ON AN EQUIVALENT DEFINITION OF FREE ENTROPY

SERBAN TEODOR BELINSCHI

ABSTRACT. In his second paper on free entropy, Voiculescu suggested five other possible definitions of the entropy of an n-tuple of selfadjoint random variables. We show that two of them are equivalent to the original one.

1. Introduction

Let X_1, \ldots, X_n be *n* selfadjoint random variables in the tracial W^* - probability space (\mathcal{M}, τ) . Denote by \mathcal{M}_k^{sa} the space of $k \times k$ selfadjoint matrices over \mathbb{C} , let Tr_k be the (unnormalized) trace on \mathcal{M}_k^{sa} , and denote by τ_k the normalized trace, $\tau_k = \frac{1}{k} \operatorname{Tr}_k$. Then $(\mathcal{M}_k^{sa})^n$ becomes a real Hilbert space with the norm

$$||(A_1,\ldots,A_n)||_2 = (\operatorname{Tr}_k(A_1^2 + \cdots + A_n^2))^{1/2}$$

Denote by λ the Lebesgue measure corresponding to this norm (i.e. the Lebesgue measure normalized so that a cube with edges of length one has measure equal to one).

Let $\varepsilon > 0, m > 1, R > \max\{\|X_1\|, \dots, \|X_n\|\}$, and let $\Psi_{m,k} : (\mathcal{M}_k^{sa})^n \to \mathbb{R}_+$ be defined by

$$\Psi_{m,k}(A_1,\ldots,A_n) = \sum_{q=1}^m \sum_{1 \le i_1,\ldots,i_q \le n} |\tau_k(A_{i_1}\ldots A_{i_q}) - \tau(X_{i_1}\ldots X_{i_q})|.$$

Following Voiculescu's definition of microstate-based free entropy $\chi(X_1, \ldots, X_n)$, let

$$\Gamma_R(X_1,\ldots,X_n;m,k,\varepsilon) = \{ (A_1,\ldots,A_n) \in (\mathcal{M}_k^{sa})^n : \Psi_{m,k}(A_1,\ldots,A_n) < \varepsilon, \\ \|A_j\| \le R \}$$

$$\chi_R(X_1, \dots, X_n; m, k, \varepsilon) = \log \lambda(\Gamma_R(X_1, \dots, X_n; m, k, \varepsilon))$$

$$\chi_R(X_1, \dots, X_n; m, \varepsilon) = \limsup_{k \to \infty} (k^{-2} \chi_R(X_1, \dots, X_n; m, k, \varepsilon) + 2^{-1} n \log k)$$

$$\chi_R(X_1, \dots, X_n) = \lim_{\varepsilon \to 0, m \to \infty} \chi_R(X_1, \dots, X_n; m, \varepsilon)$$

$$\chi(X_1, \dots, X_n) = \sup_{R > 0} \chi_R(X_1, \dots, X_n).$$

Received November 19, 2002.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 46L54; Secondary: 94A17.

In Section 7.1 of [3], two alternative quantities were defined by Voiculescu as follows. Let $\mathcal{D}_{1,R}(X_1,\ldots,X_n;m,k,\varepsilon)$ be the set of probability densities f: $(\mathcal{M}_k^{sa})^n \to \mathbb{R}_+$ (i.e. $\int f d\lambda = 1$) so that $\int f(A_1,\ldots,A_n)\Psi_{m,k}(A_1,\ldots,A_n)d\lambda \leq \varepsilon$, and $f(A_1,\ldots,A_n) = 0$ unless $||A_j|| \leq R$ $(1 \leq j \leq n)$. Then

$$\chi_R^{(1)}(X_1,\ldots,X_n;m,k,\varepsilon) = \sup\left\{-\int f\log fd\lambda : f\in\mathcal{D}_{1,R}(X_1,\ldots,X_n;m,k,\varepsilon)\right\}.$$

 $\chi^{(1)}$ is now defined following the same steps as in the definition of χ . One can also define χ_{∞} and $\chi^{(1)}_{\infty}$ by setting $R = \infty$ from the beginning, that is, by leaving out the conditions on the norms of the A_j 's. Since the characteristic function of $\Gamma_R(X_1, \ldots, X_n; m, k, \varepsilon)$ (properly normalized) belongs to $\mathcal{D}_{1,R}(X_1, \ldots, X_n; m, k, \varepsilon)$, we conclude that

$$\chi_R^{(1)}(X_1,\ldots,X_n;m,k,\varepsilon) \ge \chi_R(X_1,\ldots,X_n;m,k,\varepsilon).$$

It follows that $\chi \leq \chi^{(1)}$, and, likewise, $\chi_{\infty} \leq \chi_{\infty}^{(1)}$.

