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ICOSAHEDRAL Q-CURVE EXTENSIONS

Edray Herber Goins

Abstract. We consider elliptic curves defined over Q (
√

5) which are either 2- or
3-isogenous to their Galois conjugate and which have an absolutely irreducible mod
5 representation. Using Klein’s classical formulas which associate an icosahedral
Galois extension K/Q with the 5-torsion of an elliptic curve, we prove that there
is an association of such extensions generated by quintics x5 + A x2 + B x + C
satisfying A B = 0 with the aforementioned elliptic curves.

1. Introduction

Let ρ be a continuous two-dimensional complex Galois representation, and
consider the composition

ρ̃ : GQ
ρ−−−−→ GL2(C) −−−−→ PGL2(C)(1)

As ρ is continuous, there exists a finite extension K which is the field fixed by the
kernel of ρ̃; we consider only the icosahedral Galois extensions i.e. Gal(K/Q) �
A5. Klein [8], motivated by the isomorphism A5 � PSL2(F5), showed in 1884
that any icosahedral Galois extension K/Q is contained in the extension Q(E[5]x)
generated by the x-coordinates of the 5-torsion from a suitable elliptic curve E
defined over some quadratic extension of Q(

√
5). Conversely, Shih [13] observed

in 1978 that for any elliptic curve E defined over Q(
√

5) which possesses a p-
isogeny λ : E → Eσ with its Galois conjugate for a prime p ≡ 2, 3 mod 5 such
that λ (E[p]) = (kerλ)σ is rational over Q(

√
5) and Gal (Q(E[5]x)/Q(ζ5)) � A5,

there is indeed such an icosahedral Galois extension K ⊂ Q(E[5]x). (Shih’s
result is stronger than stated, but this will suffice for the exposition at hand.)

In this exposition, I present an explicit characterization of Shih’s result when
p = 2, 3. My main result is the following.

Theorem 1.1. Let E be an elliptic curve over Q(
√

5) which is either 2- or 3-
isogenous to its Galois conjugate, and which has an absolutely irreducible mod 5
representation. Then there exists an icosahedral Galois extension K/Q contained
in the field Q(E[5]x) generated by the x-coordinates of the 5-torsion of E. Explic-
itly, K(ζ5) = Q(E[5]x), and K is the splitting field of a quintic x5+A x2+B x+C
with A B = 0.
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Conversely, if K/Q is an icosahedral Galois extension that is the splitting
field of a quintic x5 + A x2 + B x + C with A B = 0, then K(ζ5) = Q(E[5]x) for
some elliptic curve E over Q(

√
5) that is isogenous to its Galois conjugate.

Following the terminology in Ribet [10], an elliptic curve defined over a number
field which is isogenous to its Galois conjugates is called a Q-curve; we call
an elliptic curve as in the proposition an icosahedral Q-curve, and in turn call
such extensions K icosahedral Q-curve extensions with E its associated curve.
In particular, any quintic in Bring-Jerrard form x5 − x + C which generates an
icosahedral Galois extension actually generates an icosahedral Q-curve extension
associated 2-isogenous Q curve.

As the ultimate goal is to understand icosahedral Galois representations ρ, I
also prove the following.

Proposition 1.2. Let K/Q be an icosahedral Q-curve extension. There exist
Galois representations ρ0 : GQ → GL2(C) and ρ5 : GQ → GL2(Q5) such that

1. ρ0 and ρ5 are odd and continuous.
2. K is the field fixed by the kernel of ρ̃0.
3. ρ5 has nebentype det ρ0 ·ω−1

5 , where det ρ0 is either (−1/∗) or (−3/∗) and
ω5 is a primitive Dirichlet character mod 5.

4. ρ0 ≡ ρ5 mod λ5 for some prime above 5.
5. The residual representation ρ = ρ0 mod λ5 has image Z(F5) · SL2(F5)

consisting of those matrices in GL2(F5) with square determinant.

Conversely, let ρ be a icosahedral Galois representation, and denote K as the
field fixed by the kernel of its projectivization. If K/Q is an icosahedral Q-curve
extension, then ρ is a twist (of a conjugate) of ρ0.

The main results above are general enough for me to prove the following.

Corollary 1.3. Let ρ be an icosahedral Galois representation which is unrami-
fied outside of {2, 5, ∞}. Then ρ is residually modular.

