, Tn is the n-linear operator

Tn(F1, . . . , Fn)(k, x) :=∫
x1<...<xn<x

e−2ik
∑ n

j=1(−1)jxj F1(x1) . . . Fn(xn) dx1 . . . dxn.

For integrable Fj we can define the n-linear operators

Tn(F1, . . . , Fn)(k,+∞) :=∫
x1<...<xn

e−2ik
∑ n

j=1(−1)jxj F1(x1) . . . Fn(xn) dx1 . . . dxn.

The strategy of Christ and Kiselev was then to control each individual ex-
pression Tn on Lp. Specifally, they showed the estimate

‖ sup
x

|Tn(F, . . . , F )(k, x)|‖
L

p′/n,∞
k

≤ Cp,n‖F‖n
Lp

x
(1)

for all n ≥ 1 and 1 ≤ p < 2, where Cp,n was a constant which decayed rapidly
in n and 1/p + 1/p′ := 1. In particular one has the non-maximal variant

‖Tn(F, . . . , F )(k,+∞)‖
L

p′/n,∞
k

≤ Cp,n‖F‖n
Lp

x
.(2)

The boundedness of eigenfunctions for almost every k then follows by summing
these bounds carefully.

It is tempting to try this approach for the endpoint p = 2. For n = 1
we see that T1(F )(k,+∞) is essentially the Fourier co-efficient F̂ (k), while
supx |T1(F )(k, x)| is essentially the Carleson maximal operator CF (k). The
estimates (2), (1) for p = 2 then follow from Plancherel’s theorem and the
Carleson-Hunt theorem [1], [6] respectively.

For n = 2 the expression T2(F, F )(k,+∞) is essentially H−(|F̂ |2)(k), where
H− is the Riesz projection

Ĥ−F := χ(−∞,0]F̂ ,

and so (2) follows for p = 2 by Hölder’s inequality and the weak-type (1, 1) of
the Riesz projections. We also remark that if the phase function x1 − x2 in
the definition of T2 were replaced by α1x1 + α2x2 for generic numbers α1, α2
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then the operator is essentially a bilinear Hilbert transform and one still has
boundedness from the results in [7], [8], [13].

It may thus appear encouraging to try to estimate the higher order multilinear
operators for L2 potentials F . However, in this note we show

Theorem 1.1. When p = 2 and n = 2, the estimate (1) fails. When p = 2 and
n = 3, the estimate (2) fails.

Because of this, we believe that it is not possible to prove the almost every-
where boundedness of eigenfunctions for Dirac or Schrödinger operators with L2

potential purely by multilinear expansions; we discuss this further in the remarks
section.

The counterexample has a logarithmic divergence, and essentially relies on
the fact that while convolution with the Hilbert kernel p.v. 1

x is bounded, convo-

lution with sgn(x)
x or χ(−∞,0](x)

x is not. It may be viewed as an assertion that L2

potentials create significant long-range interaction effects which are not present
for more rapidly decaying potentials.

Interestingly, our counterexamples rely strongly on a certain degeneracy in
the phase function

∑
j(−1)jxj on the boundary of the simplex x1 < . . . < xn.

If one replaced this phase by
∑

j xj , then we have shown in [9], [10] that the
bound (2) in fact holds when p = 2 and n = 3. Indeed this statement is true
for generic phases of the form

∑
j αjxj . A similar statement holds for (1) when

p = 2 and n = 2 and will appear elsewhere.

2. Proof of Theorem 1.1

The letter C may denote different large constants in the sequel. To be con-
sistent with the previous notation we shall define the Fourier transform as

F̂ (k) :=
∫

e−2ikxF (x) dx.

We let N � 1 be a large integer parameter, which we shall take to be a square
number, and test (1), (2) with the real-valued potential

F (x) :=
2N∑

j=N

Fj(x)

where the Fj are given by

Fj(x) := N−1 cos(2
Aj

N
x)φ(

x

N
− j),

φ is a smooth real valued function supported in [− 1
4 , 1

4 ] with total mass
∫

φ = 1
such that φ̂ stays away from 0 in [−1, 1], and A is a sufficiently large absolute
constant whose purpose is to ensure that

4
∑

j∈Z\{0}

∣∣∣φ̂(ξ − Aj)
∣∣∣ ≤ |φ̂(ξ)|
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for ξ ∈ [−1, 1]. Informally, F is a “chirp” which is localized in phase space to
the region

{(k, x) : k = ±Aj

N
+ O(

1
N

);x = Nj + O(N), N ≤ j ≤ 2N}.