It has already been proved in [1] that $\chi_{\infty} = \chi$. In this paper we shall prove that $\chi_{\infty}^{(1)} = \chi_{\infty}$, which will obviously imply that $\chi_{\infty}^{(1)} = \chi^{(1)} = \chi = \chi_{\infty}$. As an immediate consequence, we obtain a new way to define free entropy replacing $\chi_R(X_1, \ldots, X_n; m, k, \varepsilon)$ by:

$$\chi_{\infty}^{(1)}(X_1,\ldots,X_n;m,k,\varepsilon) = \log \int e^{-s(\Psi_{m,k}(A_1,\ldots,A_n)-\varepsilon)} d\lambda,$$

and continuing as in the original definition. Here s is an appropriate positive number depending on $X_1, X_2, \ldots, X_n, m, \varepsilon$ and k.

2. The main result

Given a probability density $f : \mathbb{R}^p \to [0, +\infty)$, i.e. $\int_{\mathbb{R}^p} f(x) d\lambda(x) = 1$, we denote by $I(f) = -\int_{\mathbb{R}^p} f(x) \log f(x) d\lambda(x)$ the classical entropy of f. A density of special interest is the Gaussian density $G_{a^2}^{(p)}$ defined on \mathbb{R}^p by $G_{a^2}^{(p)}(x) = \left(\frac{1}{2\pi a^2}\right)^{\frac{p}{2}} e^{-\frac{\|x\|_2^2}{2a^2}}$.

We will need the following extension of Shannon's classical inequality (see [2], pp. 55–57).

Lemma 2.1. Let $\Omega \subset \mathbb{R}^p$ be a set of positive Lebesgue measure, and $\varepsilon > 0$ be fixed. If φ is a positive continuous function on Ω such that $\int_{\Omega} \varphi \geq \varepsilon \lambda(\Omega)$, $\varphi^{-1}([0,\varepsilon))$ is nonempty, and both $e^{-\varphi}$ and $\varphi^2 e^{-\varphi}$ are integrable on Ω , then there is a number $s \in (0,\infty)$ depending on φ , p, and ε such that M :=

$$\max\left\{I(f): f \ge 0, f = 0 \text{ on } \mathbb{R}^n \setminus \Omega, \int_{\Omega} f(x) d\lambda(x) = 1, \int_{\Omega} f(x) \varphi(x) d\lambda(x) = \varepsilon\right\}$$

is attained for $f = (\int_{\Omega} e^{-s\varphi(x)} d\lambda(x))^{-1} e^{-s\varphi}$ and equals $\log \int_{\Omega} e^{-s(\varphi(x)-\varepsilon)} d\lambda$.

Proof. For each s > 0, let $f_s(x) = (\int_{\Omega} e^{-s\varphi(y)} d\lambda(y))^{-1} e^{-s\varphi(x)}$. Consider the function $h: (0, \infty) \to (0, \infty)$ given by $h(s) = \int_{\Omega} \varphi(x) f_s(x) d\lambda(x)$. Since both $e^{-\varphi}$ and $\varphi^2 e^{-\varphi}$ are integrable on Ω , we can differentiate under the integral sign, and a straightforward calculation shows that

$$h'(s) = -\int_{\Omega} \left(\varphi(x) - \int_{\Omega} \varphi(y) f_s(y) d\lambda(y)\right)^2 f_s(x) d\lambda(x),$$

so h'(s) < 0, We also have that

$$\lim_{s \to \infty} h(s) = \min_{x \in \Omega} \varphi(x),$$

which is strictly less than ε , and $\lim_{s\to 0} h(s)$ equals $\frac{1}{\lambda(\Omega)} \int_{\Omega} \varphi$ if $\lambda(\Omega) < \infty$ and infinity if $\lambda(\Omega) = \infty$, which are both greater than or equal to ε . Hence the existence of s is assured by the monotonicity of h. Moreover, since φ is nonconstant, s is unique with this property.