For example, the icosahedral Galois representation considered by Buhler [1] in
1978 may be realized on the 5-torsion of a modular Q-curve because it can be
associated to the splitting field 5x5 +20x+16, a fact which seems to have never
been exploited in the literature. Explicitly, an associated Q-curve is

y2 = x3 +
(
5 −

√
5
)

x2 +
√

5 x.(2)

My interest in stating such a result is to give a partial converse to Buzzard,
Dickinson, Shepherd-Barron, and Taylor [3] where they work with complex Ga-
lois representations which are unramified at {2, 5}. This result says that if an
odd representation is ramified precisely at {2, 5} then it is residually modular.
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2. Lectures on the Icosahedron

We begin by showing the explicit relationship between a certain class of quin-
tics and elliptic curves. Most of the exposition that follows in this section is
motivated by both Klein [8] and Klute [9].

The group A5 may be realized as the group of rotations of the icosahedron.
This Platonic Solid has 12 vertices which may be inscribed on the unit sphere,
so that after projecting to the extended complex plane we have a natural group
action on the complex numbers(

ζ5 + ζ5
4
)

ζ5
ν ,

(
ζ5

2 + ζ5
3
)

ζ5
ν for ν ∈ F5; ∞; and 0;(3)

generated by the three fractional linear transformations

S z = ζ5 z, T z =
ε z + 1
z − ε

, and U z = −1
z
;(4)

where ζ5 is a primitive fifth root of unity and ε = ζ5 + ζ5
4 is a fundamental

unit. By considering a homogeneous polynomial which vanishes at the vertices,
we find three polynomials which are “invariant” under A5 � 〈S, T, U〉:

c4(z) =
(
z20 + 1

) − 228
(
z15 − z5

)
+ 494 z10

c6(z) =
(
z30 + 1

)
+ 522

(
z25 − z5

) − 10005
(
z20 + z10

)
∆(z) =

[−z
(
z10 + 11 z5 − 1

)]5(5)

related by c3
4 − c2

6 = 1728 ∆. (∆ vanishes at the vertices, c4 at the midpoints of
the faces, and c6 at the midpoints of the edges. Consult Klein [8] and Klute [9]
for more details.) Since polynomials are not actually “invariant” under action
by fractional linear transformations we consider instead homogeneous rational
functions. Define

λ(z) =

[
z2 + 1

]2 [
z2 − 2 ε z − 1

]2 [
z2 + 2 ε−1 z − 1

]2
−z (z10 + 11 z5 − 1)

µ(z) =
−125 z5

z10 + 11 z5 − 1

(6)

(The numerator of λ(z) vanishes at the fixed points of 〈T, U〉 � V4 – the Klein
Viergruppe – while the numerator of µ(z) vanishes at one of the vertices.) λ(z)
has nontrivial action by S so that we may associate a polynomial of degree 5,
while µ(z) has trivial action by S so that we may associate a polynomial of
degree 6.

Lemma 2.1. Define c4(z), c6(z), ∆(z), λ(z) and µ(z) as in (5) and (6).

1. We have the identities

j :=
c3
4

∆
= 1728

c3
4

c3
4 − c2

6

= (λ + 3)3 (λ2 + 11λ + 64) =
(µ2 + 10µ + 5)3

µ
(7)



208 EDRAY HERBER GOINS

2. For each m, n ∈ Q, the five resolvents

xν =
m

λ(ζ5
νz) + 3

+
n

[λ(ζ5
νz) + 3] [λ(ζ5

νz)2 + 10λ(ζ5
νz) + 45]

(8)

are roots of the quintic x5 + Am,n,j x2 + Bm,n,j x + Cm,n,j where

Am,n,j = −20
j

[(
2 m3 + 3m2 n

)
+ 432

6 m n2 + n3

1728 − j

]
Bm,n,j = −5

j

[
m4 − 864

3 m2 n2 + 2m n3

1728 − j
+ 559872

n4

(1728 − j)2

]
Cm,n,j = −1

j

[
m5 − 1440

m3 n2

1728 − j
+ 62208

15 m n4 + 4n5

(1728 − j)2

](9)

3. Conversely, given a quintic q(x) = x5 + A x2 + B x + C over Q such that
A4−5B3+25A B C is nonzero, there exist m, n, j ∈ Q(

√
5 · Disc(q)) such

that A = Am,n,j, B = Bm,n,j and C = Cm,n,j.

