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FUSION CATEGORIES OF RANK 2

VIKTOR OSTRIK

ABSTRACT. We classify semisimple rigid monoidal categories with two isomor-
phism classes of simple objects over the field of complex numbers. In the appendix
written by P. Etingof it is proved that the number of semisimple Hopf algebras
with a given finite number of irreducible representations is finite.

1. Introduction

Let k£ be an algebraically closed field of characteristic 0. A fusion category C
over k is a k—linear semisimple rigid monoidal category with finitely many simple
objects and finite dimensional spaces of morphisms, such that the endomorphism
algebra of the neutral object is k, see [3].

The problem of classification of all fusion categories seems to be very diffi-
cult. A basic invariant of a fusion category C is its Grothendieck ring K (C)
(physically, fusion rules algebra or fusion ring) which is a unital based ring in
the sense of [10]. It is known that for a given based ring K there are only finitely
many fusion categories C with K(C) = K (this statement is known as “Ocneanu
rigidity,” see [16] and [3]). There is a natural problem for a given “interesting”
based ring K to find all fusion categories C with K(C) = K (such categories are
called “categorifications” of K). This problem was considered first probably by
G. Moore and N. Seiberg in [8], they considered the case when all objects of C
are invertible and the case of Yang-Lee fusion rules (see below). In his thesis
T. Kerler completely classified fusion categories with fusion rings isomorphic to
the fusion ring of the category of integrable sAlg—modules at a positive integer
level, see [4], and later D. Kazhdan and H. Wenzl generalized this to the case of
sl see [6]. In [13] D. Tambara and S. Yamagami considered another big class
of examples, the so-called fusion rules of self-duality for finite abelian groups.

The rank of K(C) over Z or equivalently the number of isomorphism classes
of simple objects in C is called the rank of the category C. There is only one
fusion category of rank 1 — the category of vector spaces over k. In this note
we will study all fusion categories of rank 2. Let 1, X be the simple objects
of such category C (here 1 is the unit object). It is clear that possible fusion
rules for C are completely determined by the number n € Z> from the equation
X®X =1dnX. Let K,, denote the fusion ring corresponding to the number n.
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The fusion ring K is called the Yang-Lee fusion rules and is well known in the
conformal field theory.

Main Theorem. There are just 4 fusion categories of rank 2. For two of them
K(C) = Ky and for other two of them K(C) = K;.

The classification of fusion categories C with K(C) = Ky or K(C) = K; is due
to Moore and Seiberg [8]. The only new part of this Theorem is the fact that
the fusion rings K,,n > 2 admit no categorification.

Our result suggests that the answer to the following question is of interest:

Question. Is it true that there are only finitely many fusion categories of a
given finite rank?

As a supporting evidence for positive answer to this question recall that the
number of finite groups with a given number of irreducible representations is
finite, see [7]. Moreover, P. Etingof proved that the number of finite dimensional
semisimple Hopf algebras with a given number of irreducible representations is
finite, see Appendix to this note (namely, Etingof gives a bound for the dimension
of such Hopf algebra and Stefan’s theorem [12] states that there are only finitely
many semisimple Hopf algebras of a given dimension over an algebraically closed
field of characteristic 0).

Remark. Our Main Theorem is not true without rigidity assumption on the
category C. See [14] for an example of a semisimple bialgebra with two repre-
sentations and fusion rules X ® X = 2X.

2. Proof of the Main Theorem

It appears that direct methods developed in [13] are very difficult to apply in
a case when some fusion coefficients are greater than 1. In particular I could not
study even the case of the fusion ring K5 using these methods. So we are using
another approach. Here is an outline of our proof. Let C be a fusion category
with K(C) = K,,. First we study the Drinfeld double of C and show that C is
braided. Then we show that the category C is automatically ribbon. It is easy
to see then that the category C is modular (unless n = 0). Now the standard
identities from the theory of modular categories give us a contradiction.

