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CURVATURE, DIAMETER, AND QUOTIENT MANIFOLDS

Burt Totaro

This paper gives improved counterexamples to a question by Grove ([11], 5.7).
The question was whether for each positive integer n and real number D, the
simply connected closed Riemannian n-manifolds M with sectional curvature
≥ −1 and diameter ≤ D fall into only finitely many rational homotopy types.
This was suggested by Gromov’s theorem which bounds the Betti numbers of M
in terms of n and D [10]. It was known that there can be infinitely many integral
homotopy types already in dimension 7, perhaps first by Aloff and Wallach [2].

Fang and Rong recently gave a negative answer to Grove’s question in all
dimensions ≥ 22 ([7], Theorem B). We use certain biquotient manifolds, that is,
quotients of homogeneous manifolds G/H by a subgroup of G which acts freely,
to show that the question has a negative answer already in dimension 6. Our
examples are in fact nonnegatively curved. More precisely, we find infinitely
many rational cohomology rings among simply connected closed Riemannian 6-
manifolds with nonnegative sectional curvature. (Of course, we can arrange that
these manifolds also have diameter at most 1, by scaling.) The dimension 6 here
is optimal, meaning that Grove’s question has a positive answer in dimensions
≤ 5. This follows from Gromov’s bound on the Betti numbers, since the Betti
numbers of a simply connected manifold of dimension ≤ 5 determine its rational
homotopy type up to finitely many possibilities. More precisely, the conjec-
ture that simply connected manifolds of nonnegative curvature are integrally
elliptic would imply, by Paternain and Petean ([15], Corollary 3.6), that simply
connected 5-manifolds of nonnegative curvature fall into only 4 diffeomorphism
classes: S5, S3 × S2, the nontrivial S3-bundle over S2, and the Wu manifold
SU(3)/SO(3) [4].

Fang and Rong’s examples have the merit of also having an upper bound
on curvature. That is, for n ≥ 22, Fang and Rong find numbers C and D
such that there are infinitely many rational cohomology rings among simply
connected closed Riemannian n-manifolds with curvature −1 ≤ K ≤ C and
diameter ≤ D. The next main result of this paper is that such examples exist
already among 7-manifolds. This is optimal, since Fang and Rong [6], and also
Tuschmann [19], have proved that in dimensions ≤ 6 there are only finitely many
diffeomorphism classes in the given class of manifolds. Finally, in dimension 9,
we use biquotients to give a similar counterexample using only nonnegatively
curved manifolds. That is, for some C and D, there are infinitely many rational
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cohomology rings among simply connected closed 9-manifolds with curvature
0 ≤ K ≤ C and diameter ≤ D.

To conclude, one can ask what substitute for Grove’s question might be true.
For the problem with an upper curvature bound, there is already a remarkable
substitute for Grove’s question, the Petrunin-Tuschmann theorem ([16], Corol-
lary 0.2). Namely, for each n, C, and D, there is a finite set of closed smooth
manifolds Ei of dimension ≥ n such that any simply connected closed Riemann-
ian n-manifold with curvature −1 ≤ K ≤ C and diameter ≤ D is diffeomorphic
to the quotient of some Ei by a free action of a torus. Thus, in Fang and Rong’s
examples and in our examples in dimensions 7 and 9, the infiniteness comes
entirely from considering quotients of a single manifold by different free torus
actions.

In section 4, we suggest some possible substitutes for Grove’s question with
no upper curvature bound.

1. Counterexamples to Grove’s question among nonnegatively
curved 6-manifolds

Here we prove:

Theorem 1.1. There are infinitely many isomorphism classes of rational co-
homology rings among simply connected closed Riemannian 6-manifolds with
nonnegative sectional curvature.

As explained in the introduction, this gives a negative answer to Grove’s
question in dimension 6, which is optimal. Also, it follows from the theorem
of Tuschmann [19] and Fang-Rong [6] discussed in the introduction that there
cannot be an upper bound on the curvature of the manifolds we construct, if we
fix their diameter to be 1.