Remark. The discriminant of q(x) = x5 + A x2 + B x + C is

Disc(q) = −27 A4 B2 + 256B5

+ 108A5 C − 1600 A B3 C + 2250A2 B C2 + 3125C4
(10)

Proof. The identities stated are easily verified using a symbolic calculator. Con-
versely, by eliminating m and n in (9), we find that j is a root of the equation

δ5 j2 − 1728
(
γ3
4 − γ2

6 + δ5
)

j + 17282 γ3
4 = 0(11)

where

54 · δ = A4 − 5B3 + 25A B C

122 55 · γ4 = 128A4 B2 − 144 B5 − 192 A5 C − 600 A B3 C

+ 1000A2 B C2 + 3125C4

123 510 · γ6 = 1728A10 + 10400A6 B3 + 405000A2 B6

− 180000 A7 B C − 1170000 A3 B4 C + 1725000A4 B2 C2

− 2025000 B5 C2 − 1800000 A5 C3 + 2812500A B3 C3

− 4687500 A2 B C4 − 9765625 C6

(12)

The lemma follows since (11) has discriminant 5 · Disc(q) and m and n may be
expressed in terms of j.

Lemma 2.2. Let q(x) = x5 + A x2 + B x + C be a quintic over Q such that
A4−5B3 +25A B C is nonzero, and denote K as its splitting field. There exists
an elliptic curve E over Q(

√
5 · Disc(q)) such that K(

√
5 · Disc(q)) is the field

generated by sum xP + x2P of x-coordinates of the 5-torsion of E. We say that
such an E is associated to q(x).
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Klein [8] never explicitly makes the assumption A4 − 5 B3 + 25A B C �= 0;
indeed, it may be possible to prove this result even in its abscence. The field
generated by the x-coordinates xP of the 5-torsion is the splitting field of the 5-
division polynomial ψ5(x), while the field generated by the sum of x-coordinates
is the splitting field of the resolvent ψ∗

5(x) =
∏

σ∈A5/D5

(
x − [xσ(P ) + xσ (2P )]

)
as considered in Klute [9].

Proof. Choose j0 ∈ Q(
√

5 · Disc(q)) as in 2.1 so that K(
√

5 · Disc(q)) is the
splitting field of q1(µ) = (µ2 + 10µ + 5)3 − j0 µ, and let E be denote the elliptic
curve y2 = x3 + 3 j0/(1728 − j0)x + 2 j0/(1728 − j0) with invariant j0. Given a
5-torsion point P on E,

xP + x2P = −2
µ2 + 10µ + 5
µ2 + 4µ − 1

for some root of q1(µ)(13)

so that K(
√

5 · Disc(q)) contains the field generated by the sum of the x-
coordinates of the 5-torsion, and conversely, given a root of q1(µ),

µ =
31104 x3

(x − 2)5 j0 − 1728 x3 (x2 − 10 x + 34)
where x = xP + x2P(14)

for some 5-torsion P on E. Hence K(
√

5 · Disc(q)) is generated as claimed.

We mention in passing that all of the previous results may be stated in the
language of modular curves. Indeed, the variable z may be thought of as a
hauptmodul on the moduli space X(5) of genus 0 classifying elliptic curves with
two points of order 5, where the twelve vertices in (3) correspond the cusps.
The function µ may be thought of as a hauptmodul on the moduli space X0(5)
classifying elliptic curves with a subgroup of order 5, while the function j may
be thought of as a hauptmodul on the trivial moduli space X(1). Recall that the
quotient X(5)/X(1) has degree 60 with automorphism group A5. The quotient
X(5)/X0(5) has degree 10, which explains why µ is a rational function in z of
degree 10 as in (6); and the quotient X0(5)/X(1) has degree 6 which explains
why j is a rational function in µ of degree 6 as in (7).

3. A5-Extensions and Q-Curves

A Q-curve is an elliptic curve without complex multiplication which is isoge-
nous to each of its Galois conjugates. Such curves were first considered by Ribet
[10]. We now exhibit a family of Q-curves associated to a subfamily of the
quintics considered in the previous section.

Theorem 3.1. For t ∈ Q, define the quintics

qp,t(x) =

{
x5 − 5

(
5 t2 − 1

)
x − 4

(
5 t2 − 1

)
for p = 2,

x5 − 20
(
5 t2 − 1

)2
x2 − 48

(
5 t2 − 1

)3 for p = 3;
(15)
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and define the curves

Ep,t :

{
y2 = x3 + 2x2 + 1

2 (1 +
√

5 t) x for p = 2,
y2 + 3x y + 1

2 (1 +
√

5 t) y = x3 for p = 3.
(16)

We have the following.
1. qp,t(x) has Galois group contained in A5.
2. Ep,t is a p-isogenous Q-curve defined over Q(

√
5).

