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ON AN EQUIVALENT DEFINITION OF FREE ENTROPY

Serban Teodor Belinschi

Abstract. In his second paper on free entropy, Voiculescu suggested five other
possible definitions of the entropy of an n-tuple of selfadjoint random variables.
We show that two of them are equivalent to the original one.

1. Introduction

Let X1, . . . , Xn be n selfadjoint random variables in the tracial W ∗- probabil-
ity space (M, τ). Denote by Msa

k the space of k× k selfadjoint matrices over C,
let Trk be the (unnormalized) trace on Msa

k , and denote by τk the normalized
trace, τk = 1

kTrk. Then (Msa
k )n becomes a real Hilbert space with the norm

‖(A1, . . . , An)‖2 = (Trk(A2
1 + · · · + A2

n))1/2.

Denote by λ the Lebesgue measure corresponding to this norm (i.e. the Lebesgue
measure normalized so that a cube with edges of length one has measure equal
to one).

Let ε > 0, m > 1, R > max{‖X1‖, . . . ‖Xn‖}, and let Ψm,k : (Msa
k )n → R+

be defined by

Ψm,k(A1, . . . , An) =
m∑

q=1

∑
1≤i1,...,iq≤n

|τk( Ai1 . . . Aiq
) − τ(Xi1 . . . Xiq

)|.

Following Voiculescu’s definition of microstate-based free entropy χ(X1, . . . , Xn),
let

ΓR(X1, . . . , Xn;m, k, ε) = {(A1, . . . , An) ∈ (Msa
k )n : Ψm,k(A1, . . . , An) < ε,

‖Aj‖ ≤ R}
χR(X1, . . . , Xn;m, k, ε) = log λ(ΓR(X1, . . . , Xn;m, k, ε))

χR(X1, . . . , Xn;m, ε) = lim sup
k→∞

(k−2χR(X1, . . . , Xn;m, k, ε) + 2−1n log k)

χR(X1, . . . , Xn) = lim
ε→0,m→∞

χR(X1, . . . , Xn;m, ε)

χ(X1, . . . , Xn) = sup
R>0

χR(X1, . . . , Xn).
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In Section 7.1 of [3], two alternative quantities were defined by Voiculescu
as follows. Let D1,R(X1, . . . , Xn;m, k, ε) be the set of probability densities f :
(Msa

k )n → R+ (i.e.
∫

fdλ = 1) so that
∫

f(A1, . . . , An)Ψm,k(A1, . . . , An)dλ ≤ ε,
and f(A1, . . . , An) = 0 unless ‖Aj‖ ≤ R (1 ≤ j ≤ n). Then

χ
(1)
R (X1, . . . , Xn;m, k, ε) = sup

{
−

∫
f log fdλ : f ∈ D1,R(X1, . . . , Xn; m, k, ε)

}
.

χ(1) is now defined following the same steps as in the definition of χ. One
can also define χ∞ and χ

(1)
∞ by setting R = ∞ from the beginning, that is,

by leaving out the conditions on the norms of the Aj ’s. Since the charac-
teristic function of ΓR(X1, . . . , Xn;m, k, ε) (properly normalized) belongs to
D1,R(X1, . . . , Xn;m, k, ε), we conclude that

χ
(1)
R (X1, . . . , Xn;m, k, ε) ≥ χR(X1, . . . , Xn;m, k, ε).

It follows that χ ≤ χ(1), and, likewise, χ∞ ≤ χ
(1)
∞ .

It has already been proved in [1] that χ∞ = χ. In this paper we shall prove
that χ

(1)
∞ = χ∞, which will obviously imply that χ

(1)
∞ = χ(1) = χ = χ∞. As an

immediate consequence, we obtain a new way to define free entropy replacing
χR(X1, . . . , Xn;m, k, ε) by:

χ(1)
∞ (X1, . . . , Xn;m, k, ε) = log

∫
e−s(Ψm,k(A1,...,An)−ε)dλ,

and continuing as in the original definition. Here s is an appropriate positive
number depending on X1, X2, . . . , Xn, m, ε and k.

2. The main result

Given a probability density f : R
p → [0,+∞), i.e.

∫
Rp f(x)dλ(x) = 1, we

denote by I(f) = − ∫
Rp f(x) log f(x)dλ(x) the classical entropy of f. A density

of special interest is the Gaussian density G
(p)
a2 defined on R

p by G
(p)
a2 (x) =(

1
2πa2

) p
2 e−

‖x‖2
2

2a2 .