Proof. The 6-manifolds M we construct will all be biquotients, of the form
(S3)3/(S1)3 for different free isometric actions of the group (S1)3 on the Rie-
mannian manifold (S3)3. Like all biquotients, these manifolds M have nonnega-
tive sectional curvature, by O’Neill’s curvature formula for Riemannian submer-
sions [14], which we state in the proof of Theorem 2.1.

Let (S1)2 ⊂ SO(4) be the standard maximal torus, with (λ, µ) ∈ (S1)2 acting
isometrically on S3 ⊂ C2 by (λ, µ)(u, v) = (λu, µv). Therefore we have a natural
isometric action of (S1)6 on (S3)3. The actions of (S1)3 on (S3)3 we consider
will be given by homomorphisms (S1)3 → (S1)6, which we will specify further
as we go along. As a first simplification, let us assume that the homomorphism
(S1)3 → (S1)6 � (S1)3 which gives the action of (S1)3 on the coordinates
(u1, u2, u3) is the identity. Given this, the homomorphisms (S1)3 → (S1)6 we
consider will be determined by a 3 × 3 matrix of integers

a1 a2 a3

b1 b2 b3

c1 c2 c3


 ,
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with the action of (S1)3 on (S3)3 given by

(λ1, λ2, λ3)((u1, v1), (u2, v2), (u3, v3))

= ((λ1u1, λ
a1
1 λa2

2 λa3
3 v1), (λ2u2, λ

b1
1 λb2

2 λb3
3 v2), (λ3u3, λ

c1
1 λc2

2 λc3
3 v3)).

To check whether this action of (S1)3 on (S3)3 is free, one sees easily that it
suffices to check freeness at the 8 points (p1, p2, p3) in (S3)3 with each pi equal
to (1, 0) or (0, 1). Here freeness at the point ((1, 0), (1, 0), (1, 0)) is automatic
by our choice of the action on the variables ui. Freeness at the 3 points with
one (0, 1) component means that the diagonal entries a1, b2, c3 of our matrix
are ±1. Freeness at the 3 points with two (0, 1) component means that the 3
determinants

det
(

b2 b3

c2 c3

)
,det

(
a1 a3

c1 c3

)
, det

(
a1 a2

b1 b2

)

are ±1. Finally, freeness at the point ((0, 1), (0, 1), (0, 1)) means that the whole
3 × 3 matrix has determinant ±1.

Let us choose our 3 × 3 integer matrix to have the form
 1 0 0

b1 1 1
c1 2 1


 .

Then the above conditions are satisfied for all integers b1 and c1. Thus the corre-
sponding actions of (S1)3 on (S3)3 are free. We will show that the corresponding
quotient manifolds M = (S3)3/(S1)3 have infinitely many non-isomorphic ratio-
nal cohomology rings.

To compute the cohomology ring of such a manifold M , we consider the
associated fibration

(S3)3 → (S3)3/(S1)3 → (BS1)3.

Thus we can consider M , up to homotopy, as being obtained from (BS1)3 by
passing three times from the base space to the total space of an S3-bundle. The
cohomology ring of (BS1)3 = (CP∞)3 is the polynomial ring Z[x1, x2, x3]. By
our choice of the action of (S1)3 on (S3)3, our three S3-bundles over (BS1)3

have Euler classes in H4((BS1)3,Z) of the form x2
1, x2(b1x1 + x2 + x3), and

x3(c1x1 + 2x2 + x3). We observe that these elements form a regular sequence
in the polynomial ring Z[x1, x2, x3]. Therefore, applying the spectral sequence
successively for these three S3-bundles shows that

H∗(M,Z) = Z[x1, x2, x3]/(x2
1, x2(b1x1 + x2 + x3), x3(c1x1 + 2x2 + x3)).

It remains to show that these 6-manifolds M have infinitely many non-
isomorphic rational cohomology rings, as the integers b1 and c1 vary. It turns
out that later calculations are slightly simplified if we define the rational num-
bers a = c1/4 and b = (2b1 − c1)/4, so that b1 = 2(a + b) and c1 = 4a. Things
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will also simplify if we multiply the second relation by 2. In these terms, M has
rational cohomology ring

H∗(M,Q) = Q[x1, x2, x3]/(x2
1, 2x2(2(a + b)x1 + x2 + x3), x3(4ax1 + 2x2 + x3)).