2.1. The category C is braided. Let Z(C) be the Drinfeld center of the
category C, see e.g. [9]. It is known that the category Z(C) is semisimple, see
[3]. Let C°P denotes the opposite category to C and let C X C°P be the external
product of the categories C and CP, see e.g. [9].

Lemma 2.1. The category Z(C) has 4 simple objects 1, X1, X5,Y. Under the
forgetful functor F' : Z(C) — C one has F(1) =1,F(X;) = F(X2) =X, F(Y) =
X®X.
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Proof. Following [9] Theorem 4.14 (see also [11] Proposition 2.2) one can describe
the category Z(C) in the following way: the object A =1X 1@ X X X of the
category C XIC°P has a natural structure of Frobenius algebra and the category
Z(C) is equivalent to the category of A—bimodules in C X C°P. Note that any
(say left) A—module is free, that is of the form A® M where M is some object of
CX1 (and A—module structure is the obvious one); this is a consequence of the
general fact that the category of A—modules considered as the module category
over C K C°P is module equivalent to the category C with X XY € C K CP
acting via the functor X®7®Y, see [11] (the equivalence sends an object M € C
to A® (M X 1)). So there are just two simple A—modules — A itself and
A(XN1)=1KX+XX1+nXKX.

We will denote by Hom(?,?) the Hom-spaces in the category C X C°P and by
Homa_4(?,7) the Hom-spaces in the category of A—bimodules. For any simple
object M € C X C° one considers the “free” bimodule A ® M ® A (in other
words, the object A® M ® A is just the image of M under the functor C — Z(C)
left adjoint to the forgetful functor). Note that for any A—bimodule B one has
Homa 4(A® M ® A,B) = Hom(M, B). In particular any A—bimodule is a
direct summand of some free bimodule. Now taking M = 1 X 1 we get that
Homa_4(A® A, A® A) = Hom(1 X1, A ® A) is two dimensional, so A ® A
is a direct sum of two nonisomorphic bimodules. One of them is A itself, so
A® A= A®Y where the simple bimodule Y as an object of C X C° has the
following decomposition Y = 1XK1&n1XX &nXX16(n?+1) XX X. This implies
that for M = 1K X or X X1 one has Homy_ 4 (A®Q M ® A,Y’) is n—dimensional
and the calculation similar to the one above shows that AQM®A = nY XD X5
where X7, Xy are simple nonisomorphic bimodules and X; @& Xy = 21 X X &
2XNX1d2n XX X. Since X; and X5 are in particular A—modules one gets from
the description of A—modules above that X1 = Xo =1 XX pXX1p X KX
as objects of CXIC°P. Finally one calculates easily that for M = X X X one has
AM®A=A®nX,dnXo® (n?+1)Y and so all A—bimodules are classified.

The forgetful functor F' has the following description on the objects of the
category of A—bimodules: any A—bimodule B is in particular left A—module,
so is of the form A ® (M X 1) where M € C; then F(B) = M. This finishes the
proof of the Lemma. O

The following Lemma calculates the fusion rules of Z(C) and shows that the
based ring K(Z(C)) = K,, ® K.

Lemma 2.2. We have
X1®X1 :1@7’LX1, X2®X2:1@7’LX2, X1®X2:X2®X1:Y.

Proof. Tt is known that the category Z(C) is rigid, see [9] Proposition 3.9. It is
clear that 1* =1 and Y* =Y. We claim that X{ = X; and X; = X5. Indeed
otherwise Hom(1, X; ® X7) = 0 and hence X; ® X; =Y (since Hom(1, F(X; ®
X1)) # 0. Similarly Xo ® X5 =Y. We have also that X; ® X5 is a direct sum of
1 and n summands each of which is isomorphic either to X; or to X5. We can
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assume that Hom(X; ® X5, X;7) # 0 (otherwise take X instead of X5). But in
this case we have a contradiction:

0= HOHI(Xl,Y) = HOHl(Xl,Xl ®X1) =

= Hom(X; ® X7, X;7) = Hom(X; ® X2, X1) # 0.
Thus X7 = X1, X5 = Xs and hence X; ® Xo = Xo ® X1 =Y. Note that
Hom(X; ® X3, X5) = Hom(X1, X] ® X2) = Hom(X;,Y) =0
so X1 ® X1 =1®nX;. Similarly Xo® X5 = 1®nXs5. The Lemma is proved. [

Thus the subcategory (1, X;) of Z(C) consisting of direct sums of 1 and X; is
a monoidal subcategory. The forgetful functor F' restricted to this subcategory
is an equivalence of categories and thus we proved

Corollary 2.1. The category C admits a structure of braided category. O

2.2. The category C is modular. Let us fix a structure of a braided category
onC. For M,N € Clet By v : M®N — N ® M denote the braiding morphism.
The morphisms [y n are completely determined by 4 morphisms (57 x where
M and N are simple objects of C (since the braiding is functorial). It follows
from the axioms that 811 = Id, $1,x = Id, Bx,1 = Id so the only nontrivial
morphism is Bx x. The morphism SBx x induces a linear automorphisms of
the one dimensional space Hom(1,X ® X) and of the n—dimensional space
Hom(X, X ® X); so the first is just some number p € k* and the second is some
linear operator A.

Lemma 2.3. One has A? = pld.

Proof. The vector space Hom(1, X ® X ® X) carries the action of two linear
operators Ay := Bx x ®Id and Ay :=Id ® Bx,x and it is enough to prove that
A% = pld. Note that by the hexagon axiom (Id® Bx,x)o (Bx.x ®1d) = Bx xex
and hence AgA; = pld. On the other hand the braid relation (= Yang-Baxter
relation) says AjAaA1 = Ag A1 Ao whence A; = Ay and the Lemma is proved. [

Corollary 2.2. The category C admits a structure of ribbon (= pivotal and
braided) category.

Proof. Tt is enough to define the twists by #; = 1 and 0x = p~! (see [2] for
notations). O

Corollary 2.3. Assume that n # 0. Then the category C is modular.

Proof. 1t is easy to see that if C is not modular then p = 1 and C is symmetric.
But in a symmetric fusion category the dimensions of all objects are integers, see
[1] Theorem 7.2. The Lemma is proved since the quadratic equation 2% = 1+nzx
has an integer root only for n = 0. O
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2.3. The category C does not exist. The main result of this note is the
following;:

Theorem 2.1. Assume that n > 2. There is no fusion category C such that
K(C)=K,.

Proof. We already proved that category C is modular if it exists. Let d be a
dimension of X and let # = #x. Thus d is a root of equation d?> = 1 + nd and
6 is a root of unity by Vafa’s Theorem, see [2] Theorem 3.1.19. Consider the
Gaussian sums py = 1+6d? and p_ = 1+6~'d?. Since C is a modular category
one has pyp_ =1+ d? (see [2] 3.1.15, 3.1.22) or, equivalently, § + 6= = —nd.
We can assume that d > n (applying otherwise the Galois automorphism to the
equation). Then |nd| > n? and |6 + 67| < 2 and we have a contradiction for
n > 2. O

2.4. Categories C with K(C) = Ky. Let G be a finite group and let K(G)
be the based ring with basis X,,g € G and fusion rules X, ® X;, = Xgp.
It is shown in [8] Appendix E that the monoidal categories C with K(C) =
K(G) are classified by H?(G,k*). Any category of this kind is automatically
rigid. In particular Ky = K(Z/2Z) and categorifications of K, are classified
by H3(Z/2Z,k*) = Z/2Z. So there are two such categories. The first one is
the category of representations of Z/27 and second differs from the first one
by the sign of associativity morphism (X @ X) ® X — X ® (X ® X). This
second category can be explicitly realized as the fusion category of integrable
representations of ;’\12 at level 1.