We will need the following extension of Shannon’s classical inequality (see [2],
pp. 55–57).

Lemma 2.1. Let Ω ⊂ R
p be a set of positive Lebesgue measure, and ε > 0

be fixed. If ϕ is a positive continuous function on Ω such that
∫
Ω

ϕ ≥ ελ(Ω),
ϕ−1([0, ε)) is nonempty, and both e−ϕ and ϕ2e−ϕ are integrable on Ω, then there
is a number s ∈ (0,∞) depending on ϕ, p, and ε such that M :=

max
{

I(f) : f ≥ 0, f = 0 on R
n \ Ω,

∫
Ω

f(x)dλ(x) = 1,

∫
Ω

f(x)ϕ(x)dλ(x) = ε

}

is attained for f = (
∫
Ω

e−sϕ(x)dλ(x))−1e−sϕ and equals log
∫
Ω

e−s(ϕ(x)−ε)dλ.
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Proof. For each s > 0, let fs(x) = (
∫
Ω

e−sϕ(y)dλ(y))−1e−sϕ(x). Consider the
function h : (0,∞) → (0,∞) given by h(s) =

∫
Ω

ϕ(x)fs(x)dλ(x). Since both e−ϕ

and ϕ2e−ϕ are integrable on Ω, we can differentiate under the integral sign, and
a straightforward calculation shows that

h′(s) = −
∫

Ω

(
ϕ(x) −

∫
Ω

ϕ(y)fs(y)dλ(y)
)2

fs(x)dλ(x),

so h′(s) < 0, We also have that

lim
s→∞h(s) = min

x∈Ω
ϕ(x),

which is strictly less than ε, and lims→0 h(s) equals 1
λ(Ω)

∫
Ω

ϕ if λ(Ω) < ∞
and infinity if λ(Ω) = ∞, which are both greater than or equal to ε. Hence
the existence of s is assured by the monotonicity of h. Moreover, since ϕ is
nonconstant, s is unique with this property.

Let

g ∈
{

f : f ≥ 0,

∫
Ω

fdλ = 1,

∫
Ω

fϕdλ = ε

}
.

We may assume that g(x) < ∞ for all x ∈ Ω. If I(g) = −∞, then it is obvious
that I(fs) > I(g). So suppose that I(g) > −∞. Consider the function η :
[0, 1] → R defined by η(t) = I((1 − t)f0 + tg). This function is continuous
on [0, 1], differentiable on [0, 1), and twice differentiable on (0, 1). Moreover,
η′(t) = − ∫

Ω
(g − fs)(log((1 − t)fs + tg) + 1), and η′′(t) = − ∫

Ω
(g−fs)2

(1−t)fs+tg . (This
follows immediatly from the dominated convergence theorem. Indeed,

|(g − fs)(log((1 − t)fs + tg) + 1)| ≤ g + fs + |(g − fs) log((1 − t)fs + tg)|
for all t ∈ [0, 1), and for any compact interval K ⊂ [0, 1), supt∈K |(g−fs) log((1−
t)fs + tg)| is integrable on Ω. Also,∣∣∣∣ (g − fs)2

(1 − t)fs + tg

∣∣∣∣ ≤ 1
t
g +

1
1 − t

fs

for all t ∈ (0, 1), and, of course, supt∈K | 1t g + 1
1−tfs| is integrable on Ω for any

compact interval K ⊂ (0, 1).)
By direct computation, we obtain that η′(0) = 0. Also, η′ is continuous on

[0, 1), and η′′(t) ≤ 0 for all t ∈ (0, 1), so the point t = 0 is a global maximum for
η. This proves that I(fs) = M and concludes the proof.

Remark 2.2. To see how this lemma extends Shannon’s inequality, set Ω = R
n,

and ϕ(x) = ‖x‖2
2. In this case the extremal density f is G

(p)
ε and I(G(p)

ε ) =
2−1p log(2πep−1ε). Also note that for λ(Ω) < +∞ and ϕ = ε, the extremal
density is 1

λ(Ω)χΩ and I( 1
λ(Ω)χΩ) = log λ(Ω).

Now we can prove the main result of the paper.