We may compute the Fourier transform of the Fj using the rapid decay of φ̂
as

F̂j(k) =
1
2
e−2i(Nk−Aj)j φ̂(Nk − Aj) + O(N−200)(3)

in the region A
2 < k < 3A. We remark that the error term O(N−200) has a

gradient which is also O(N−200).
Clearly we have ‖Fj‖2 = O(N−1/2), and hence that

‖F‖2 = O(1).

We now compute

T2(F, F )(k, x) =
∫

x1<x2<x

e2ik(x1−x2)F (x1)F (x2) dx1dx2(4)

in the region

|Nk − Aj0| ≤ 1; x = N(j0 −
√

N +
1
2
)(5)

for some integer 3N
2 < j0 < 2N . In this region we show that

|T2(F, F )(k, x)| ≥ C−1 log N,(6)

which will imply that

‖ sup
x

|T2(F, F )|(k, x)‖L2,∞
k

≥ C−1 log N

and thus contradict (1) for n = 2 and p = 2 by letting N go to infinity.
We now prove (6). Fix k, j0, x. Observe from (4) that T2(Fj , Fj′)(k, x)

vanishes unless j ≤ j′ ≤ j0 −
√

N . Thus we may expand

T2(F, F )(k, x) =
∑

N≤j≤j0−
√

N

T2(Fj , Fj)(k, x)(7)

+
∑

N≤j<j′≤j0−
√

N

T (Fj , Fj′)(k, x).(8)

We first dispose of the error term (8). In the region j < j′ ≤ j0 − √
N , the

conditions x1 < x2 < x in (4) become superfluous, so we may factor

T2(Fj , Fj′)(k, x) = F̂j(k)F̂j′(k).

However, since φ̂ is rapidly decreasing and |j − j0|, |j′ − j0| ≥
√

N , we see from
(3) that

|F̂j(k)|, |F̂j′(k)| ≤ CN−100.

Summing this, we see that the total contribution of (8) is O(N−198).
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Now we consider the contribution of (7). We use the identity

T2(Fj , Fj)(k, x) = T2(Fj , Fj)(k,+∞) = H−(|F̂j |2)(k)(9)

combined with (3). The operator H− is a non-trivial linear combination of the
identity and the Hilbert transform, while |F̂j |2 is essentially a non-negative bump
function rapidly decreasing away from the interval [jA/N − O(1/N), jA/N +
O(1/N)]. Because of this we see that for j 
= j0 we have

H−(|F̂j |2)(k) =
c

j − j0
+ O(|j − j0|−2)(10)

where c is a non-zero absolute constant. Summing this over all j ≤ j0 − √
N

and observing that j − j0 has a consistent sign we see that the contribution of
(7) has magnitude at least C−1 log N , and (6) follows.

We now compute T3(F, F, F )(k,+∞) in the region

|Nk − Aj0| ≤ 1; 1.4N < j0 < 1.6N.(11)

We will show that

|T3(F, F, F )(k,+∞)| ≥ C−1 log N(12)

in this region, which will disprove (2) for n = 3 and p = 2 similarly to before.
It remains to prove (12). Fix j0. Observe that T3(Fj , Fj′ , Fj′′)(k,+∞) van-

ishes unless j ≤ j′ ≤ j′′. Thus we can split

T3(F, F, F )(k,+∞) =
∑

N≤j≤2N

T3(Fj , Fj , Fj)(k,+∞)(13)

+
∑

N≤j<j′≤2N

T3(Fj , Fj , Fj′)(k,+∞)(14)

+
∑

N≤j′<j≤2N

T3(Fj′ , Fj , Fj)(k,+∞)(15)

+
∑

N≤j<j′<j′′≤2N

T3(Fj , Fj′ , Fj′′)(k,+∞).(16)

We first consider (13). We expand

T3(Fj , Fj , Fj)(k,+∞) =
∫

x1<x2<x3

e2ik(x1−x2+x3)Fj(x1)Fj(x2)Fj(x3) dx1dx2dx3.

This is a linear combination of eight terms of the form

N−3

∫
x1<x2<x3

e2ik(x1−x2+x3)e2i Aj
N (±x1±x2±x3)

· φ(
x1

N
− j)φ(

x2

N
− j)φ(

x3

N
− j) dx1dx2dx3;

making the substitutions ys := xs

N − j for s = 1, 2, 3, this becomes

eiθ

∫
y1<y2<y3

e2ikN(y1−y2+y3)e2iAj(±y1±y2±y3)φ(y1)φ(y2)φ(y3) dy1dy2dy3
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for some phase eiθ depending on all the above variables.
We shall only consider the choice of signs (−y1 + y2 − y3); the reader may

easily verify that the other choices of signs are much smaller thanks to stationary
phase. In this case we can write the above as

eiθ

∫
y1<y2<y3

e2i(kN−Aj)(y1−y2+y3)φ(y1)φ(y2)φ(y3) dy1dy2dy3.

