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ON AN EQUIVALENT DEFINITION OF FREE ENTROPY

SERBAN TEODOR BELINSCHI

ABSTRACT. In his second paper on free entropy, Voiculescu suggested five other
possible definitions of the entropy of an n-tuple of selfadjoint random variables.
We show that two of them are equivalent to the original one.

1. Introduction

Let X1,..., X, be n selfadjoint random variables in the tracial W*- probabil-
ity space (M, 7). Denote by M;? the space of k x k selfadjoint matrices over C,
let Try be the (unnormalized) trace on M;?, and denote by 74 the normalized
trace, 7, = ETrk. Then (M3*)™ becomes a real Hilbert space with the norm

(AL Ap)lle = (Tr (AT + -+ A7)V,

Denote by A the Lebesgue measure corresponding to this norm (i.e. the Lebesgue
measure normalized so that a cube with edges of length one has measure equal
to one).

Let ¢ > 0,m > 1,R > max{||X1]|,... || X[}, and let ¥, : (M7*)" — R4
be defined by

Upn(Ar, . An) =)0 Y m(Ai Ay = (X, - X))

q=11<iy,...,ig<n

Following Voiculescu’s definition of microstate-based free entropy x (X1, ..., X»),
let
FR(Xla ce 7Xn7 m, k,E) = {(Al, R ,An) € (M}ia)n : ‘I/m,k:(Aly ce ,An) <e¢g,
14;1 < R}

Xer(X1,..., Xn;m ke

xr(X1, ..., Xnim,e) = limsup(k™*xr(X1,..., Xp;m, k,e) + 27 'nlog k)

) =log A\(Tr(X1,...,Xn;m, k,¢))
)

k— oo
n) =
n) =

Xr(X1,..., X €_}()li7rrIbl_>ooXR(X1,...,Xn;m75)
X(X1,...,X sup xgr(X1,...,X,).

R>0
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In Section 7.1 of [3], two alternative quantities were defined by Voiculescu
as follows. Let Dy r(X1,...,Xpn;m, k,e) be the set of probability densities f :
(M9 — Ry (ie. ffd)\ =1)sothat [ f(A1,..., An)¥mk(A1,..., An)d) <&,
and f(Ai,...,A,) =0 unless [|[4;|| <R (1 <j <n). Then

Xg)(Xl""aXn;mvkae):Sup{_/flogfd)\:fGpl,R(X17"'>Xn;m7k7€)}'

Y is now defined following the same steps as in the definition of y. One
can also define y and XSXJ by setting R = oo from the beginning, that is,
by leaving out the conditions on the norms of the A;’s. Since the charac-
teristic function of I'r(Xy,...,X,;m,k,e) (properly normalized) belongs to

D1 r(X1,...,Xn;m,k,€), we conclude that

Xg)(Xl,...,Xn;m,k,g) > xr(X1,..., Xn;m, k,€).

It follows that y < ¥V, and, likewise, Yoo < Xg)).

It has already been proved in [1] that yo = x. In this paper we shall prove
that X( ) = = Xoo, Which will obviously imply that ng) =M =y = xoo. As an
immediate consequence, we obtain a new way to define free entropy replacing
Xr(X1,..., Xn;m,k,e) by:

X9 (X1, .., Xn;m, k,e) = log / e (Wmk(ALAn)=€) gy

and continuing as in the original definition. Here s is an appropriate positive
number depending on X7, Xo, ..., X,,,m,e and k.

2. The main result

Given a probability density f:RP — [0,400), ie. [g, f( =1, we
denote by I — Jg» f(x)log f(x)dA(x) the classmal entropy of f A density
of special interest is the Gaussian density Gg’;) defined on R?P by Gg’;) () =
(271'1a2 ) 2 e ”22”2% .

We will need the following extension of Shannon’s classical inequality (see [2],
pp. 55-57).

Lemma 2.1. Let Q C RP be a set of positive Lebesgue measure, and € > 0
be fized. If © is a positive continuous function on £ such that fQ(p > eA(Q),
0 1([0,€)) is nonempty, and both e=% and p?e~% are integrable on Q, then there
is a number s € (0,00) depending on ¢,p, and & such that M :=

max {I(f) F>0,f=0onR"\ Q/ F@)dA(z) = 1,/ F@)p(@)d\(z) = g}

is attained for f = ([, e *?@d\(z))"te™*? and equals log [, e~*P@=E)d.
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Proof. For each s > 0, let fq(x (Jo e*w(y)d)\( ))*1 —s¢(@) Consider the
function A : (0, 00) — (0, 00) glven by h(s) = Jq () fs(x)dA(x). Since both e~%
and p?e~¥ are integrable on ), we can dlfferentlate under the integral sign, and
a straightforward calculation shows that

W =- [ (v~ [ so(y)fs(y)cu(y))2f5<x>cu<x>,

so h/(s) < 0, We also have that

lim h

i, ) = i ele),

which is strictly less than e, and lims_oh(s) equals ﬁ Joe if A(Q) < o0
and infinity if A(€2) = oo, which are both greater than or equal to €. Hence
the existence of s is assured by the monotonicity of h. Moreover, since ¢ is
nonconstant, s is unique with this property.