3. Ep,t is associated to qp,t(x).
4. Given q(x) = x5 + A x2 + B x + C a quintic over Q with Galois group A5

where A B = 0, set t =
√

Disc(q)/(125C2) and p = 2 if A = 0 or p = 3 if
B = 0. Then Ep,t is associated to q(x).

Proof. The discriminant of qp,t(x) is a square, so its Galois group is contained
in A5. Any elliptic curve over Q(

√
5) with j-invariant different from 0 or 1728

possessing a p-isogeny for p = 2, 3 must be a twist of either y2 = x3 + 2x2 + r x
or y2 + 3x y + r y = x3 for some r ∈ Q(

√
5) because, up to twist, an elliptic

curve with such an isogeny has a rational point of order p. Using the equations
in Roberts [11, Thm 1, Thm 2], [12], it follows that every p-isogenous Q-curve
over Q(

√
5) is a twist of Ep,t for t = (2 r − 1)/

√
5. The curve Ep,t is singular

only if t = ± 1√
5

which never happens when t ∈ Q so Ep,t is indeed a p-isogenous
Q-curve. The fact that Ep,t is associated to qp,t(x) comes from checking the
formulas in 2.1.

It is easy to check that j(Ep,t) is a solution to (11) for p and t as given in the
last part of the theorem, so Ep,t is indeed an elliptic curve over Q(

√
5) which is

associated to q(x).

Now that we have this result for quintic polynomials, we state the correspond-
ing result for Galois extensions.

Proposition 3.2. Let K/Q be an icosahedral Galois extension. The following
are equivalent.

1. K(
√

5) is the field generated by sum xP + x2P of x-coordinates of the
5-torsion of a Q-curve E defined over Q(

√
5) which is either 2- or 3-

isogenous.
2. K is the splitting field of a quintic over Q in the form x5 +A x2 +B x+C

with either A = 0 or B = 0.
3. If K1 is a subfield of K of degree 5, there exists an element x ∈ K1 such

that trx = trx2 = trxp+1 = 0 for either p = 2 or p = 3.

Proof. (1 =⇒ 2.) E is a twist of some Eq,t as defined in 3.1, so K is the splitting
field of some qp,t(x). (2 =⇒ 1.) This is a restatement of 3.1. (2 =⇒ 3.) Choose
a root x of x5 + A x2 + B x + C and let K1 = Q(x). Then

trx = trx2 = 0, trx3 = −3 A, trx4 = −4 B, trx5 = −5 C.(17)
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Hence tr xp+1 = 0 where p = 2 if A = 0 and p = 3 if B = 0. (3 =⇒ 2.) Choose
such an x ∈ K1 with trx = trx2 = trxp+1 = 0 and let x5 +A x2 +B x+C be its
minimal polynomial. Then either A = 0 or B = 0, and K must be its splitting
field since K/Q has simple Galois group.

In lieu of this result, we make the following definitions.

Definition 3.3. Any icosahedral Galois extension K/Q satisfying the equiva-
lent conditions of 3.2 is said to be an icosahedral Q-curve extension. If E is a
Q-curve as in 3.2, then we say that E is associated to K.

Definition 3.4. Any Q-curve E over Q(
√

5) which is either 2- or 3-isogenous
to its conjugate and which has an absolutely irreducible mod 5 representation is
said to be an icosahedral Q-curve. A root t ∈ Q satisfying

j(E) =

{
64 (3 r − 4)3 /

(
r3 − r2

)
if 2-isogenous,

27 (8 r − 9)3 /
(
r4 − r3

)
if 3-isogenous;

t =
2 r − 1√

5
;(18)

is called a parameter for E.

If E is an icosahedral Q-curve with parameter t, then E is isomorphic to
Ep,t as in 3.1. Since E has an absolutely irreducible mod 5 representation, the
quintic qp,t(x) must generate an icosahedral Galois extension K, and so by 2.2
we have K(ζ5) = Q(E[5]x) as the field generated by the x-coordinates of the
5-torsion on E. A Q-curve associated to an icosahedral Q-curve extension is
also an icosahedral Q-curve.

We may reduce the verification of icosahedral Q-curve extensions to finding
rational points on a projective curve.