We will only consider the manifolds M associated to integers b1 and c1 which
are not both zero. Then a and b are not both zero.

It turns out that we only need to consider the rational cohomology ring of
M in degrees ≤ 4. In this range, the ring is described by a 3-dimensional
vector space V = H2(M,Q) together with a 3-dimensional linear subspace of
S2V , the kernel of the product map S2V → H4(M,Q). We need to extract a
more understandable invariant from this 3-dimensional linear system of quadrics,
which is spanned by the above 3 relations. One approach, which I learned from
Wall [21], is to consider the determinant of the quadratic form given by an
arbitrary linear combination of the above 3 relations,

λx2
1 + µ · 2x2(2(a + b)x1 + x2 + x3) + νx3(4ax1 + 2x2 + x3).

The determinant of this quadratic form is:

det


 λ 2(a + b)µ 2aν

2(a + b)µ 2µ µ + ν
2aν µ + ν ν


 = −λµ2 − λν2 + 4(a2 − b2)µ2ν + 8abµν2.

This is a more geometrically understandable object, a cubic curve over Q which
is an invariant of the rational cohomology ring of M , modulo the action of
GL(3,Q) on λ, µ, ν and modulo scalars. For convenience, write α = 4(a2 − b2)
and β = 8ab, so the cubic has the form

−λµ2 − λν2 + αµ2ν + βµν2 = 0.

Since a and b are not both zero, α and β are not both zero. Then we compute
that the cubic curve has exactly one singular point, a node at the point [1, 0, 0]
in P2.

We still need to extract a more computable invariant from this nodal cubic
over Q. We use that this curve has 3 inflection points over the algebraic closure
of Q, apart from the singular point. The lines from these 3 inflection points
to the singular point [1, 0, 0] are specified by the point [µ, ν] ∈ P1 associated
to each inflection point [λ, µ, ν] ∈ P2. Here we are thinking of P1 as the space
of lines through the singular point [1, 0, 0] in P2. Computing shows that lines
through the 3 inflection points are the 3 roots of the equation:

βµ3 − 3αµ2ν − 3βµν2 + αν3 = 0.

The two tangent lines to the nodal cubic curve at its singular point are de-
scribed by the binary quadratic form µ2+ν2. Therefore, knowing the nodal cubic
curve modulo scalars and automorphisms of P2 determines the above binary cu-
bic form modulo scalars and modulo automorphisms of P1 which preserve the
binary quadratic form µ2 + ν2 up to scalars. This automorphism group is an or-
thogonal group O(2) times the scalars, and so it has two connected components.
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The identity component consists of the automorphisms

µ 
→ cµ + dν

ν 
→ −dµ + cν

with c, d ∈ Q, not both zero. We compute that this group acts on the above
binary cubic by the following change in α and β:

α + βi 
→ (α + βi)(c + di)3,

where i =
√−1 as usual. All our notation has been chosen in order to make this

formula as simple as possible.
Thus, to the above binary cubic we associate the number α+βi in K = Q(i).

It is nonzero since we assumed α and β are not both 0. Scaling the binary cubic
leaves a well-defined class in K∗/Q∗. Making the above coordinate change leaves
a well-defined class in K∗/(Q∗ · (K∗)3)) = (K∗/3)/(Q∗/3). Finally, we have to
consider the effect of a coordinate change not in the identity component of the
above orthogonal group; for example, we can switch µ and ν. This changes
α + βi to β + αi. To sum up, we can say that the rational cohomology ring
of the 6-manifold M determines an unordered pair of elements of the group
(K∗/3)/(Q∗/3), the class of α + βi and the class of β + αi.