188 SERBAN TEODOR BELINSCHI

Theorem 2.1. Let X1, . . . , Xn be selfadjoint random variables in a tracial W ∗-
probability space (M, τ). Then

χ∞(X1, . . . , Xn) = χ(1)
∞ (X1, . . . , Xn).

Proof. As noted in the introduction, χ∞(X1, . . . , Xn) ≤ χ
(1)
∞ (X1, . . . , Xn), so

it is enough to prove the opposite inequality. Let m ≥ 2 and ε ∈ (0, 1/2)
be fixed. Let V0 = {(A1, . . . , An) ∈ (Msa

k )n : Ψm,k(A1, . . . , An) ≤ ε}, and
V1 = (Msa

k )n \ V0. Consider f0 ∈ D1,∞(X1, . . . , Xn;m, k, ε2) such that I(f0) =
max{I(f) : f ∈ Γ(1)

∞ (X1, . . . , Xn;m, k, ε2)}, and define f
(i)
0 = ci

−1f0χVi , where
ci =

∫
Vi

f, i = 0, 1 depend on X1, . . . , Xn, m, k and ε. Then we have:

ε2 ≥
∫

f0Ψm,k ≥
∫

V1

f0Ψm,k ≥ ε

∫
V1

f0 = εc1,

so c1 ≤ ε, and c0 ≥ 1 − ε.
Since f0 ∈ D1,∞(X1, . . . , Xn;m, k, ε2),

∫
f

(1)
0 Ψm,k =

(∫
V1

f0

)−1 ∫
V1

f0Ψm,k <
ε2

c1
,

which implies that f
(1)
0 ∈ D1,∞(X1, . . . , Xn;m, k, ε2

c1
).

Now,

I(f0) = c0I(f (0)
0 ) + c1I(f (1)

0 ) − c0 log c0 − c1 log c1

≤ c0I

(
1

|V0|χV0

)
+ c1I(G(nk2)

k(C2+nε2/c1)
) − c0 log c0 − c1 log c1

= c0χ∞(X1, . . . , Xn;m, k, ε) + c1
nk2

2

(
log

2πe(C2 + nε2/c1)
n

− log k

)

− c0 log c0 − c1 log c1,(1)

where C2 = τ(X1
2 + · · ·+ Xn

2). Here we used Lemma 2.1 in the last inequality.
Dividing by k2 and adding n

2 log k in (1), we obtain:

1
k2

I(f0) +
n

2
log k ≤ c0

(
1
k2

χ∞(X1, . . . , Xn;m, k, ε) +
n

2
log k

)

+ c1
n

2
log

2πe(C2 + nε2/c1)
n

− 1
k2

(c0 log c0 + c1 log c1).

As k → ∞, this yields

χ(1)
∞ (X1, . . . , Xn;m, ε2) ≤ lim sup

k→∞
c0

(
1
k2

χ∞(X1, . . . , Xn; m, k, ε) +
n

2
log k

)

+ lim sup
k→∞

c1
n

2
log

2πe(C2 + nε2/c1)
n
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Since limt→0,t>0 t log 2πe(C2+nε2/t)
n = 0, the function

s(ε) := sup
{

t
n

2
log

2πe(C2 + nε2/t)
n

: t ∈ (0, ε]
}

does not depend on k and m and tends to zero as ε → 0.
Hence

χ(1)
∞ (X1, . . . , Xn;m, ε2) ≤ lim sup

k→∞
c0

(
1
k2

χ∞(X1, . . . , Xn;m, k, ε)+
n

2
log k

)
+s(ε)

On the other hand, since 1 ≥ c0 ≥ 1 − ε, we have that

lim sup
k→∞

c0

(
1
k2

χ∞(X1, . . . , Xn;m, k, ε) +
n

2
log k

)
≤

max {(1 − ε)χ∞(X1, . . . , Xn; m, ε), χ∞(X1, . . . , Xn;m, ε)} .

This allows us to conclude that

χ(1)
∞ (X1, . . . , Xn;m, ε2) ≤

max {(1 − ε)χ∞(X1, . . . , Xn;m, ε), χ∞(X1, . . . , Xn;m, ε)} + s(ε).

Taking limits when m → ∞ and ε → 0 in the previous inequality, we obtain

χ(1)
∞ (X1, . . . , Xn) = χ∞(X1, . . . , Xn).
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