Corollary 3.5. Let K/Q be an icosahedral Galois extension which is the split-
ting field of a quintic q(x) =

∏
ν(x − xν). For n a positive integer, denote the

homogeneous polynomial of degree n

σn(z1, z2, z3, z4, z5) =
∑

k1,...,kn

σ(k1+···+kn) zk1 · · · zkn
(19)

in terms of σ(k) =
∑

ν xν
k ∈ Q, and define the projective curve

Cp(q) =
{

z ∈ P4(Q) |σ1(z) = σ2(z) = σp+1(z) = 0
}

.(20)

Then K/Q is an icosahedral Q-curve extension if and only if Cp(q) has a rational
point for either p = 2 or 3.

Proof. By 3.2, K = Q(x1, . . . , x5) is an icosahedral Q-curve extension if and only
if it is the splitting field of some X5+A X2+B X+C for A B = 0. The idea is to
exhibit a transformation which will map q(x) �→ X5 + A X2 + B X + C. To this
end, choose z1, . . . , z5 ∈ Q to be determined, and set Xν =

∑
k zk xν

k ∈ K. We
wish to find zk such that

∑
ν Xν =

∑
ν Xν

2 =
∑

ν Xν
p+1 = 0 for either p = 2 or

3. We have
∑

ν Xν
n =

∑
ν

∑
k1,...,kn

xk1+···+kn
ν zk1 · · · zkn

= σn(z1, . . . , z5) so we
seek rational points on Cp(q) i.e. if Cp(q) has a rational point z = (z1 : . . . z5)
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then K/Q is an icosahedral Q-curve extension. Conversely, if K/Q is indeed
an icosahedral Q-curve extension then (1 : 0 : 0 : 0 : 0) ∈ Cp(q) is a rational
point.

We present two examples of this result. Consider the splitting field of the
quintic q1(x) = x5 + 10 x3 − 10 x2 + 35x − 18 as in [1]; this is an icosahedral
Galois extension. The curve C2(q1) has the rational point (568 : 91 : 152 :
9 : 8) which corresponds to the principal quintic 5x5 + 20x + 16. Hence this
splitting field is an icosahedral Q-curve extension. On the other hand, consider
the splitting field of the principal quintic q2(x) = x5 + 20x − 16; this is also
an icosahedral Galois extension. Then the curve C2(q2) has two rational points,
namely (1 : 0 : 0 : 0 : 0) and (20 : −2 : 0 : 1 : 1), which correspond to the quintics
x5 + 20x − 16 and 4x5 − 25 x + 50. Hence this icosahedral Q-curve extension
has two associated elliptic curves. These examples lead to the following.

Proposition 3.6. Let K/Q be an icosahedral Galois extension which is unram-
ified outside of {2, 5, ∞}. Then K/Q is an icosahedral Q-curve extension with
an associated modular curve.

Proof. By Jones [7], there are only five such A5-extensions of Q, so it is a com-
putational exercise to show that the splitting fields actually come from principal
quintics:

Original Quintic Principal Quintic
x5 + 20x − 16 4 x5 − 25 x + 50

x5 + 10x3 − 10 x2 + 35x − 18 5 x5 + 20x + 16
x5 − 10 x3 + 20x2 + 110x − 116 5 x5 − 20 x + 16
x5 + 10x3 − 40 x2 + 60x − 32 5 x5 − 5 x + 4
x5 − 10 x3 − 20 x2 + 10x + 216 5x5 + 5x + 8

(21)

The associated Q-curves can now be found via 3.1:

Quintic q(x) Q-curve Eq,t Parameter t
x5 + 20x − 16 y2 = x3 + 2x2 − ε x 1

4 x5 − 25 x + 50 y2 = x3 + 10x2 +
√

5 ε5 x 11/25
5 x5 + 20x + 16 y2 = x3 + 2

√
5 x2 −√

5 ε2 x 3/5
5 x5 − 20 x + 16 y2 = x3 + 2

√
5 x2 +

√
5 ε x 1/5

5 x5 − 5 x + 4 y2 = x3 + 4
√

5 x2 + 2
√

5 ε3 x 2/5
5 x5 + 5x + 8 y2 = x3 + 8

√
5 x2 − 2

√
5 ε6 x 9/20

(22)

where ε = ζ5 + ζ5
4. These Q-curves are modular by Ellenberg and Skinner [4]

since they are not ramified at the prime above 3.