We can now see that we have infinitely many isomorphism classes of rational
cohomology rings among the 6-manifolds M . First, the group (K∗/3)/(Q∗/3) is
infinite. This follows, for example, from the existence of infinitely many prime
numbers p which split in K = Q(i), namely all primes p ≡ 1 (mod 4). If π1 and
π2 are the two prime ideals in K which lie over p, then ordπ1(x)− ordπ2(x) is a
surjective homomorphism from (K∗/3)/(Q∗/3) to Z/3. Since we have infinitely
many such homomorphisms, only finitely many of which can be nontrivial on a
given element of K∗, the group (K∗/3)/(Q∗/3) is infinite.

Furthermore, any element of the group (K∗/3)/(Q∗/3) has the form α + βi
for some α, β coming from a 6-manifold M as above. Indeed, the 6-manifold M
is described by a pair of integers b1, c1, and then our definitions say that

a = c1/4

b = (2b1 − c1)/4

α + βi = 4(a + bi)2.

Since the group (K∗/3)/(Q∗/3) is 3-torsion, every element α + βi is a square in
this group, and so every element can be written as 4(a + bi)2 for some a, b ∈ Q.
Also, multiplying a + bi by any nonzero integer does not change its class in
(K∗/3)/(Q∗/3), so every element of the latter group has the form 4(a + bi)2 for
some a, b ∈ Z. Then the corresponding numbers b1 and c1 are also integers. Thus
we have shown that the 6-manifolds we consider can give rise to any element of
the infinite group (K∗/3)/(Q∗/3).

To be precise, the invariant of the rational cohomology ring we defined is an
unordered pair of elements of this group. This is enough to show that there are
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infinitely many isomorphism clases of rational cohomology rings among these
6-manifolds.

2. Counterexamples to Grove’s question among 7-manifolds with
upper curvature bound

Here we prove:

Theorem 2.1. There are numbers C and D such that there are infinitely many
isomorphism classes of rational cohomology rings among simply connected closed
Riemannian 7-manifolds with curvature −1 ≤ K ≤ C and diameter ≤ D.

As mentioned in the introduction, this strengthens the examples of Fang and
Rong ([7], Theorem B), by lowering the dimension from 22 to 7. The dimension
7 is optimal, by the theorem of Tuschmann [19] and Fang-Rong [6], as discussed
in the introduction.

Proof. The manifolds we construct will all be quotients of a fixed manifold E
by different free torus actions. In fact, this is the only way to get examples as
in the theorem, by the Petrunin-Tuschmann theorem ([16], 0.2), as discussed in
the introduction.

In this case, E will be an 11-manifold with a free (S1)5-action. Before defining
E, we will construct a 6-manifold M which will be the quotient E/(S1)5. By
Sullivan [18], Theorem 13.2, for any graded-commutative Q-algebra which is Q
in degree 0, 0 in degree 1, and which satisfies Poincaré duality of dimension
6, there is a smooth simply connected 6-manifold M with the given rational
cohomology ring. (One could also use Wall’s more precise results on 6-manifolds
[20].) We will take M to have b2 = 5 and b3 = 0. Let x0, . . . , x4 be a basis
for V := H2(M,Q). Then we choose M so that the cubic form on H2(M,Q) is
given by∫

M

(a0x0 + . . . + a4x4)3 = c(a2
0a1 + a2

1a2 + a2
2a3 + a2

3a4 + a2
4a0)

for some nonzero constant c. The corresponding cubic 3-fold in P4 is known as
the Klein cubic. It is not the only cubic form one could use, but calculations
with it are particularly easy. For example, Adler used the Klein cubic as a tool
to describe the Hessian quintic 3-fold of a general cubic 3-fold ([1], Appendix
IV). Using the above formula for the cubic form, it is easy to check that the
product map S2H2(M,Q) → H4(M,Q) is surjective.

Since M is simply connected, H2(M,Z) is torsion-free and hence isomorphic
to Z5, since H2(M,Q) is the 5-dimensional vector space V . Let E be the total
space of the corresponding (S1)5-bundle over M . Thus E is an 11-manifold with
a free (S1)5-action. Choose a Riemannian metric on E preserved by the torus
action. We can scale the metric so as to have curvature ≥ −1. Let D be the
diameter of E.