If kN −Aj = O(1) we estimate this crudely by O(1). Otherwise we can perform
the y1 integral using stationary phase to obtain

eiθ 1
2i(kN − Aj)

∫
y2<y3

e2i(kN−Aj)y3φ(y2)φ(y2)φ(y3) dy2dy3 + O(|kN − Aj|−2).

Performing another stationary phase we see that this quantity is O(|kN−Aj|−2).
Summing over all j we see that (13) is O(1).

Let us now consider (16). When j < j′ < j′′, the constraints x1 < x2 < x3 in
the definition of T3 are redundant, and we can factorize

T3(Fj , Fj′ , Fj′′)(k,+∞) = F̂j(k)F̂j′(k)F̂j′′(k).

Applying (3) and using the rapid decay of φ̂ we see that

|T3(Fj , Fj′ , Fj′′)(k,+∞)| ≤ C(1 + |j − j0| + |j′ − j0| + |j′′ − j0|)−10 + CN−100.

Summing over all j, j′, j′′ we see that (16) is O(1).
It remains to control (15) + (14). First we consider (14). For this term the

condition x2 < x3 is redundant, so we can factorize

T3(Fj , Fj , Fj′)(k,+∞) = T2(Fj , Fj)(k,+∞)F̂j′(k).

Now consider (15). For this term the condition x1 < x2 is redundant, so we
can factorize

T3(Fj′ , Fj , Fj)(k,+∞) = F̂j′(k)
∫

x2<x3

e2ik(x3−x2)Fj(x2)Fj(x3) dx3dx2.

Writing x1 instead of x3 we thus have

T3(Fj′ , Fj , Fj)(k,+∞) = F̂j′(k)(|F̂j(k)|2 − T2(Fj , Fj)(k,+∞)).

Combining this with the previous, we thus see that

(15) + (14) =∑
N≤j,j′≤2N

sgn(j′ − j)T2(Fj , Fj)(k,+∞)F̂j′(k) +
∑

N≤j′<j≤2N

F̂j′(k)|F̂j(k)|2.

Using (3) as in (16) we see the second term is O(1), so to prove (12) it will suffice
to show that∣∣ ∑

N≤j,j′≤2N,j �=j′
sgn(j′ − j)T2(Fj , Fj)(k,+∞)F̂j′(k)

∣∣ ≥ C−1 log N.(17)
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We first consider the terms with j′ = j0. We claim these terms are the dominant
contribution. From (9), (10) we conclude

(18)
∑

N≤j≤2N,j �=j0

sgn(j0 − j)T2(Fj , Fj)(k,+∞)F̂j0(k) =

∑
N≤j≤2N,j �=j0

c
sgn(j0 − j)

j0 − j
F̂j0(k) + O(1) .

Here c is the same non-zero constant as in (10), and F̂j0(k) is bounded away from
0 by choice of φ. Thus the first term is greater than C−1 log N , so it suffices
indeed to show that this term is the dominant contribution to (17).

We consider the terms with j = j0. Using that |T2(Fj , Fj)(k,∞)| ≤ C we
obtain ∑

N≤j′≤2N,j0 �=j′
|T2(Fj0 , Fj0)(k,+∞)F̂j′(k)| ≤ C

This term is therefore negligible.
Finally, we have to consider the terms with j, j′ 
= j0. We have by the choice

of A, ∑
N≤j,j′≤2N,j,j′ �=j0

|T2(Fj , Fj)(k,+∞)||F̂j′(k)|

≤ 1
2

∑
N≤j≤2N,j �=j0

c

|j − j0| |F̂j0(k)| + C

This term is dominated by (18). This completes the proof of (12).

3. Remarks

• The counterexample can easily be extended to larger n (e.g. by appending
some bump functions to the left or right of F ).

• The counterexample above involved a potential F which was bounded in
L2, but for which supx |T2(F, F )(k, x)| and |T3(F, F, F )(k,+∞)| were large
(about log N) on a large subset of [A, 2A]. By letting N vary and tak-
ing suitable linear combinations of such variants of the above counterex-
ample, one can in fact generate a potential F bounded in L2 for which
supx |T2(F, F )(k, x)| is infinite and |T3(F, F, F )(k, x)| accumulates at ∞
for x → ∞ for all k in a set of positive measure (one can even achieve
blow-up almost everywhere). Thus it is not possible to estimate these
multilinear expansions in any reasonable norm if one only assumes the po-
tential to be in L2. Similarly if F had a derivative in L2; it is the decay of
F which is relevant here, not the regularity.