We would like to make the same claim for the six A5-extensions which are
unramified outside of {3, 5, ∞} but we seem to be missing a few principal poly-
nomials. By Jones [7], there are only six such quintics, so we have the following
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incomplete table which show the fields actually come from principal quintics:

Original Quintic Principal Quintic
x5 + 15x3 − 5 x2 + 60x − 96 ?
x5 + 15x3 − 25 x2 + 15x − 3 3 x5 − 5 x2 + 3

x5 + 25x2 − 75 x5 + 25x2 − 75
x5 − 25 x2 − 75 x5 − 25 x2 − 75

x5 + 15x3 − 20 x2 + 60x − 24 ?
x5 − 15 x3 − 15 x2 + 135x + 63 ?

(23)

with associated Q-curves

Quintic q(x) Q-curve Eq,t Parameter t
3 x5 − 5 x2 + 3 y2 + 9 ε x y + 9 ε y = x3 1/3
x5 + 25x2 − 75 y2 + 3

√
5 ε x y + 5 ε2 y = x3 1/5

x5 − 25 x2 − 75 y2 + 3
√

5 ε x y + 5 ε y = x3 3/5

(24)

However, finding the remaining three principal quintics seems unlikely, since in
general the projective curves C2(q) and C3(q) have genus 4 and 9, respectively.

We mention in passing that all of the previous results may again be stated
in the language of modular curves. One considers twists of the moduli spaces
X(5, p) obtained as fiber products of X0(5) and X(p). We refer the reader to [5]
for details.

4. Icosahedral Galois Representations

Let ρ be a two-dimensional complex Galois representation with finite image,
denote ρ̃ as the composition

ρ̃ : Gal(Q/Q)
ρ−−−−→ GL2(C) −−−−→ PGL2(C)(25)

and let K be the field fixed by the kernel of this map. The only nonsolvable image
of ρ̃ is A5; hence we consider only representations ρ such that K/Q is an A5-
extension. We call such a representation ρ an icosahedral Galois representation,
and ρ̃ its projectivization. We will show rather explicitly that every icosahedral
Q-curve extension K/Q has a complex Galois representation by constructing the
representation. The idea is as follows: Such an extension has an associated curve
E, so the composition

GQ(
√

5)

ρE,5−−−−→ Z(F5) · SL2(F5)
π0−−−−→ GL2(C)(26)

yields a complex representation over Q(
√

5) for some group homomorphism π0.
(Z(F5) is the center of GL2(F5).) We will exploit the properties of E to show
that a twist of such a representation can actually be defined over Q.

Lemma 4.1. Let ω5 be a primitive Dirichlet character modulo 5, Z(F5) be the
center of GL2(F5), and * = (ω5(2) · ε−1 − 1) ∈ Q(

√−1,
√

5) in terms of the
fundamental unit ε = ζ5 + ζ5

4. Define the map π0 : Z(F5) · SL2(F5) → GL2(C)
by
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(27)
(

1 1
1

)
,

( −1
1

)
,

(
a

d

)
�→

1
2

(
ε * + 2
* ε

)
,

( −1
1

)
,

(
ω5(a)

ω5(d)

)
.

Then π0 is an irreducible representation, and π0 ≡ 1 mod (*).

Proof. We take for granted that Z(F5) ·SL2(F5) is generated by the three matri-
ces above, so it suffices to check π on these generators. We follow the exposition
in [2, page 405]. It is a rather straightforward exercise to show that the orders
of each generator match correctly, so it suffices to consider the commutation
relations among the image of these generators. Denote the images

S = π0

(
1 1

1

)
, T = π0

( −1
1

)
, U(a, d) = π0

(
a

d

)
.(28)

The relations which must be verified are
1. T · U(a, d) · T−1 = U(d, a),
2. U(a, d) · S · U(a, d)−1 = Sn where n ≡ a d−1 (5),
3. T Sd T−1 = U(a, d) S−d T−1 S−a where a d ≡ 1 (5).

(Condition 2 is not satisfied if n ≡ ±2 (5); this explains why we must restrict
to Z · SL2(F5) where n ≡ ±1.) It is a straightforward to verify these relations;
consult [6]. The irreducibility of π0 follows from the fact that the image is not
abelian. Since ω5(2)2 + 1 = ε2 + ε − 1 = 0, F×

5 = 〈2〉, and the following are all
contained in the ideal (*) ⊂ Q(

√−1,
√

5):

2 − ε = ε2 * *σ, 2 − ω5(2) = ε * (ε *σ − 1), ±
√

5 = ε * *σ;(29)

(with σ being complex conjugation) the congruence π0 ≡ 1 follows.