We consider the 7-manifolds Y which are quotients of E by subtori (S1)4 ⊂
(S1)5. These 7-manifolds are all simply connected. With the metric induced
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from E, they all have diameter ≤ D. By O’Neill’s formula [14], sectional cur-
vature increases under Riemannian submersions, and so all these quotient man-
ifolds have curvature ≥ −1. For clarity, we recall O’Neill’s formula here. Let
π : E → M be a Riemannian submersion. Let X, Y be linearly independent
vector fields on an open subset of E which are orthogonal to the fibers of π
(“horizontal” vector fields). Let K denote sectional curvature on E and M .
Then

K(π∗X, π∗Y ) = K(X, Y ) + 3|(∇XY )v|2/|X ∧ Y |2,
where the subscript v denotes the projection to the tangent bundle of the fibers
of π (“vertical” projection).

Because (S1)5 acts freely on E, there is also an upper bound C for the sectional
curvature of all quotients of E by subtori (S1)4 ⊂ (S1)5. The idea here goes
back to Eschenburg [5], Proposition 22. Namely, O’Neill’s formula shows that
the sectional curvature of a quotient manifold E/(S1)4 can be computed locally
on E. Furthermore, the same formula for the curvature formally makes sense for
the non-closed subgroup of (S1)5 associated to any real linear subspace R4 in
the Lie algebra R5 of (S1)5, using that (S1)5 acts freely on E. The “curvature”
so defined is continuous on the compact manifold of all subspaces R4 ⊂ R5 and
all 2-planes in the tangent bundle of E which are orthogonal to the associated
foliation of E. Therefore, there is a uniform upper bound for this curvature
function, and hence for the curvature of all quotients E/(S1)4 associated to
subtori (S1)4 ⊂ (S1)5.

It remains to show that the different 7-manifolds Y have infinitely many non-
isomorphic rational cohomology rings. We will only consider the cohomology
ring in degrees ≤ 4. Here Y is an S1-bundle over the 6-manifold M . We use
the corresponding spectral sequence to compute the rational cohomology of Y .
First, W := H2(Y,Q) = H2((BS1)4,Q) is the 4-dimensional space V/(Q · y),
where y in V = H2((BS1)5,Q) is dual to the subtorus (S1)4 ⊂ (S1)5 used to
define Y . Also, by the same spectral sequence, the image of S2W in H4(Y,Q)
is H4(M,Q)/(y · V ).

It seems that “general” S1-bundles Y over M will not have interesting coho-
mology rings. Fortunately, we can exhibit a special class of S1-bundles which
do have interesting cohomology rings. Namely, consider S1-bundles Y over M
corresponding to elements y = a0x0 − a1x1 + (a3

1/a2
0)x3 in V = H2(M,Q), for

nonzero rational numbers a0 and a1. (For each nonzero element y up to scalars
in H2(M,Q), there is a corresponding S1-bundle Y over M which is simply con-
nected.) That is, y is a rational point on a certain cuspidal cubic curve in the
projective space P4 of lines in V . We will see that the corresponding S1-bundles
Y over M have infinitely many non-isomorphic rational cohomology rings.

The first useful property of points y as above is that multiplication by y,
from V = H2(M,Q) to H4(M,Q) ∼= V ∗, is not an isomorphism, as we compute
directly from the cubic form. In the 19th-century terminology, which we will
not really need, this means that the above cuspidal curve lies on the Hessian
quintic 3-fold of the given cubic 3-fold. In fact, we compute that the kernel of
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multiplication by y, from H2M to H4M , is 1-dimensional, spanned by

z := a0x0 + a1x1 + (a2
0/a1)x2.

I have the impression that what makes the following proof work is the curious fact
that the birational involution of the Hessian quintic which takes y to z transforms
the cuspidal cubic curve of points y to the smooth conic curve of points z. In
general, it is well known that a quintic 3-fold will have many rational curves,
but the difference between these two curves still seems surprising. In any case,
the following proof will not use these vague ideas.