Let

$$g \in \left\{ f : f \ge 0, \int_{\Omega} f d\lambda = 1, \int_{\Omega} f \varphi d\lambda = \varepsilon \right\}.$$

We may assume that $g(x) < \infty$ for all $x \in \Omega$. If $I(g) = -\infty$, then it is obvious that $I(f_s) > I(g)$. So suppose that $I(g) > -\infty$. Consider the function η : $[0,1] \to \mathbb{R}$ defined by $\eta(t) = I((1-t)f_0 + tg)$. This function is continuous on [0,1], differentiable on [0,1), and twice differentiable on (0,1). Moreover, $\eta'(t) = -\int_{\Omega} (g - f_s)(\log((1-t)f_s + tg) + 1)$, and $\eta''(t) = -\int_{\Omega} \frac{(g - f_s)^2}{(1-t)f_s + tg}$. (This follows immediatly from the dominated convergence theorem. Indeed,

$$|(g - f_s)(\log((1 - t)f_s + tg) + 1)| \le g + f_s + |(g - f_s)\log((1 - t)f_s + tg)|$$

for all $t \in [0, 1)$, and for any compact interval $K \subset [0, 1)$, $\sup_{t \in K} |(g - f_s) \log((1 - t)f_s + tg)|$ is integrable on Ω . Also,

$$\left|\frac{(g-f_s)^2}{(1-t)f_s + tg}\right| \le \frac{1}{t}g + \frac{1}{1-t}f_s$$

for all $t \in (0, 1)$, and, of course, $\sup_{t \in K} |\frac{1}{t}g + \frac{1}{1-t}f_s|$ is integrable on Ω for any compact interval $K \subset (0, 1)$.)

By direct computation, we obtain that $\eta'(0) = 0$. Also, η' is continuous on [0,1), and $\eta''(t) \leq 0$ for all $t \in (0,1)$, so the point t = 0 is a global maximum for η . This proves that $I(f_s) = M$ and concludes the proof.

Remark 2.2. To see how this lemma extends Shannon's inequality, set $\Omega = \mathbb{R}^n$, and $\varphi(x) = ||x||_2^2$. In this case the extremal density f is $G_{\varepsilon}^{(p)}$ and $I(G_{\varepsilon}^{(p)}) = 2^{-1}p\log(2\pi ep^{-1}\varepsilon)$. Also note that for $\lambda(\Omega) < +\infty$ and $\varphi = \varepsilon$, the extremal density is $\frac{1}{\lambda(\Omega)}\chi_{\Omega}$ and $I(\frac{1}{\lambda(\Omega)}\chi_{\Omega}) = \log \lambda(\Omega)$.

Now we can prove the main result of the paper.

Theorem 2.1. Let X_1, \ldots, X_n be selfadjoint random variables in a tracial W^* -probability space (\mathcal{M}, τ) . Then

$$\chi_{\infty}(X_1,\ldots,X_n)=\chi_{\infty}^{(1)}(X_1,\ldots,X_n).$$

Proof. As noted in the introduction, $\chi_{\infty}(X_1, \ldots, X_n) \leq \chi_{\infty}^{(1)}(X_1, \ldots, X_n)$, so it is enough to prove the opposite inequality. Let $m \geq 2$ and $\varepsilon \in (0, 1/2)$ be fixed. Let $V_0 = \{(A_1, \ldots, A_n) \in (\mathcal{M}_k^{sa})^n : \Psi_{m,k}(A_1, \ldots, A_n) \leq \varepsilon\}$, and $V_1 = (\mathcal{M}_k^{sa})^n \setminus V_0$. Consider $f_0 \in \mathcal{D}_{1,\infty}(X_1, \ldots, X_n; m, k, \varepsilon^2)$ such that $I(f_0) =$ $\max\{I(f) : f \in \Gamma_{\infty}^{(1)}(X_1, \ldots, X_n; m, k, \varepsilon^2)\}$, and define $f_0^{(i)} = c_i^{-1} f_0 \chi_{V_i}$, where $c_i = \int_{V_i} f, i = 0, 1$ depend on X_1, \ldots, X_n, m, k and ε . Then we have:

$$\varepsilon^2 \ge \int f_0 \Psi_{m,k} \ge \int_{V_1} f_0 \Psi_{m,k} \ge \varepsilon \int_{V_1} f_0 = \varepsilon c_1,$$

so $c_1 \leq \varepsilon$, and $c_0 \geq 1 - \varepsilon$.