• The unboundedness of T3 on L2 can be interpreted as stating that the
(non-linear) scattering map F �→ bk(+∞) from potentials to reflection
coefficients is not C3 on the domain of L2 potentials. Similarly the map
F �→ ak(+∞) from potentials to transmission coefficients is not C4 on
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the domain of L2 potentials. In particular these scattering maps are not
analytic.

• Despite the bad behavior of the individual terms Tk(F, . . . , F ), the trans-
mission and reflection coefficients ak(x), bk(x) are still bounded for the
counterexample given above. This phenomenon is similar to the observa-
tion that the function eix = 1 + ix − x2/2 − . . . is bounded for arbitrarily
large real x, even if the individual terms (ix)n/n! are not.

We now sketch the proof of boundedness of ak, bk. Suppose that k =
Aj0/N + O(1/N) for some N ≤ j0 ≤ 2N ; we now fix j0 and k. We can
write (

ak(x)
bk(x)

)
= G(x)

(
1
0

)
where G is the 2 × 2 matrix solving the ODE

G′(x) =
(

0 F (x)e−2ikx

F (x)e2ikx 0

)
G(x); G(−∞) =

(
1 0
0 1

)
.

We define the matrices Gj similarly by

G′
j(x) =

(
0 Fj(x)e−2ikx

Fj(x)e2ikx 0

)
Gj(x); Gj(−∞) =

(
1 0
0 1

)
.

We observe the identity

G(x) = Gj1(+∞)Gj1−1(+∞) . . . GN (+∞)

whenever N ≤ j1 ≤ 2N and x = N(j1 + 1
2 ); this can be proven by an easy

induction on j1 and the observation that the above ODE are invariant
under right-multiplication.

One can compute the Gj(+∞) using multilinear expansions (or using
Gronwall’s inequality), eventually obtaining

Gj(+∞) =

(
1 + iC

j−j0
0

0 1 − iC
j−j0

)
+ O(|j − j0|−2)

for all j 
= j0, where C is a non-zero real constant. Because of the crucial
factor of i in the diagonal entries we see that the operator norm ‖Gj(+∞)‖
of Gj is

‖Gj(+∞)‖ = 1 + O(|j − j0|−2).
This allows one to multiply the Gj(+∞) together and obtain boundedness
of G(x) and hence ak(x), bk(x).

In analogy with the observation concerning eix, one may need to use
the fact that F is real in order to obtain boundedness of eigenfunctions in
the L2 case. When F is real there are additional estimates available, such
as the scattering identity∫

log |ak(+∞)| dk = C

∫
|F (x)|2 dx

for some absolute constant C; see for instance [5].
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We do not yet know how to obtain boundedness of eigenfunctions for
L2 potentials F . However we have been able to achieve this for a model
problem in which the Fourier phases e2ikx are replaced by a dyadic Walsh
variant e(k, x). See [11].

• One can modify the counterexample to provide similar counterexamples for
Schrödinger operators − d2

dx2 + V with V ∈ L2, either by using the Miura
transform V = F ′ + F 2 mentioned in the introduction, or by inserting the
standard WKB phase modification to the operators Tk as in [2]. We omit
the details.

• The multilinear expansion of a leads to an expansion of |a|2, whose qua-
dratic term is equal to

2Re(T2(F, F )) = 2Re(H−(|F̂ |2)) = |F̂ |2

This term is in L1, which is better than the term T2(F, F ), which is in
general only in the Lorentz space L1,∞. The higher order terms of the
expansion of |a|2 are however unbounded again. Using the identity |a|2 =
1 + |b|2 we see that the fourth order term of |a|2 is equal to

2Re(T1(F )T3(F, F, F ))

We now define the modified potential

G(x) = F (x) + G0(x)

where F is as in the proof of Theorem 1.1 and G0(x) = φ(x−N3). Expand-
ing the fourth order term by multilinearity, one observes that all terms can
be estimated from above nicely with the exception of

2Re(T1(G)T3(F, F, F ))

Since T1(G) = Ĝ has more rapidly changing phase than T3(F, F, F ), the
real part and the modulus T1(G)T3(F, F, F ) are of comparable size on a
large set, and so this term is of the order log(N) on a large set just like
T3(F, F, F ) itself.
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