Because multiplication by y from H2M to H4M has 1-dimensional kernel, the
cokernel H4M/(y ·H2M) is also 1-dimensional. We identified this cokernel with
the image of the product map S2(H2Y ) → H4Y . Thus the cup product on the
7-manifold Y determines a nonzero quadratic form on H2(Y,Q), well-defined up
to scalars. Explicitly, using that yz = 0 ∈ H4M , this quadratic form is defined,
up to scalars, by

(u, v) :=
∫

M

uvz

for u, v ∈ H2M/(Q · y) ∼= H2Y .
Since H2(Y,Q) has dimension 4, which is even, the determinant in Q/(Q∗)2

of a quadratic form on H2(Y,Q) is not changed upon multiplying the quadratic
form by a nonzero scalar. Thus the determinant of the above quadratic form in
Q/(Q∗)2 is an invariant of the rational cohomology ring of Y .

Let a2 = a2
0/a1, so that z = a0x0 + a1x1 + a2x2. We compute that the

quadratic form (u, v) :=
∫

M
uvz on the 5-dimensional space H2M is given, up

to a constant factor, by the matrix



a1 a0 0 0 0
a0 a2 a1 0 0
0 a1 0 a2 0
0 0 a2 0 0
0 0 0 0 a0


 .

This matrix has determinant 0, because this quadratic form on H2M has at
least a 1-dimensional kernel spanned by y. To compute the determinant of the
resulting quadratic form on H2M/(Q · y) ∼= H2Y , we can use the lower right
4 × 4 minor, which has determinant equal to:

−a3
2a0 = −(a2

0/a1)3a0 = −a7
0/a3

1 ∼ −a0/a1 ∈ Q∗/(Q∗)2.

Thus, as we vary the nonzero rational numbers a0 and a1, the determinant
of the quadratic form up to scalars on H2Y can take arbitrary values in the
infinite group Q∗/(Q∗)2. It follows that the 7-manifolds Y have infinitely many
non-isomorphic rational cohomology rings.
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3. Counterexamples to Grove’s question among nonnegatively
curved 9-manifolds with upper curvature bound

Here we prove:

Theorem 3.1. There are numbers C and D such that there are infinitely many
isomorphism classes of rational cohomology rings among simply connected closed
Riemannian 9-manifolds with curvature 0 ≤ K ≤ C and diameter ≤ D.

It seems an interesting challenge to find out whether the dimension here can
be improved. Another comment is that, at least in slightly higher dimensions,
there are examples as in Theorem 3.1 which have infinitely many isomorphism
classes of cohomology rings with complex coefficients.

Proof. The manifolds we construct will all be quotients of a fixed manifold by
different free torus actions, as in Theorem 2.1. In fact, this is the only way to
get examples as in the theorem, by the Petrunin-Tuschmann theorem ([16], 0.2),
as discussed in the introduction.

Precisely, we consider biquotients of the form (S3)4/(S1)3, for the different
subgroups (S1)3 ⊂ (S1)4, where we will specify a free isometric action of (S1)4

on (S3)4, not the obvious one. These 9-manifolds are all simply connected. With
the metric induced from the standard metric on (S3)4, they all have diameter
≤ D where D is the diameter of (S3)4. By O’Neill’s formula [14], sectional
curvature increases under Riemannian submersions, and so all these quotient
manifolds have nonnegative curvature. Finally, by the same argument as in the
proof of Theorem 2.1, since the whole group (S1)4 acts freely on (S3)4, there is
also an upper bound C for the sectional curvature of all quotients of (S3)4 by
subtori (S1)3 ⊂ (S1)4.

We now explain the free isometric action of (S1)4 on (S3)4 which we will use.
We think of S3 as the unit sphere in C2. For any 4 × 4 lower-triangular matrix
A = (aij) of integers with 1’s on the diagonal, the following isometric action of
(S1)4 on (S3)4 is free:

(λ1, λ2, λ3, λ4)((u1, v1), (u2, v2), (u3, v3), (u4, v4))

= ((λ1u1, (
∏
j

λ
a1j

j )v1), . . . , (λ4u4, (
∏
j

λ
a4j

j )v4)).