Let
ge{f:fEO,/Qfd)\zl,/Qfgod)\:s}.

We may assume that g(z) < oo for all z € Q. If I(g) = —oo, then it is obvious
that I(fs) > I(g). So suppose that I(g) > —oo. Consider the function 7 :
[O, 1] — R defined by n(t) = I((1 —t)fo + tg). This function is continuous

[O 1], differentiable on [0,1), and twice differentiable on (0,1). Moreover,
0 = — (9 — £ 1oE((1 — . + 1) + 1), and 7'0) — — f i (This
follows 1mmed1atly from the dominated convergence theorem Indeed,

(g — fs)(og((L—t) fs +tg) +1)| < g+ fo + (g — fs)log((1 —t) fs + tg)|

for all ¢ € [0, 1), and for any compact interval K C [0, 1), sup,cx [(9— fs) log((1—
t)fs + tg)| is integrable on 2. Also,

‘ (9= f)? ‘
(L—0)fs +tg

for all ¢ € (0,1), and, of course, sup,cx |19 + 15| is integrable on  for any
compact interval K C (0,1).)

By direct computation, we obtain that n’(0) = 0. Also, 7 is continuous on
[0,1), and 7" (t) < 0 for all t € (0, 1), so the point ¢ = 0 is a global maximum for
7. This proves that I(fs;) = M and concludes the proof. O

1 1
g+_fs

Remark 2.2. To see how this lemma extends Shannon’s inequality, set 2 = R™/

and p(x) = ||z||3. In this case the extremal density f is G%) and I(Ggp)) =
2- plog(27rep le). Also note that for A\(2) < 400 and ¢ = ¢, the extremal
density is /\(Q) X and [(ﬁ q) =log A(Q).

Now we can prove the main result of the paper.
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Theorem 2.1. Let X4,...,X, be selfadjoint random variables in a tracial W*-
probability space (M, 7). Then

Xoo (X1, Xn) = xW(Xy,..., X,).

Proof. As noted in the introduction, xoo(X1,...,Xn) < Xgé)(Xl,...,Xn), SO
it is enough to prove the opposite inequality. Let m > 2 and ¢ € (0,1/2)
be fixed. Let Vo = {(A41,...,4,) € (M*)" : U, 1(A1,...,A,) < €}, and
Vi = (M;*)"™ \ V. Consider fo € D1.0o(X1,. .., Xn;m, k,e?) such that I(fo) =
max{I(f): f € Fg)(Xl,...,Xn;m,k@Q)}, and define féi) = ¢; ' foxv,, where
ci = fVi f, i=0,1depend on X1,...,X,,,m,k and €. Then we have:

e > /fo‘Ifm,k > [ foUmi>e [ fo=cec,
Vi Vi

socp <e,andcg>1—e.
Since fo € D oo(X1,. .., Xn;m, k,e2),

£
/fél)‘l’m,k: = (/ fo) foUme < —,
Vi Vi C1

which implies that fél) € D1,oo(X1,..., Xn;m, k, g)
Now,

I(fo) = Cof(f(go)) +cil( él)) —cglogey — cilogey

1 nk2
< ol <WXVO> + cll(G,(g(gza_mQ/Cl)) —colog cg — ¢qlog ey

k‘2 9 02 2
= COXOO(XI;' . .7Xn;m’k‘,€) +Cln7 <10g 776( -;715 /Cl) _1ng)

(1) —¢glogcy — c1logeq,

where C? = 7(X,% + - - - + X,,%). Here we used Lemma 2.1 in the last inequality.
Dividing by k2 and adding 5 logk in (1), we obtain:
1 n 1 n
ﬁf(fo) + §logk < < <ﬁXoo(X17 coy Xpym, kye) + §logk)
2me(C? +ne?/cy)
n

1
+clglog — ﬁ(cologcojtcl logcy).

As k — oo, this yields

1
Xglo)(Xl, ... ,Xn;m,EQ) < limsup ¢ (ﬁXOO(Xh o Xaymyke) + g logk>
k—oo

2me(C? 4+ ne?/cy)

) n
+ lim sup ¢; = log
k—o0 2
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2me(C?+ne®/t i
2mel@tne’ /) — ), the function

:te(O,s]}

does not depend on k and m and tends to zero as € — 0.
Hence

Since limy_¢ ¢~0 t log

2 2 2/t
S(6) = sup {tglog Te(C? + ne? /t)
n

1
W(Xy,..., Xp;m,e?) < limsup Co(ﬁXoo(Xl, e Xnymykye)+ g log k‘)—i—s(z—:)

k—oo

On the other hand, since 1 > ¢y > 1 — &, we have that

1
lim sup ¢g <ﬁXOO(X1’ oy Xnymykye) + g logk> <

k—o0

max {(1 — &)Xoo(X1, -+, Xn;m, &), Xoo (X1, ..., Xp;m,e)}.
This allows us to conclude that
W(X1,..., Xnym,e?) <
max {(1 — &)xoo (X1, -, Xn;m, &), Xoo (X1, .., Xn;m, &)} + s(e).
Taking limits when m — oo and € — 0 in the previous inequality, we obtain
WXy, Xn) = Yoo (X1y o0, X0).
O
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