Lemma 4.2. Let E be an icosahedral Q-curve. Denote ρE,5, ρE,5 as its 5-adic
and mod 5 representations respectively, χ5 as the 5-adic cyclotomic character,
and ω5, π0, * as in 4.1. There exists a Hecke character χE such that

1. .E,5 = χE ⊗ ρE,5 is an irreducible 5-adic representation which can be
defined over Q, where det .E,5 = χE

2 · (χ5 ◦N) is the composition with the
norm map.

2. .E = χE ⊗ (π0 ◦ ρE,5) is an irredicuble complex representation which can
be defined over Q, where det .E = χE

2 · (ω5 ◦ N).
3. .E,5 ≡ .E mod (*) and det .E,5 = det .E · (χ5/ω5 ◦ N).

A similar result is true for all Q-curves; see Ellenberg and Skinner [4] for a
proof using cohomology. We will present instead a more constructive proof.

Proof. Following Roberts [11], as E is p-isogenous for p = 2 or 3, the isogeny
is defined over Q(

√
5,
√

DE) where DE = −p · N D for some D ∈ Q(
√

5)×.
Equivalently, aE (pσ) = (DE/N p) · aE (p) in terms of the trace of Frobenius of
ρE,5, the Legendre symbol (DE/∗), and the nontrivial Galois automorphism σ

of Q(
√

5). We seek a character χE such that χE
σ−1 = (DE/∗) ◦ N: Then the
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twisted representations .E,5 := χE ⊗ ρE,5 and .E := χE ⊗ (π0 ◦ ρE,5) will be
Galois invariant and hence defined over Q; the compositum

GQ(
√

5)

ρE,5−−−−→ Z(F5) · SL2(F5)
π0−−−−→ GL2(C)

twist by χE−−−−−−−→ GL2(C)(30)

will be invariant and hence defined over Q; and the congruence .E,5 ≡ .E will fol-
low as a consequence of 4.1. Irreducibility is clear since the mod 5 representation
is irreducible by assumption, and the relations involving the determinants are
clear by 4.1. Clearly D is included because of twisting, so write χE = (D/∗) ·χp

where χp
σ−1 = (−p/∗) ◦ N. We turn to constructing χp.

Q(
√

5) has class number 1 with ring of integers Z[ε], so we extend the Dirichlet
characters of conductors (4), (8), (3), and (

√
5):

ω4 :
{−1

ε
�→ −1

ζ6

}
, ω8 :


−1

1 + 4 ε
ε

�→
−1
−1
ζ12

 , ω3 : ε �→ ζ8, ω5 : ε �→ ζ4;

(31)

corresponding to the extensions Q(
√

5, ζ4), Q(
√

5, ζ8), Q(
√

5, ζ3), and Q(ζ5) of
Q(

√
5), respectively. One verifies that χ2 := ω4

3 ω8
3 ω5 and χ3 := ω3

2 ω5 yield
the desired relations by checking on the generators −1, 1 + 4 ε, and ε; in fact
χ2

2 =
(
ω4 · ω5

−1
) ◦ N and χ3

2 =
(
ω3 · ω5

−1
) ◦ N. Hence, we have constructed

the desired characters with the properties

χ2
σ−1 =

(−2
∗

)
◦ N,

χ3
σ−1 =

(−3
∗

)
◦ N,

χ2
2 =

[(−1
∗

)
· ω5

−1

]
◦ N;

χ3
2 =

[(−3
∗

)
· ω5

−1

]
◦ N;

(32)

which completes the proof.

Theorem 4.3. Let K/Q be an icosahedral Q-curve extension. There exist Ga-
lois representations ρ0 : GQ → GL2(C) and ρ5 : GQ → GL2(Q5) such that, with
notation as in 4.1,

1. ρ0 and ρ5 are odd and continuous.
2. K is the field fixed by the kernel of the projectivization ρ̃0.
3. ρ5 has nebentype det ρ0 · ω−1

5 , where det ρ0 is either (−1/∗) or (−3/∗).
4. ρ0 ≡ ρ5 mod λ5 for some prime above 5.
5. The residual representation ρ = ρ0 mod λ5 has image Z(F5) · SL2(F5).

Conversely, let ρ be a icosahedral Galois representation, and denote K as the
field fixed by the kernel of its projectivization. If K/Q is an icosahedral Q-curve
extension, then ρ is a twist (of a conjugate) of ρ0.