Let M be the quotient 8-manifold (S3)4/(S1)4. By viewing M as the total space
of a 4-fold iterated S3-bundle over (BS1)4, we find that M has cohomology ring

H∗(M,Z) = Z[x1, x2, x3, x4]/(x2
1, x2(a21x1 + x2), x3(a31x1 + a32x2 + x3),

x4(a41x1 + a42x2 + a43x3 + x4)).

We now specialize the integers aij to make the cohomology ring of the 8-
manifold M equal to:

H∗(M,Z) = Z[x1, x2, x3, x4]/(x2
1, x

2
2, x3(x1 + 2x2 + x3), x4(x1 + 2x2 + x4)).
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Changing variables over Q by x3 
→ x3 − x1/2 − x2 and x4 
→ x4 − x1/2 − x2,
we find that

H∗(M,Q) = Q[x1, x2, x3, x4]/(x2
1, x

2
2, x

2
3 − x1x2, x

2
4 − x1x2).

We want to show that the 9-manifolds Y = (S3)4/(S1)3 associated to subtori
(S1)3 ⊂ (S1)4 can have infinitely many non-isomorphic rational cohomology
rings. As in our previous examples, we only need to consider the cohomology ring
of Y in degrees ≤ 4. Here Y can be the S1-bundle over M corresponding to any
element of H2(M,Z) which generates a summand of H2(M,Z). In particular,
for each a, b, c ∈ Q, there is an S1-bundle Y over M such that H2(Y,Q) is the
quotient of H2(X,Q) by the line spanned by x4 − (ax1 + bx2 + cx3). Then
H2(Y,Q) is spanned by x1, x2, x3. We compute using the spectral sequence of
this S1-bundle that the kernel of the cup product S2H2(Y,Q) → H4(Y,Q) is
the linear system of quadrics spanned by

x2
1, x

2
2, x

2
3 − x1x2, (ax1 + bx2 + cx3)2 − x1x2.

To prove the theorem, it suffices to show that we obtain infinitely many linear
systems of quadrics modulo coordinate changes in GL(3,Q), as a, b, c ∈ Q vary.
Let us assume that a, b, c are all nonzero, as we are free to.

The idea is to consider what squares of linear forms in x1, x2, x3 belong to
this linear system, over a given field k containing Q. It is easy to check that
x2

1 and x2
2 are the only squares of linear forms, up to scalars, in the span of x2

1,
x2

2, and x2
3 − x1x2. So suppose that we have a linear form with coefficients in

k whose square is a nonzero multiple of (ax1 + bx2 + cx3)2 − x1x2 plus a linear
combination of x2

1, x
2
2, x

2
3 − x1x2. By considering the coefficients of x1x3 and

x2x3, we see that the given linear form must be, after multiplying by a constant
in k, of the form ax1 + bx2 + tx3 for some t in k.

So we have to work out for which values of t does the square (ax1+bx2+tx3)2

belong to our linear system of quadrics. We compute that, modulo this linear
system:

(ax1 + bx2 + tx3)2 ≡ (ax1 + bx2 + tx3)2 − (t/c)[(ax1 + bx2 + cx3)2 − x1x2]

≡ (t2 − ct)x2
3 + (1/c)(2abc − 2abt + t)x1x2

≡ (t2 + (1/c)(−c2 − 2ab + 1)t + 2ab)x1x2.

It is easy to check that x1x2 is not zero modulo our linear system of quadrics.
So the square (ax1 + bx2 + tx3)2 belongs to our linear system of quadrics if and
only t satisfies the quadratic equation

t2 + (1/c)(−c2 − 2ab + 1)t + 2ab = 0.

Thus, the given linear system of quadrics contains the squares of two linear
forms x2

1 and x2
2 defined over Q, together with two others defined over the

quadratic extension of Q corresponding to the above equation. It follows that
this quadratic extension of Q is an invariant of the rational cohomology ring
of the given 9-manifold Y . It remains to show that as the rational numbers
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a, b, c vary, we obtain infinitely many different quadratic extensions of Q, and
therefore infinitely many isomorphism classes of rational cohomology rings for
these 9-manifolds.