2.5. Categories C with K(C) = K;. Let C be a monoidal category with
K (C) = K;. Choose basis vectors in one dimensional vector spaces Hom(1, X ®
X) and Hom(X, X ® X). The only nontrivial associativity morphism is (X ®
X)®X — X ® (X ® X), this is equivalent to giving isomorphisms of vector
spaces Hom(X, X ® X) ® Hom(1, X ® X) — Hom(X, X ® X) ® Hom(1, X ® X)
(so this is just a number A € k*) and Hom(1,X ® X) ® Hom(X, X ® 1) &
Hom(X, X ® X) ® Hom(X, X ® X) — Hom(1,X ® X) ® Hom(X,1 ® X) &
Hom(X, X ® X) ® Hom(X, X ® X) (so this can be represented by invertible
2 x 2 matrix). After relatively easy calculation (along the lines of [13]) one
finds that A = 1 and the second isomorphism can be represented by the matrix

a 1

a —a
both categories are rigid; they differ by the action of Galois group. In one of
these categories dim(X) = % and in the second dim(X) = 177\/5 The first
category can be explicitly realized as a subcategory of “integer spin” representa-
tions of the fusion category of integrable sAlg—modules at level 3 and the second
category is the minimal model M(2,5) for the Virasoro algebra (with central
charge ¢ = —25—2) Both categories can be also realized using the quantum group

where a is a root of equation a? +a = 1. So we have two solutions;

U,(slz) for ¢ = W1 (there are 4 primitive tenth roots of 1, but ¢ and ¢~! give
rise to the same category), see [2].
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3. Appendix
Pavel Etingof

In this appendix we give an upper bound for the dimension of a semisimple
Hopf algebra over k with n irreducible representations. For group algebras, this
estimate was obtained 100 years ago by E. Landau, [7]. (We are grateful to
R. Stanley for giving us this reference).

For a positive integer n, let P(n) be the set of positive integer solutions of
the equation w—ll + ...+ % =1, and let d(n) = max(y, .. z,)eP(n)MaX;T;.

Theorem 3.1. Let H be a semisimple Hopf algebra over k, which has n irre-
ducible representations. Then dimH < d(n).

Remark 1. The set P(n) is finite, since for any positive rational number r the
number of positive integer solutions of the equation w—ll + ...+ i = r is finite
([7]). Indeed, if z is the smallest coordinate, then x1 < n/r, so there are finitely
many possibilities for x1, and if z; is fixed then (z2,...,x,) vary over the set of
positive integer solutions of the equation m—12 +...+ i =r— x%’ so the statement
follows by induction. (In fact, this inductive procedure allows one to obtain an

explicit estimate for d(n), see [7]).

Remark 2. One has d(n+1) > 2d(n) since if 3 | = =1then ! | T Ly1l=
1.

Proof. Our proof is a generalization of the classical proof of Landau in the group
case, which employs the fact that for a group with n irreducible representations,
one has Y, ﬁ = 1, where C; are centralizers of conjugacy classes (the class

equation). Namely, we use the Hopf algebraic class equation, due to G.Kac [5]
and Y.Zhu [15].

Let C(H) C H* be the character ring of H (it is spanned by characters of
irreducible representation). If H is semisimple then C'(H) is a semisimple algebra
(see [15], Lemma 2) of dimension n, so C(H) can be identified with ®&Mat,.,,

where Y 72 = n. Let us choose such an identification, and let EJ(;) € C(H) be
the corresponding matrix units.
Theorem (Kac-Zhu). [15] The ratio m; = dim(H)/Tr]H*(EJ(;)-) (where for a €
H* a- denotes the operator of multiplication by a) is a positive integer.

— = 1. Writ-

Now observe that 3, 375", E() =1,80 3,0 =300
ing r;/m; as a sum of r; copies of 1/m;, we get a solution of the equation
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S 2 = 1, where r = >, r; < n. Thus, m; < d(r) < d(n). On the other

i=1 x;
haild, consider the 1-dimensional matrix block of C'(H) spanned by the integral
of H* (i.e. by the character of the regular representation of H). For this block
the number m; is obviously equal to dim(H ), since the integral is a projector to
a 1-dimensional subspace. So dimH < d(n), as desired. O
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