Since $f_0 \in \mathcal{D}_{1,\infty}(X_1,\ldots,X_n;m,k,\varepsilon^2)$,

$$\int f_0^{(1)} \Psi_{m,k} = \left(\int_{V_1} f_0 \right)^{-1} \int_{V_1} f_0 \Psi_{m,k} < \frac{\varepsilon^2}{c_1},$$

which implies that $f_0^{(1)} \in \mathcal{D}_{1,\infty}(X_1, \ldots, X_n; m, k, \frac{\varepsilon^2}{c_1})$. Now,

$$\begin{split} I(f_0) &= c_0 I(f_0^{(0)}) + c_1 I(f_0^{(1)}) - c_0 \log c_0 - c_1 \log c_1 \\ &\leq c_0 I\left(\frac{1}{|V_0|}\chi_{V_0}\right) + c_1 I(G_{k(C^2 + n\varepsilon^2/c_1)}^{(nk^2)}) - c_0 \log c_0 - c_1 \log c_1 \\ &= c_0\chi_{\infty}(X_1, \dots, X_n; m, k, \varepsilon) + c_1 \frac{nk^2}{2} \left(\log \frac{2\pi e(C^2 + n\varepsilon^2/c_1)}{n} - \log k\right) \\ (1) &\quad -c_0 \log c_0 - c_1 \log c_1, \end{split}$$

where $C^2 = \tau (X_1^2 + \dots + X_n^2)$. Here we used Lemma 2.1 in the last inequality. Dividing by k^2 and adding $\frac{n}{2} \log k$ in (1), we obtain:

$$\frac{1}{k^2} I(f_0) + \frac{n}{2} \log k \leq c_0 \left(\frac{1}{k^2} \chi_{\infty}(X_1, \dots, X_n; m, k, \varepsilon) + \frac{n}{2} \log k \right) \\ + c_1 \frac{n}{2} \log \frac{2\pi e(C^2 + n\varepsilon^2/c_1)}{n} - \frac{1}{k^2} (c_0 \log c_0 + c_1 \log c_1)$$

As $k \to \infty$, this yields

$$\chi_{\infty}^{(1)}(X_1, \dots, X_n; m, \varepsilon^2) \le \limsup_{k \to \infty} c_0 \left(\frac{1}{k^2} \chi_{\infty}(X_1, \dots, X_n; m, k, \varepsilon) + \frac{n}{2} \log k \right)$$
$$+ \limsup_{k \to \infty} c_1 \frac{n}{2} \log \frac{2\pi e(C^2 + n\varepsilon^2/c_1)}{n}$$

Since $\lim_{t\to 0, t>0} t \log \frac{2\pi e(C^2 + n\varepsilon^2/t)}{n} = 0$, the function

$$s(\varepsilon) := \sup\left\{ t \frac{n}{2} \log \frac{2\pi e(C^2 + n\varepsilon^2/t)}{n} : t \in (0, \varepsilon] \right\}$$

does not depend on k and m and tends to zero as $\varepsilon \to 0$.

Hence

$$\chi_{\infty}^{(1)}(X_1,\ldots,X_n;m,\varepsilon^2) \le \limsup_{k\to\infty} c_0 \left(\frac{1}{k^2}\chi_{\infty}(X_1,\ldots,X_n;m,k,\varepsilon) + \frac{n}{2}\log k\right) + s(\varepsilon)$$

On the other hand, since $1 \ge c_0 \ge 1 - \varepsilon$, we have that

$$\limsup_{k \to \infty} c_0 \left(\frac{1}{k^2} \chi_{\infty}(X_1, \dots, X_n; m, k, \varepsilon) + \frac{n}{2} \log k \right) \le \max\left\{ (1 - \varepsilon) \chi_{\infty}(X_1, \dots, X_n; m, \varepsilon), \chi_{\infty}(X_1, \dots, X_n; m, \varepsilon) \right\}.$$

This allows us to conclude that

$$\chi_{\infty}^{(1)}(X_1,\ldots,X_n;m,\varepsilon^2) \le \max\left\{(1-\varepsilon)\chi_{\infty}(X_1,\ldots,X_n;m,\varepsilon),\chi_{\infty}(X_1,\ldots,X_n;m,\varepsilon)\right\} + s(\varepsilon).$$

Taking limits when $m \to \infty$ and $\varepsilon \to 0$ in the previous inequality, we obtain

$$\chi_{\infty}^{(1)}(X_1,\ldots,X_n)=\chi_{\infty}(X_1,\ldots,X_n).$$

Acknowledgement

I wish to thank my advisor Professor Hari Bercovici for the constant help that made this paper possible.

References

- [1] S. T. Belinschi, H. Bercovici, A property of free entropy, to appear in Pacific J. Math.
- [2] C. E. Shannon, The Mathematical Theory of Communication, The University of Illinois Press, Urbana, IL, 1949.
- [3] D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. II, Invent. Math. 118 (1994), 411-440.

MATHEMATICS DEPARTMENT, INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 47405, U.S.A. *E-mail address:* sbelinsc@indiana.edu

INSTITUTE OF MATHEMATICS, ROMANIAN ACADEMY, P.O. BOX 1-764, BUCHAREST, RO-70700, ROMANIA.