The quadratic extension of Q given by the above quadratic equation is spec-
ified by the class of its discriminant ∆ = B2 − 4AC in Q∗/(Q∗)2. Here we
have

∆ = 4
[(2ab − c2 − 1

2c

)2

− 1
]
.

We assume that ∆ is nonzero, as is clearly true for most a, b, c. Since a, b, c can
be arbitrary nonzero rational numbers, it is easy to see that the class of ∆ in
Q∗/(Q∗)2 can be any element of the form 4(x2 −1) ∼ x2 −1 for x ∈ Q, x �= ±1.
In particular, ∆ can take infinitely many values in Q∗/(Q∗)2: for example, for
any odd prime p, we can take x = p + 1, and then x2 − 1 has nonzero image
under the homomorphism ordp : Q∗/(Q∗)2 → Z/2. Therefore, the 9-manifolds
we consider have infinitely many isomorphism classes of rational cohomology
rings.

4. Some possible substitutes for Grove’s question

The following questions can be viewed as substitutes for Grove’s question.
They are only slight extensions of well-known conjectures.

Bott’s conjecture that simply connected manifolds with nonnegative curvature
are elliptic ([8], p. 519) suggests that there should be strong restrictions on
the homotopy type of manifolds with curvature ≥ −1 and diameter ≤ D. On
the other hand, any conjecture must be compatible with Grove and Ziller’s
examples of nonnegatively curved manifolds, including all S2-bundles over S4

and all S3-bundles over S4 ([12], Theorem B). Any conjecture must also cover
the almost nonnegatively curved manifolds found by Fukaya and Yamaguchi
([9], Theorem 0.18) and Schwachhöfer and Tuschmann [17], Theorem 4.2. By
definition, a manifold M has almost nonnegative curvature if for every ε > 0, M
has a Riemannian metric with KM · diam(M)2 > −ε. For example, any (linear)
sphere bundle over a sphere has almost nonnegative curvature, by Fukaya and
Yamaguchi.

Question 1. Is every closed simply connected manifold with nonnegative sec-
tional curvature pure elliptic?

By definition, a manifold M is pure elliptic if there is a minimal model for
the cochain algebra C∗(M,Q) such that the space of algebra generators V =
Vev ⊕ Vodd is finite-dimensional (this says that M is elliptic), while d(Vev) = 0
and d(Vodd) is contained in the subalgebra generated by Vev ([8], p. 435). For
example, every biquotient manifold is pure elliptic [13].

Question 2. Is every closed simply connected manifold with almost nonnega-
tive curvature elliptic?
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An almost nonnegatively curved manifold need not be pure elliptic. For exam-
ple, an S5-bundle over S3 ×S3 with nonzero Euler class has almost nonnegative
curvature by Fukaya and Yamaguchi, but it is not pure elliptic. It is helpful to
observe that for a pure elliptic space M , the Lie algebra πev(ΩM)⊗Q is abelian,
while for M elliptic, it is only nilpotent. Thus Questions 1 and 2 can be viewed
as higher-dimensional analogues of the known results that a manifold with non-
negative curvature has almost abelian fundamental group [3], whereas a manifold
with almost nonnegative curvature only has almost nilpotent fundamental group
[9].

Question 3. Given n and D, is there a finite set of closed Riemannian orb-
ifolds Bi such that every simply connected closed Riemannian n-manifold with
sectional curvature ≥ −1 and diameter ≤ D fibers over some Bi with fiber
almost nonnegatively curved?

Here “orbifolds” are allowed to have stabilizer groups equal to any compact
Lie groups, not just finite groups. Question 3 is strongly suggested by Ya-
maguchi’s Main Theorem (p. 318) and Conjecture (p. 323) [22]. Questions 2
and 3 together would imply that simply connected n-manifolds with curvature
≥ −1 and diameter ≤ D have only finitely many sequences of rational homo-
topy groups π∗(M) ⊗ Q, using Friedlander and Halperin’s determination of the
possible rational homotopy groups of elliptic spaces ([8], p. 441).
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