Remark. Any icosahedral Galois representation ρ we hope to associate to an
icosahedral Q-curve must necessarily be odd.
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Proof. Let E be a Q-curve associated to K/Q. Since K(
√

5) is contained in the
field generated by the x-coordinates, we may twist E by any element in Q(

√
5)

and find another Q-curve associated to K. In particular, we may choose a curve
such that χE = χp as in (32) for either p = 2 or 3. Let ρ5 and ρ0 be the
representations .E,5 and .E as in 4.2, respectively, assumed defined over Q.

It is clear that ρ5 and ρ0 are continuous. Considering 4.2 and (32), the state-
ments regarding determinants and congruence are clear; both representations are
odd since (−1/∗) and (−3/∗) are odd quadratic characters. Denote K0 as the
field fixed by kernel of ρ̃0; we claim that K0 = K. K(

√
5) = K0(

√
5) is the field

fixed by the projectivization of ρE,5, while both K/Q and K0/Q are icosahedral
extensions.

√
5 /∈ K0 since A5 has no subgroups of index 2; hence K0 ⊂ K and

similarly K ⊂ K0 so we indeed have equality. It remains to show that ρ = ρ0

mod (*) as in 4.1 has image Z(F5)·SL2(F5), the subgroup of GL2(F5) of index 2
consisting of those matrices with square determinants. Since det ρ0 ≡ ±1 (5) is
a quadratic character the image is contained in Z(F5) ·SL2(F5). The restriction
ρ|Q(

√
5) is the twist of an absolutely irreducible mod 5 representation, which has

image Z(F5) · SL2(F5). This gives equality.
As for the converse, let ρ be a icosahedral Galois representation with K the

field fixed by the kernel of its projectivization, and consider the following dia-
gram:

1 −−−−→ GK −−−−→ GQ −−−−→ Gal (K/Q) −−−−→ 1�χ

�ρ, ρ0

�ρ̃, ρ̃0

1 −−−−→ C× −−−−→ GL2(C) −−−−→ PGL2(C) −−−−→ 1

(33)

Both ρ̃ and ρ̃0 are projective complex representations of A5. There are only
two such representations so upon choosing a different 5-cycle we have ρ̃ � ρ̃0.
Without loss of generality we assume equality. We must show that there exists
a character χ in the leftmost column. For automorphisms σ and τ , define the
symbol χ(σ) by χ(σ) · 12 = ρ(σ) · ρ0(σ)−1. Then χ is actually a multiplicative
character since

χ(σ τ) · 12 = ρ(σ τ) ρ0(σ τ)−1 = ρ(σ)
[
ρ(τ) ρ0(τ)−1

]
ρ0(σ)−1 = χ(σ) χ(τ) · 12

(34)

Hence, ρ � χ ⊗ ρ0 as claimed.

We present an example of this theorem. Let K be the splitting field of the
quintic x5+10x3−10 x2+35x−18 as considered in [1]; we found in 3.6 that it is
also the splitting field of the principal quintic 5x5 +20x+16 proving that K/Q

is a icosahedral Q-curve extension. Quite explicitly, K has associated curve

E : y2 = x3 +
(
5 −

√
5
)

x2 +
√

5 x(35)

It is easy to check that the 2-isogeny of E is defined over Q(
√

5,
√−2). If ρE,5

is the mod 5 representation of this curve then χ2 ⊗
(
π0 ◦ ρE,5

)
is the restriction
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to Q(
√

5) of a complex representation ρ0 defined over Q with det ρ0 = (−1/∗).
This is precisely the representation constructed in [1]. This falls into the larger
result of the following.

Proposition 4.4. Let ρ be an icosahedral Galois representation which is un-
ramified outside of {2, 5, ∞}. Then ρ is residually modular.

Proof. Let K be the field fixed by the kernel of GQ
ρ̃−−−−→ PGL2(C); then K/Q

is an icosahedral Galois extension which is unramified outside of {2, 5, ∞}. By
3.6, K/Q has an associated modular elliptic curve E, and by 4.2 and 4.3 there
exists a character χ such that ρ|Q(

√
5) � χ ⊗ (

π0 ◦ ρE,5

)
. Hence, ρ is residually

modular.
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Peter Slodowy. Birkhäuser Verlag, Basel; B. G. Teubner, Stuttgart, 1993.

[9] A. Klute, Icosahedral Galois extensions and elliptic curves, Manuscripta Math. 93 (1997),
301–324.

[10] K. Ribet, Abelian varieties over Q and modular forms, Algebra and topology 1992
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